Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
Plant species | Voucher specimen no. | Family | Part extracted | Traditional uses a |
---|---|---|---|---|
Acacia pennivenia * Balf. f. | Mo-Sq28 | Mimosaceae | L | As a paste around the breast for women with mastitis |
Acridocarpus socotranus * Oliv. | Mo-Sq16 | Malpighiaceae | L,S | Headaches, paralysis and muscle or tendon pain |
Aloe perryi * Baker | Mo-Sq9 | Aloaceae | R | Eye and stomach problems, constipation and malaria |
Ballochia atrovirgata * Balf. f. | Mo-Sq15 | Acanthaceae | S, L | Unknown |
Boswellia socotrana * Balf. f. | Mo-Sq24 | Burseraceae | B | Common cold, bronchitis, asthma and rheumatism |
Commiphora ornifolia * J. B. Gillett | Mo-Sq23 | Burseraceae | B | Antiseptic, diarrhea, dysentery and emesis |
Croton socotranus * Balf. f. | Mo-Sq4 | Euphorbiaceae | L, Fr | Wounds, anthelmintic |
Dendrosicyos socotrana * Balf. f. | SP-A015 | Cucurbitaceae | L, S | Urinary retention, cystitis, diabetes and problem with liver |
Dorstenia gigas * Schweinf. ex Balf. f. | SP-M122 | Moraceae | L, S | Flatulence, indigestion and skin diseases |
Dracaena cinnabari * Balf. f. | SP-D225 | Agavaceae | Re | Swellings, inflammations, sores, rashes, itching, stomach pain, haemostatic and oral health |
Euclea divinorum Hiern | Mo-Sq1 | Ebenaceae | R | For oral care, tooth ache, fungal diseases, sores, wounds and abscesses |
Euphorbia socotrana * Balf. f. | Mo-Sq5 | Euphorbiaceae | L | For skin diseases and wounds |
Eureiandra balfourii * Cogn. & Balf. f. | Mo-Sq3 | Cucurbitaceae | L | Unknown |
Hibiscus noli-tangere * A.G.Mill. | Mo-Sq30 | Malvaceae | L, R | For snake bite and fever in children |
Hypoestes pubescens * Balf. f. | Mo-Sq12 | Acanthaceae | L | Fungal skin diseases and scabies |
Lycium sokotranum * Wagner & Vierh. | Mo-Sq20 | Solanaceae | L, S | For stomach ailments and encourage the wound healing |
Maerua angolensis DC. | Mo-Sq7 | Capparaceae | L | To treat fever, aches and general malaise |
Punica protopunica * Balf. f. | SP-D223 | Punicaceae | Fr | Anthelmintic, peptic ulcers, dysentery, diarrhea, sores and wounds |
Rhus thyrsiflora * Balf. f. | Mo-Sq18 | Anacardiaceae | Fr, L | To treat anorexia, general tonic and for painful joints |
Teucrium sokotranum * Vierh. | Mo-Sq22 | Labiatae | Fl, L | As flavoring agent and for indigestion |
Plant species | P. falciparum | L. infantum | T. cruzi | T. brucei | MRC-5 | ||||
---|---|---|---|---|---|---|---|---|---|
IC50 | SI | IC50 | SI | IC50 | SI | IC50 | SI | IC50 | |
Acacia Pennivenia | >64.0 | >64.0 | 27.0 ± 4.7 | 8.3± 1.7 | 3.4 | 28.1 ± 2.6 | |||
Acridocarpus socotranus | 21.6 ± 4.3 | 32.5 ± 6.2 | 8.4 ± 1.3 | >7.6 | 3.5 ± 0.9 | >18 | >64.0 | ||
Aloe perryi | 60.6 ± 7.8 | >64.0 | >64.0 | 31.7 ± 4.7 | >64.0 | ||||
Ballochia atrovirgata | 2.9 ± 1.3 | <1 | 6.0 ± 1.8 | <1 | 0.6 ± 0.2 | 3.4 | 2.1 ± 0.8 | 1.0 | 2.1 ± 0.6 |
Boswellia socotrana | >64.0 | 50.8 ± 7.9 | 8.3 ± 2.4 | 3.9 | 9.3 ± 2.7 | 3.5 | 32.2 ± 5.9 | ||
Commiphora parvifolia | 64.0 | >64.0 | >64.0 | >64.0 | >64.0 | ||||
Croton socotranus | >64.0 | >64.0 | >64.0 | >64.0 | >64.0 | ||||
Dendrosicyos socotrana | 8.4 ± 2.1 | <1 | <0.25 | <1 | 0.6 ± 0.1 | 1.1 | 7.3 ± 2.1 | <1 | 0.7 ± 0.3 |
Dorstenia gigas | >64.0 | >64.0 | >64.0 | 40.3 ± 6.3 | >64.0 | ||||
Dracaena cinnabari | 2.1 ± 0.9 | 3.6 | 8.1 ± 1.7 | <1 | 4.1 ± 1.3 | 1.9 | 8.0 ± 1.8 | <1 | 7.7 ± 2.0 |
Euclea divinorum | 37.5 ± 4.7 | >64.0 | 22.5 ± 4.7 | 33.1 ± 5.3 | 27.5 ± 3.6 | ||||
Euphorbia socotrana | 10.1 ± 1.8 | 7.5 ± 2.4 | 1.2 | 8.1 ± 1.6 | 1.1 | 1.9 ± 0.5 | 4.7 | 8.9 ± 1.2 | |
Eureiandra balfourii | 21.2 ± 2.9 | 6.0 ± 0.8 | 3.5 | 8.3 ± 1.3 | 2.5 | 8.1 ± 2.2 | 2.6 | 20.9 ± 2.8 | |
Hibiscus noli-tangere | 29.9 ± 4.7 | 32.5 ± 5.3 | 29.1 ± 4.6 | 8.2 ± 1.7 | 3.3 | 26.8 ± 3.8 | |||
Hypoestes pubescens | 4.3 ± 3.1 | 7.6 | 7.5 ± 2.3 | 4.4 | 7.4 ± 2.1 | 4.4 | 2.0 ± 0.9 | 16.3 | 32.7 ± 4.2 |
Lycium sokotranum | 35.2 ± 6.2 | >64.0 | 23.8 ± 5.8 | 8.2 ± 2.2 | 2. 6 | 20.9 ± 2.6 | |||
Maerua angolensis | >64.0 | >64.0 | 31.3 ± 6.3 | 33.7 ± 3.4 | >64.0 | ||||
Punica protopunica | 2.2 ± 0.8 | 13.3 | 30.1 ± 6.8 | 32.9 ± 5.2 | 8.9 ± 1.9 | 3.3 | 29.5 ± 3.7 | ||
Rhus thyrsiflora | 37.1 ± 4.9 | >64.0 | 30.5 ± 4.3 | 34.0 ± 4.5 | 53.2 ± 9.3 | ||||
Teucrium sokotranum | 41.6 ± 6.3 | >64.0 | 31.7± 6.1 | 7.9 ± 2.2 | >8 | >64.0 | |||
Chloroquine | 0.3 ± 0.1 | >213 | - | - | >64.0 | ||||
Miltefosine | - | 3.32 ± 0.7 | >19 | - | >64.0 | ||||
Benznidazole | - | - | 2.2 ± 0.5 | >29 | >64.0 | ||||
Suramin | - | - | - | 0.03 ± 0.02 | >2133 | >64.0 | |||
Tamoxifen | - | - | - | 11.0 ± 2.3 |
2.1.1. Cytotoxicity against MRC-5
2.1.2. Antiplasmodial Activity
2.1.3. Antileishmanial Activity
2.1.4. Antitrypanosomal Activity
2.2. Discussion
3. Experimental
3.1. Plant Materials
3.2. Preparation of Extracts
3.3. Standard Drugs
3.4. Biological Assays
3.5. Antiplasmodial Activity
3.6. Antileishmanial Activity
3.7. Antitrypanosomal Activity
3.8. Cytotoxicity against MRC-5 Cells
4. Conclusions
Acknowledgments
References
- World Health Organization (WHO). Malaria Fact Sheet 2010; No. 94. Available online: http://www.who.int/entity/mediacentre/factsheets/fs094/en/ (assessed on 14 July 2010).
- Kager, P.A. Malaria control: Constraints and opportunities. Trop. Med. Int. Health 2002, 7, 1042–1046. [Google Scholar] [CrossRef]
- Dua, V.K.; Verma, G.; Agarwal, D.D.; Kaiser, M.; Brun, R. Antiprotozoal activities of traditional medicinal plants from the Garhwal region of North West Himalaya. J. Ethnopharmacol. 2011, 136, 123–128. [Google Scholar] [CrossRef]
- Mesia, G.K.; Tona, G.L.; Nanga, T.H.; Cimanga, R.K.; Apers, S.; Cos, P.; Maes, L.; Pieters, L.; Vlietinck, A.J. Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo. J. Ethnopharmacol. 2008, 115, 409–415. [Google Scholar] [CrossRef]
- Croft, S.L.; Coombs, G.H. Leishmaniasis-current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003, 19, 502–508. [Google Scholar] [CrossRef]
- Croft, S.L.; Olliaro, P. Leishmaniasis chemotherapy—Challenges and opportunities. Clin. Microbiol. Infect. 2011, 17, 1478–1483. [Google Scholar] [CrossRef]
- Sharma, U.; Velpandian, T.; Sharma, P.; Singh, S. Evaluation of anti-leishmanial activity of selected Indian plants known to have antimicrobial properties. Parasitol. Res. 2009, 105, 1287–1293. [Google Scholar] [CrossRef]
- Gracia, A.; Courtin, D.; Solano, P.; Koffi, M.; Jamonneau, V. Human African trypanosomiasis: Connecting parasite and host genetics. Trends Parasitol. 2006, 22, 405–409. [Google Scholar] [CrossRef]
- World Health Organization (WHO), Control and surveillance of African trypanosomiasis. Technical Report Series 881; Report of WHO Expert Committee: Geneva, Switzerland, 1998; Volume I–VI, pp. 1–114.
- Barrett, M.P.; Burchmore, R.J.S.; Stich, A.; Lazzari, J.O.; Frasch, A.C.; Cazzulo, J.J.; Krishna, S. The trypanosomiases. Lancet 2003, 362, 1469–1480. [Google Scholar] [CrossRef]
- Hotez, P.J.; Molyneuz, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med. 2007, 357, 1018–1027. [Google Scholar] [CrossRef]
- Macía, M.J.; García, E.; Vidaurre, P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005, 97, 337–350. [Google Scholar] [CrossRef]
- Harvey, A. Strategies for discovery drugs from previously unexplored natural products. Drug Discov. Today 2000, 5, 294–300. [Google Scholar] [CrossRef]
- Polanco-Hernández, G.; Escalante-Erosa, F.; García-Sosa, K.; Acosta-Viana, K.; Chan-Bacab, M.J.; Sagua-Franco, H.; González, J.; Osorio-Rodríguez, L.; Moo-Puc, R.E.; Peña-Rodríguez, L.M. In vitro and in vivo trypanocidal activity of native plants from the Yucatan Peninsula. Parasitol. Res. 2012, 110, 31–35. [Google Scholar]
- Abiodun, O.O.; Gbotosho, G.O.; Ajaiyeoba, E.O.; Brun, R.; Oduola, A.M. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine. Parasitol. Res. 2012, 110, 521–526. [Google Scholar] [CrossRef]
- Phillipson, J.D.; Wright, C.W. Antiprotozoal agents from plant sources. Planta Med. 1991, 57, 53–59. [Google Scholar] [CrossRef]
- Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep. 2001, 18, 674–688. [Google Scholar] [CrossRef]
- Maes, L.; Germonprez, N.; Quirijnen, L.; van Puyvelde, L.; Cos, P.; Vanden Berghe, D. Comparative activities of the triterpene saponin Maesabalide-III and liposomal amphotericin-B (AmBisome) against Leishmania donovani in hamsters. Antimicrob. Agents Chemother. 2004, 48, 2056–2060. [Google Scholar] [CrossRef]
- Rocha, L.G.; Almeida, J.R.G.S.; Macêdo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535. [Google Scholar] [CrossRef]
- Banfield, L.M.; van Damme, K.; Miller, A.G. Evolution and biogeography of the flora of the Socotra archipelago (Yemen). In The Biology of Island Floras; Bramwell, D., Caujapé-Castells, J., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 197–225. [Google Scholar]
- Miller, A.G.; Morris, M. Ethnoflora of the Soqotra Archipelago; Royal Botanic Garden: Edinburgh, UK, 2004. [Google Scholar]
- Mothana, R.A.A.; Lindequist, U. Antimicrobial activity of some medicinal plants of the island Soqotra. J. Ethnopharmacol. 2005, 96, 177–181. [Google Scholar] [CrossRef]
- Mothana, R.A.A.; Mentel, R.; Reiss, C.; Lindequist, U. Phytochemical screening and antiviral activity of some medicinal plants of the Island Soqotra. Phytother. Res. 2006, 20, 298–302. [Google Scholar] [CrossRef]
- Oleski, A.; Lindequist, U.; Mothana, R.A.; Melzig, M.F. Screening of selected Arabian medicinal plant extracts for inhibitory activity against peptidases. Pharmazie 2006, 61, 359–361. [Google Scholar]
- Mothana, R.A.A.; Grünert, R.; Lindequist, U.; Bednarski, P.J. Study of the anticancer potential of Yemeni plants used in folk medicine. Pharmazie 2007, 62, 305–307. [Google Scholar]
- Mothana, R.A.A.; Lindequist, U.; Grünert, R.; Bednarski, P.J. Studies of the in vitro anticancer, antimicrobial and antioxidant potenial of selected Yemeni medicinal plants from the island Soqotra. BMC Complement. Altern. Med. 2009, 9, 7. [Google Scholar] [CrossRef]
- Al-Musayeib, N.M.; Mothana, R.A.; Matheeussen, A.; Cos, P.; Maes, L. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complement. Altern. Med. 2012, 12, 49. [Google Scholar] [CrossRef]
- Al-Musayeib, N.M.; Mothana, R.A.; Al-Massarani, S.; Matheeussen, A.; Cos, P.; Maes, L. Study of the in vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia. Molecules 2012, 17, 11379–11390. [Google Scholar]
- Malebo, H.M.; Tanja, W.; Cal, M.; Swaleh, S.A.; Omolo, M.O.; Hassanali, A.; Séquin, U.; Hamburger, M.; Brun, R.; Ndiege, I.O. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J. Health Res. 2009, 11, 226–234. [Google Scholar]
- Schmidt, T.J.; Kaiser, M.; Brun, R. Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. Planta Med. 2011, 7, 849–850. [Google Scholar]
- Mothana, R.A.A.; Hasson, S.S.; Schultze, W.; Mowitz, A.; Lindequist, U. Phytochemical composition and in vitro antimicrobial and antioxidant activities of essential oils of three endemic Soqotraen Boswellia species. Food Chem. 2011, 126, 1149–1154. [Google Scholar] [CrossRef]
- Ojo-Amaize, E.A.; Nchekwube, E.J.; Cottam, H.B.; Oyemade, O.A.; Adesomoju, A.A.; Okogun, J.I. Plasmodium berghei: Antiparasitic effects of orally administered hypoestoxide in mice. Exp. Parasitol. 2007, 117, 218–221. [Google Scholar] [CrossRef]
- Rasoamiaranjanahary, L.; Guilet, D.; Marston, A.; Randimbivololona, F.; Hostettmann, K. Antifungal isopimaranes from Hypoestes serpens. Phytochemistry 2003, 64, 543–548. [Google Scholar]
- Valdés, A.F.; Martínez, J.M.; Lizama, R.S.; Gaitén, Y.G.; Rodríguez, D.A.; Payrol, J.A. In vitro antimalarial activity and cytotoxicity of some selected cuban medicinal plants. Rev. Inst. Med. Trop. Sao Paulo 2010, 52, 197–201. [Google Scholar] [CrossRef]
- García, M.; Monzote, L.; Montalvo, A.M.; Scull, R. Screening of medicinal plants against Leishmania amazonensis. Pharm. Biol. 2010, 48, 1053–1058. [Google Scholar] [CrossRef]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef]
- Dell’Agli, M.; Galli, G.V.; Corbett, Y.; Taramelli, D.; Lucantoni, L.; Habluetzel, A.; Maschia, O.; Carusoa, D.; Giavarinia, F.; Romeo, S.; et al. Antiplasmodial activity of Punica granatum L. fruit rind. J. Ethnopharmacol. 2009, 125, 279–285. [Google Scholar] [CrossRef]
- Soh, P.N.; Witkowski, B.; Olagnier, D.; Nicolau, L.M.; Garcia-Alvarez, M.C.; Berry, A.; Benoit-Vical, F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob. Agents Chemother. 2009, 53, 1100–1106. [Google Scholar] [CrossRef]
- Sturm, N.; Hu, Y.; Zimmermann, H.; Fritz-Wolf, K.; Wittlin, S.; Rahlfs, S.; Becker, K. Compounds structurally related to ellagic acid show improved antiplasmodial activity. Antimicrob. Agents Chemother. 2009, 53, 622–630. [Google Scholar]
- Ndjonka, D.; Bergmann, B.; Agyare, C.; Zimbres, F.M.; Lüersen, K.; Hensel, A.; Wrenger, C.; Liebau, E. In vitro activity of extracts and isolated polyphenols from West African medicinal plants against Plasmodium falciparum. Parasitol. Res. 2012, 111, 827–834. [Google Scholar] [CrossRef]
- Okunji, C.O.; Iwu, M.M.; Jackson, J.E.; Tally, J.D. Biological activity of saponins from two Dracaena species. Adv. Exp. Med. Biol. 1996, 404, 415–428. [Google Scholar]
- Masaoud, M.; Himmelreich, U.; Ripperger, H.; Adam, G. New biflavonoids from dragon’s blood of Dracaena cinnabari. Planta Med. 1995, 61, 341–344. [Google Scholar] [CrossRef]
- Vachálková, A.; Novotný, L.; Nejedlíková, M.; Suchý, V. Potential carcinogenicity of homoisoflavanoids and flavonoids from Resina sanguinis draconis (Dracaena cinnabari Balf.). Neoplasma 1995, 42, 313–316. [Google Scholar]
- Maregesi, S.; van Miert, S.; Pannecouque, C.; Feiz Haddad, M.H.; Hermans, N.; Wright, C.W.; Vlietinck, A.J.; Apers, S.; Pieters, L. Screening of Tanzanian medicinal plants against Plasmodium falciparum and human immunodeficiency virus. Planta Med. 2010, 76, 195–201. [Google Scholar] [CrossRef]
- Duarte, N.; Kayser, O.; Abreu, P.; Ferreira, M.J. Antileishmanial activity of piceatannol isolated from Euphorbia lagascae seeds. Phytother. Res. 2008, 2, 455–457. [Google Scholar]
- Mazoir, N.; Benharref, A.; Bailén, M.; Reina, M.; González-Coloma, A.; Martínez-Díaz, R.A. Antileishmanial and antitrypanosomal activity of triterpene derivatives from latex of two Euphorbia species. Z. Naturforsch. C 2011, 66, 360–366. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro proof-of-concept. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993, 48, 739–741. [Google Scholar]
- Hirumi, H.; Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989, 75, 985–989. [Google Scholar] [CrossRef]
- Raz, B.; Iten, M.; Grether-Buhler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue asssay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense, T. b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar]
- Buckner, F.S.; Verlinde, C.L.; la Flamme, A.C.; van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. (Bethesda) 1996, 40, 2592–2597. [Google Scholar]
- Sample Availability: Samples of the the plants or extracts are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mothana, R.A.; Al-Musayeib, N.M.; Matheeussen, A.; Cos, P.; Maes, L. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra. Molecules 2012, 17, 14349-14360. https://doi.org/10.3390/molecules171214349
Mothana RA, Al-Musayeib NM, Matheeussen A, Cos P, Maes L. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra. Molecules. 2012; 17(12):14349-14360. https://doi.org/10.3390/molecules171214349
Chicago/Turabian StyleMothana, Ramzi A., Nawal M. Al-Musayeib, An Matheeussen, Paul Cos, and Louis Maes. 2012. "Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra" Molecules 17, no. 12: 14349-14360. https://doi.org/10.3390/molecules171214349
APA StyleMothana, R. A., Al-Musayeib, N. M., Matheeussen, A., Cos, P., & Maes, L. (2012). Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra. Molecules, 17(12), 14349-14360. https://doi.org/10.3390/molecules171214349