Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elucidation of the Purified Benzopyranones
2.2. Antimicrobial Activity
Compd. | IC50 (μg/mL) | |||||
---|---|---|---|---|---|---|
A. tum. | B. sub. | P. lach. | R. sol. | X. ves. | M. or. | |
Palmariol B (1) | 19.35 | 27.67 | 16.74 | 17.51 | 28.11 | 118.72 |
4-Hydroxymellein (2) | 18.22 | 19.22 | 16.18 | 16.24 | 17.81 | 113.40 |
Alternariol 9-methyl ether (3) | 28.83 | 34.29 | 27.08 | 29.21 | 30.06 | 123.19 |
Botrallin (4) | 87.52 | 98.47 | 92.21 | 85.46 | 86.32 | 107.19 |
CK+ | 6.34 | 8.35 | 8.34 | 7.19 | 6.79 | 13.01 |
2.3. Antinematodal and Acetylcholinesterase Inhibitory Activities
Compd. | IC50 (μg/mL) | |
---|---|---|
Antinematodal activity on C. elegans | Acetylcholinesterase inhibitory activity | |
Palmariol B ( 1) | 56.21 | 115.31 |
4-Hydroxymellein ( 2) | 86.86 | 116.05 |
Alternariol 9-methyl ether ( 3) | 93.99 | 135.52 |
Botrallin ( 4) | 84.51 | 103.70 |
CK+ | 3.70 | 7.41 |
3. Experimental
3.1. General
3.2. Endophytic Fungus and Fermentation
3.3. Extraction and Fractionation of the Compounds
3.4. Physicochemical and Spectroscopic Data of the Benzopyranones
3.5. Antibacterial Activity Assay
3.6. Antifungal Activity Assay
3.7. Antinematodal Activity Assay
3.8. Acetylcholinesterase Inhibitory Activity Assay
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the benzopyranones are available from the authors.
References
- Aly, A.H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 2010, 41, 1–16. [Google Scholar] [CrossRef]
- Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2001, 18, 448–459. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C.; Draeger, S.; Rommert, A.K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep. 2011, 28, 1208–1228. [Google Scholar] [CrossRef]
- Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef]
- Zhong, L.; Xu, L.; Meng, X.; Peng, Y.; Chen, Y.; Sui, P.; Wang, M.; Zhou, L. Botrallin from the endophytic fungus Hyalodendriella sp. Ponipodef12 and its antimicrobial activity. Afr. J. Biotechnol. 2011, 10, 18174–18178. [Google Scholar]
- Matumoto, T.; Hosoya, T.; Shigemori, H. Palmariols A and B, two new chlorinated dibenzo-α-pyranones from Discomycete Lachnum palmae. Heterocycles 2010, 81, 1231–1237. [Google Scholar] [CrossRef]
- Djoukeng, J.D.; Polli, S.; Larignon, P.; Abou-Mansour, E. Identification of phytotoxins from Botryosphaeria obtusa, a pathogen of black dead arm disease of grapevine. Eur. J. Plant Pathol. 2009, 124, 303–308. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Smedsgaard, J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chromatogr. A 2003, 1002, 111–136. [Google Scholar] [CrossRef]
- Tan, N.; Tao, Y.; Pan, J.; Wang, S.; Xu, F.; She, Z.; Lin, Y.; Jones, E.B.G. Isolation, Structure elucidation, and Mutagenicity of four alternariol derivatives produced by the mangrove endophytic fungus No. 2240. Chem. Nat. Compd. 2008, 44, 296–300. [Google Scholar] [CrossRef]
- Gu, W. Bioactive metabolites from Alternaria brassicicola ML-P08, An endophytic fungus residing in Malus halliana. World J. Microbiol. Biotechnol. 2009, 25, 1677–1683. [Google Scholar] [CrossRef]
- Kjer, J.; Wray, V.; Edrada-Ebel, R.; Ebel, R.; Pretsch, A.; Lin, W.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the magrove plant Sonneratia alba. J. Nat. Prod. 2009, 72, 2053–2057. [Google Scholar] [CrossRef]
- Kameda, K.; Aoki, H.; Namiki, M. An alternative structure for botrallin a metabolite of Botrytis allii. Tetrahedron Lett. 1974, 1, 103–106. [Google Scholar]
- Hormazabal, E.; Schmeda-Hirschmann, G.; Astudillo, L.; Rodriguez, J.; Theoduloz, C. Metabolites from Microsphaeropsis olivacea, an endophytic fungus of Pilgerodendron uviferum. Z. Naturforsch. 2005, 60, 11–21. [Google Scholar]
- Krohn, K.; Kock, I.; Elsasser, B.; Florke, U.; Schulz, B.; Draeger, S.; Pescitelli, G.; Antus, S.; Kurtan, T. Bioactive natural products from the endophytic fungus Ascochyta sp. form Melitotus dentatus—configurational assignment by solid-state CD and TDDFT calculations. Eur. J. Org. Chem. 2007, 1123–1129. [Google Scholar]
- Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J. A new dihycrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chem. Pharm. Bull. 2007, 55, 1404–1405. [Google Scholar] [CrossRef]
- Venkatasubbaiah, P.; Chilton, W.S. Phytotoxins of Botryosphaeria obtusa. J. Nat. Prod. 1990, 53, 1628–1630. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Arunpanichlert, J.; Sukpondma, Y.; Phongpaichit, S.; Sakayaroj, J. Metabolites from the endophytic fungi Botryosphaeria rhodina PSU-M35 and PSU-M114. Tetrahedron 2009, 65, 10590–10595. [Google Scholar] [CrossRef]
- Camarda, L.; Merlini, L.; Nasini, G. Metabolites of Cercospora. Taiwapyrone, an α-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry 1976, 15, 537–539. [Google Scholar] [CrossRef]
- Krohn, K.; Sohrab, M.H.; van Ree, T.; Draeger, S.; Schulz, B.; Antus, S.; Kurtin, T. Biologically active secondary metabolites from fungi, 39. Dinemasones A, B and C: New bioactive metabolites from the endophytic fungus Dinemasporium strigosum. Eur. J. Org. Chem. 2008, 33, 5638–5646. [Google Scholar]
- Pinheiro, A.; Dethoup, T.; Bessa, J.; Silva, A.M.S.; Kijjoa, A. A new bicyclic sesquiterpene from the marine sponge associated fungus Emericellopsis minima. Phytochem. Lett. 2012, 5, 68–70. [Google Scholar] [CrossRef]
- Nunes, F.M.; Oliveira, M.C.F.; Arriaga, A.M.C.; Lemos, T.L.G.; Andrade-Neto, M.; Mattos, M.C.; Mafezoli, J.; Viana, F.M.P.; Ferreira, V.M.; Rodrigues-Filho, E.; et al. A new eremophilane-type sesquiterpene from the phytopathogen fungus Lasiodiplodia therobromae (Sphaeropsidaceae). J. Braz. Chem. Soc. 2008, 19, 478–482. [Google Scholar] [CrossRef]
- Hussain, H.; Krohn, K.; Draeger, S.; Meier, K.; Schulz, B. Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Rec. Nat. Prod. 2009, 3, 114–117. [Google Scholar]
- Oliveira, C.M.; Silva, G.H.; Regasini, L.O.; Zanardi, L.M.; Evangelista, A.H.; Young, M.C.M.; Bolzani, V.S.; Araujo, A.R. Bioactive metabolites produced by Penicillium sp.1 and sp.2, Two endophytes associated with Alibertia macrophylla (Rubiaceae). Z. Naturforsch. 2009, 64, 824–830. [Google Scholar]
- Hussain, H.; Krohn, K.; Schulz, B.; Draeger, S.; Nazir, M.; Saleem, M. Two new antimicrobial metabolites from the endophytic fungus, Seimatosporium sp. Nat. Prod. Commun. 2012, 7, 293–294. [Google Scholar]
- Devys, M.; Bousquet, J.F.; Kollmann, A.; Barbier, M. Dihydroisocoumarines et acide mycophenolique du milieu de culture du champignon phytopathogene Septoria nodorum. Phytochemistry 1980, 19, 2221–2222. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Schebb, N.H.; Podlech, J.; Metzler, M. Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether. Mol. Nutr. Food Res. 2007, 51, 307–316. [Google Scholar] [CrossRef]
- Bensassi, F.; Gallerne, C.; Sharafeldein, O.; Hajlaoui, M.R.; Bacha, H.; Lemaire, C. Mechanism of alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells. Toxicology 2011, 290, 230–240. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Eschbach, S.; Metzler, M. Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro. Mycotoxin Res. 2007, 23, 152–157. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, Y.; Gao, S.; Xu, L.; Zhao, J.; Shan, T.; He, W.; Zhou, L. Endophytic fungi from the hybrid ‘Neva’ of Populus deltoides Marsh × P. nigra L. and their antimicrobial activity. Afr. J. Microbiol. Res. 2011, 5, 3924–3929. [Google Scholar]
- Langfied, R.D.; Scarano, F.J.; Heitzman, M.E.; Kondo, M.; Hammond, G.B.; Neto, C.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 2004, 94, 279–281. [Google Scholar] [CrossRef]
- Sakuma, M. Probit analysis of preference data. Appl. Entomol. Zool. 1998, 33, 339–347. [Google Scholar]
- Zhao, J.; Mou, Y.; Shan, T.; Li, Y.; Zhou, L.; Wang, M.; Wang, J. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isoalted from Paris polyphylla var. yunnanensis. Molecules 2010, 15, 7961–7970. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Zhao, J.; Lu, S.; Wang, J.; Jiang, W.; Ma, Z.; Zhou, L. Isoquinoline alkaloids from Macleaya cordata active against plant microbial pathogens. Nat. Prod. Commun. 2009, 4, 1557–1560. [Google Scholar]
- Wang, J.; Zhao, J.; Liu, H.; Zhou, L.; Liu, Z.; Wang, J.; Han, J.; Yu, Z.; Yang, F. Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis. Molecules 2010, 15, 6411–6422. [Google Scholar] [CrossRef]
- Fiori, A.C.G.; Schwan-Estrada, K.R.F.; Stangarlin, J.R.; Vida, J.B.; Scapim, C.A.; Cruz, M.E.S.; Pascholati, S.F. Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. J. Phytopathol. 2000, 148, 483–487. [Google Scholar] [CrossRef]
- Steiernagle, T. Maintenance of C. elegans. In C. elegans: A Practical Approach; Hope, I., Ed.; Oxford University Press: Oxford, UK, 1999; pp. 51–67. [Google Scholar]
- Hong, L.; Li, G.; Zhou, W.; Wang, X.; Zhang, K. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora. Pest Manag. Sci. 2007, 63, 301–305. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinestrase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Meng, X.; Mao, Z.; Lou, J.; Xu, L.; Zhong, L.; Peng, Y.; Zhou, L.; Wang, M. Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities. Molecules 2012, 17, 11303-11314. https://doi.org/10.3390/molecules171011303
Meng X, Mao Z, Lou J, Xu L, Zhong L, Peng Y, Zhou L, Wang M. Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities. Molecules. 2012; 17(10):11303-11314. https://doi.org/10.3390/molecules171011303
Chicago/Turabian StyleMeng, Xiangjie, Ziling Mao, Jingfeng Lou, Liang Xu, Lingyun Zhong, Youliang Peng, Ligang Zhou, and Mingan Wang. 2012. "Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities" Molecules 17, no. 10: 11303-11314. https://doi.org/10.3390/molecules171011303
APA StyleMeng, X., Mao, Z., Lou, J., Xu, L., Zhong, L., Peng, Y., Zhou, L., & Wang, M. (2012). Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities. Molecules, 17(10), 11303-11314. https://doi.org/10.3390/molecules171011303