Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Model and Statistical Analysis
Experiment No. | Extraction temperature, x1 (°C) | Liquid:solid ratio, x2 (v/w) | Extraction time, x3 (min) | Response, Y (%) |
---|---|---|---|---|
1 | −1 | −1 | −1 | 9.42 |
2 | 1 | −1 | −1 | 13.02 |
3 | −1 | −1 | 1 | 11.29 |
4 | 1 | −1 | 1 | 12.39 |
5 | −1 | 1 | −1 | 12.04 |
6 | 1 | 1 | −1 | 13.86 |
7 | −1 | 1 | 1 | 13.21 |
8 | 1 | 1 | 1 | 13.06 |
9 | −1.68 | 0 | 0 | 11.70 |
10 | 1.68 | 0 | 0 | 15.04 |
11 | 0 | 0 | −1.68 | 12.58 |
12 | 0 | 0 | 1.68 | 12.68 |
13 | 0 | −1.68 | 0 | 10.52 |
14 | 0 | 1.68 | 0 | 13.54 |
15 | 0 | 0 | 0 | 13.47 |
16 | 0 | 0 | 0 | 13.51 |
17 | 0 | 0 | 0 | 13.52 |
18 | 0 | 0 | 0 | 13.40 |
19 | 0 | 0 | 0 | 12.56 |
20 | 0 | 0 | 0 | 12.48 |
Variables | DF | SS | MS | F-value | p-value |
---|---|---|---|---|---|
x1 | 1 | 10.5593 | 10.5593 | 53.6307 | <0.0001 |
x2 | 1 | 0.2288 | 0.2288 | 1.1619 | 0.3064 |
x3 | 1 | 9.0555 | 9.0555 | 45.9932 | <0.0001 |
x1x2 | 1 | 2.4921 | 2.4921 | 12.6576 | 0.0052 |
x1x3 | 1 | 1.1521 | 1.1521 | 5.8515 | 0.0361 |
x2x3 | 1 | 0.0955 | 0.0955 | 0.4849 | 0.5021 |
x12 | 1 | 0.0000 | 0.0000 | 0.0000 | 0.9969 |
x22 | 1 | 0.9907 | 0.9907 | 5.0319 | 0.0487 |
x32 | 1 | 3.2544 | 3.2544 | 16.5292 | 0.0023 |
Source | DF | SS | MS | F-value | p-value |
---|---|---|---|---|---|
Modela | 9 | 27.57 | 3.06 | 15.56 | <0.0001 |
Linear | 3 | 19.84 | 6.61 | 10.91 | 0.0004 |
Quadratic | 3 | 3.99 | 1.33 | 6.76 | 0.0091 |
Cross-product | 3 | 3.74 | 1.25 | 2.72 | 0.0874 |
Error | 10 | 1.97 | 0.20 | ||
Total | 19 | 29.54 | 161.86 |
2.2. Optimization of the Procedure by RSM
2.3. Validation of the Model
2.4. HPLC Analysis Extracts
2.5. Total Flavonoid Content
3. Experimental
3.1. Plant Materials and Chemicals
3.2. Extraction Procedure
3.3. Polyphenol Determination
3.4. HPLC Analysis of Extracts
3.5. Total Flavonoid Content
3.6. Statistical Analysis
Independent variable | Symbol | Levels | |||||||
---|---|---|---|---|---|---|---|---|---|
Uncoded | Coded | −1.68 | −1 | 0 | 1 | 1.68 | |||
Extraction time (min) | X1 | x1 | 8.18 | 15 | 25 | 35 | 41.82 | ||
Liquid:solid ratio (v/w) | X2 | x2 | 11.59 | 15 | 20 | 25 | 28.41 | ||
Extraction temperature (°C) | X3 | x3 | 53.18 | 60 | 70 | 80 | 86.82 |
4. Conclusions
Acknowledgements
References
- Lei, X.L.; Wen, L.T.; Wen, J.; Wen, Q.; Xu, L.C. Literature review of researches on molecular breeding in Camellia oleifera. Econ. For. Res. Sin. 2006, 24, 99–102. [Google Scholar]
- Zhong, H.Y.; Xie, B.X.; Wang, C.N. The effect of supercritical CO2 extraction condition on the quality of oil-tea Camellia seed oil. (in Chinese). Chin. Cereals Oils Assoc. 2001, 16, 9–13. [Google Scholar]
- Lee, C.P.; Yen, G.C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agr. Food. Chem. 2006, 54, 779–784. [Google Scholar]
- Tan, X.F.; Hu, F.M.; Xie, L.S.; Shi, M.W.; Zhang, D.Q.; Wuyun, T.N. Construction of EST library and analysis of main expressed genes of Camellia oleifera seeds. Sci. Silvae Sin. 2006, 42, 43–48. [Google Scholar]
- Zhang, D.Q.; Tan, X.F.; Peng, W.X.; Liu, Q.M.; Zeng, Y.L.; Chen, H.P.; Tian, H.; Ma, Q.Z. Improved application of Camellia oleifera on biomass energy by enlarging its production. Acta Sci. Nat. Univ. Sunyatseni 2007, 46, 109–110. [Google Scholar]
- Camel, V. Microwave-assisted solvent extraction of environmental samples. Trends Anal. Chem. 2000, 19, 229–248. [Google Scholar] [CrossRef]
- Letellier, M.; Budzinski, H.; Charrier, L.; Capes, S.; Dorthe, A.M. Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment. Fresen. J. Anal. Chem. 1999, 364, 228–237. [Google Scholar]
- Zuloaga, O.; Etxebarria, N.; Fernandez, L.A.; Madariaga, J.M. Optimisation and comparison of microwave-assisted extraction and Soxhlet extraction for the determination of polychlorinated biphenyls in soil samples using an experimental design approach. Talanta 1999, 50, 345–357. [Google Scholar] [CrossRef]
- Pérez-Serradilla, J.A.; Luque de Castro, M.D. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem. 2011, 124, 1652–1659. [Google Scholar]
- Yang, Z.D.; Zhai, W.W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov. Food Sci. Emerg. Technol. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.Q.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 2010, 120, 1185–1192. [Google Scholar] [CrossRef]
- Kerem, Z.; German-Shashoua, H.; Yarden, O. Microwave-assisted extraction of bioactive saponins from chickpea Cicer arietinum L. J. Sci. Food Agr. 2005, 85, 406–412. [Google Scholar]
- Li, H.; Chen, B.; Nie, L.; Yao, S. Solvent effects of focused microwave assisted extraction of polyphenolic acids from Eucommia ulmodies. Phytochem. Anal. 2004, 15, 306–312. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Zhang, Z.; Yao, S. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 2004, 63, 659–665. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product in Optimization Using Designed Experiments; John Wiley & Sons: New York, NY, USA, 2002; pp. 521–690. [Google Scholar]
- Atkinson, A.C.; Donev, A.N. Optimum Experimental Designs; Oxford University Press: Oxford, UK, 1992; pp. 132–189. [Google Scholar]
- Muralidhar, R.V.; Chirumamila, R.R.; Marchant, R.; Nigam, P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem. Eng. J. 2001, 9, 17–23. [Google Scholar] [CrossRef]
- Liang, J.; Li, F.; Fang, Y.; Yang, W.; An, X.; Zhao, L.; Xin, Z.; Hu, Q. Response surface methodology in the optimization of tea polyphenols-loaded chitosan nanoclusters formulations. Eur. Food Res. Technol. 2010, 231, 917–924. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food. Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–599. [Google Scholar] [CrossRef]
- Samples Availability: Samples of the compounds are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, L.; Wang, Y.; Wu, D.; Xu, M.; Chen, J. Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull. Molecules 2011, 16, 4428-4437. https://doi.org/10.3390/molecules16064428
Zhang L, Wang Y, Wu D, Xu M, Chen J. Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull. Molecules. 2011; 16(6):4428-4437. https://doi.org/10.3390/molecules16064428
Chicago/Turabian StyleZhang, Liangliang, Yongmei Wang, Dongmei Wu, Man Xu, and Jiahong Chen. 2011. "Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull" Molecules 16, no. 6: 4428-4437. https://doi.org/10.3390/molecules16064428
APA StyleZhang, L., Wang, Y., Wu, D., Xu, M., & Chen, J. (2011). Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull. Molecules, 16(6), 4428-4437. https://doi.org/10.3390/molecules16064428