The Biological Effects of Ivabradine in Cardiovascular Disease
Abstract
:1. Introduction
2. Biological Effect of Ivabradine on Pacemaker Channels
3. Biological Effect of Ivabradine on Endothelial Function
4. Biological Effect of Ivabradine on RAAS
5. Conclusions
References
- Chatzizisis, Y.S.; Giannoglou, G.D. Importance of local hemodynamic conditions in the atherosclerotic effect of increased heart rate. J. Am. Coll. Cardiol. 2011, 57, 2206. [Google Scholar] [CrossRef]
- Perret-Guillaume, C.; Joly, L.; Benetos, A. Heart rate as a risk factor for cardiovascular disease. Prog. Cardiovasc. Dis. 2009, 52, 6–10. [Google Scholar] [CrossRef]
- Reil, J.C.; Custodis, F.; Swedberg, K.; Komajda, M.; Borer, J.S.; Ford, I.; Tavazzi, L.; Laufs, U.; Böhm, M. Heart rate reduction in cardiovascular disease and therapy. Clin. Res. Cardiol. 2011, 100, 11–19. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Blanco-Palacios, G.; Abreu-Gonzalez, P. Increased heart rate and atherosclerosis: potential implications of ivabradine therapy. World J. Cardiol. 2011, 3, 101–104. [Google Scholar] [CrossRef]
- Colin, P.; Ghaleh, B.; Monnet, X.; Hittinger, L.; Berdeaux, A. Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. J.Pharmacol. Exp. Ther. 2004, 308, 236–240. [Google Scholar]
- Palatini, P. Elevated heart rate in cardiovascular diseases: A target for treatment? Prog. Cardiovasc. Dis. 2009, 52, 46–60. [Google Scholar] [CrossRef]
- DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 1993, 55, 451–467. [Google Scholar] [CrossRef]
- Brown, H.F.; Di Francesco, D.; Noble, S.J. How does adrenaline accelerate the heart? Nature 1979, 280, 235–236. [Google Scholar] [CrossRef]
- Brown, H.F.; DiFrancesco, D. Voltage-clamp investigations of membrane currents underlying pacemaker activity in rabbit sino- atrial node. J. Physiol. 1980, 308, 331–351. [Google Scholar]
- DiFrancesco, D.; Tortora, P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991, 351, 145–147. [Google Scholar] [CrossRef]
- Ludwig, A.; Zong, X.; Jeglitsch, M.; Hofmann, F.; Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998, 393, 587–591. [Google Scholar] [CrossRef]
- Santoro, B.; Liu, D.T.; Yao, H.; Bartsch, D.; Kandel, E.R.; Siegelbaum, S.A.; Tibbs, G.R. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998, 93, 717–729. [Google Scholar] [CrossRef]
- Ludwig, A.; Zong, X.; Hofmann, F.; Biel, M. Structure and function of cardiac pacemaker channels. Cell. Physiol. Biochem. 1999, 9, 179–186. [Google Scholar] [CrossRef]
- Ulens, C.; Tytgat, J. Functional heteromerization of HCN1 and HCN2 pacemaker channels. J. Biol. Chem. 2001, 276, 6069–6072. [Google Scholar] [CrossRef]
- Much, B.; Wahl-Schott, C.; Zong, X.; Schneider, A.; Baumann, L.; Moosmang, S.; Ludwig, A.; Biel, M. Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J. Biol. Chem. 2003, 278, 43781–43786. [Google Scholar]
- Brewster, A.L.; Bernard, J.A.; Gall, C.M.; Baram, T.Z. Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiol. Dis. 2005, 19, 200–207. [Google Scholar] [CrossRef]
- Baruscotti, M.; Difrancesco, D. Pacemaker channels. Ann. NY Acad. Sci. 2004, 1015, 111–121. [Google Scholar] [CrossRef]
- Riesen, S.C.; Schober, K.E.; Cervenec, R.M.; Bonagura, J.D. Comparison of the effects of ivabradine and atenolol on heart rate and echocardiographic variables of left heart function in healthy cats. J. Vet. Intern. Med. 2011, 25, 469–476. [Google Scholar] [CrossRef]
- Gorre, F.; Vandekerckhove, H. Beta-blockers: Focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol. 2010, 65, 565–570. [Google Scholar]
- Boucher, M.; Chassaing, C.; Chapuy, E. Cardiac electrophysiologic effects of alinidine, a specific bradycardic agent, in the conscious dog: Plasma concentration-response relation. J. Cardiovasc. Pharmacol. 1995, 25, 229–233. [Google Scholar] [CrossRef]
- van Bogaert, P.P.; Pittoors, F. Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. Eur. J. Pharmacol. 2003, 478, 161–171. [Google Scholar] [CrossRef]
- Masuda, N.; Masuda, H.; Matsuyoshi, H.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Effects of intrathecal injection of a hyperpolarization-activated channel (Ih) inhibitor ZD7288 on bladder function in urethane-anesthetized rats. Neurourol. Urodyn. 2008, 27, 838–844. [Google Scholar] [CrossRef]
- Vilaine, J.P. The discovery of the selective if current inhibitor ivabradine (Procoralan): A new therapeutic approach to ischemic heart disease. Med. Sci. (Paris) 2006, 22, 87–94. [Google Scholar]
- Vilaine, J.P. Selection and pharmacological characterisation of Procoralan, a selective inhibitor of the pacemaker if current. Therapie 2004, 59, 495–505. [Google Scholar] [CrossRef]
- Amosova, E.; Andrejev, E.; Zaderey, I.; Rudenko, U.; Ceconi, C.; Ferrari, R. Efficacy of ivabradine in combination with Beta-blocker versusuptitration of Beta-blocker in patients with stable angina. Cardiovasc. Drugs. Ther. 2011, 25, 531–537. [Google Scholar] [CrossRef]
- Anonymous . Ivabradine: New drug. Best avoided in stable angina. Prescrire Int 2007, 16, 53–56.
- Swedberg, K.; Komajda, M.; Bohm, M. Ivabradine and outcomes in chronic heart failure (shift): A randomised placebo-controlled study. Lancet 2010, 376, 875–885. [Google Scholar]
- Ferrari, R. A step further with ivabradine: Signify (study assessing the morbidity-mortality benefits of the If inhibitor ivabradine in patients with coronary artery disease). Eur. Heart. J. Suppl. 2009, 11 (Suppl. D), D19–D27. [Google Scholar]
- Borer, J.S. Drug insight: If inhibitors as specific heart-rate-reducing agents. Nat. Clin. Pract. Cardiovasc. Med. 2004, 1, 103–109. [Google Scholar] [CrossRef]
- Franke, J.; Schmahl, D.; Lehrke, S.; Pribe, R.; Bekeredjian, R.; Doesch, A.O.; Ehlermann, P.; Schnabel, P.; Katus, H.A.; Zugck, C. Adjuvant Use of Ivabradine in Acute Heart Failure due to Myocarditis. Case Rep. Med. 2011, 2011, 203690. [Google Scholar]
- Stieber, J. Ivabradine: Pharmacodynamic aspects of its clinical use. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 633–641. [Google Scholar] [CrossRef]
- Chaitman, B.R. Efficacy and safety of a metabolic modulator drug in chronic stable angina: Review of evidence from clinical trials. J. Cardiovasc. Pharmacol. Ther. 2004, 1, S47–S64. [Google Scholar] [CrossRef]
- Di Francesco, D.; Camm, A.J. Heart rate lowering by specific and selective If current inhibition with ivabradine. Drugs 2004, 64, 1757–1765. [Google Scholar] [CrossRef]
- 34. Tardif, J.C.; O’Meara, E.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Tavazzi, L.; Swedberg, K. SHIFT Investigators. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: Results from the SHIFT echocardiography substudy. Eur. Heart J. 2011, 32, 2507–2515. [Google Scholar]
- Mulder, P.; Barbier, S.; Chagraoui, A.; Richard, V.; Henry, J.P.; Lallemand, F.; Renet, S.; Lerebours, G.; Mahlberg-Gaudin, F.; Thuillez, C. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 2004, 109, 1674–1679. [Google Scholar]
- Rognoni, A.; Bertolazzi, M.; Macciò, S.; Rognoni, G. Ivabradine: cardiovascular effects. Cardiovasc. Drug. Discov. 2009, 4, 61–66. [Google Scholar] [CrossRef]
- Colin, P.; Ghaleh, B.; Monnet, X.; Su, J.; Hittinger, L.; Giudicelli, J.F.; Berdeaux, A. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H676–H682. [Google Scholar]
- Hersi, A.S. Potentially new indication of ivabradine: Treatment of a patient with postural orthostatic tachycardia syndrome. Open Cardiovasc. Med. J. 2010, 4, 166–167. [Google Scholar] [CrossRef]
- Tardif, J.C. Clinical results of the If current inhibition by ivabradine. Drugs 2007, 67 (Suppl. 2), S36–S37. [Google Scholar]
- Demontis, G.C.; Moroni, A.; Gravante, B.; Altomare, C.; Longoni, B.; Cervetto, L.; DiFrancesco, D. Functional characterization of subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. J. Physiol. 2002, 542, 89–97. [Google Scholar] [CrossRef]
- Savelieva, I.; Camm, A.J. Absence of direct effects of the If current blocker ivabradine on ventricular repolarization: Analysis based on a population heart rate correction formula. J. Am. Cardiol. 2005, 45, 1023–272. [Google Scholar]
- Ferrari, R.; Ceconi, C. Selective and specific I(f) inhibition with ivabradine: New perspectives for the treatment of cardiovascular disease. Expert. Rev. Cardiovasc. Ther. 2011, 9, 959–973. [Google Scholar] [CrossRef]
- Bucchi, A.; Baruscotti, M.; DiFrancesco, D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J. Gen. Physiol. 2002, 120, 1–13. [Google Scholar] [CrossRef]
- Bucchi, A.; Tognati, A.; Milanesi, R.; Baruscotti, M.; DiFrancesco, D. Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J. Physiol. 2006, 572, 335–346. [Google Scholar] [CrossRef]
- Thollon, C.; Bedut, S.; Villeneuve, N.; Cogé, F.; Piffard, L.; Guillaumin, J.P.; Brunel-Jacquemin, C.; Chomarat, P.; Boutin, J.A.; Peglion, J.L.; Vilaine, J.P. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br. J. Pharmacol. 2007, 150, 37–46. [Google Scholar]
- Milanesi, R.; Baruscotti, M.; Gnecchi-Ruscone, T.; DiFrancesco, D. Familial sinus bradycardiaassociated with a mutation in the cardiac pacemaker channel. N. Engl. J. Med. 2006, 354, 151–157. [Google Scholar] [CrossRef]
- Reil, J.C.; Böhm, M. The role of heart rate in the development of cardiovascular disease. Clin. Res. Cardiol. 2007, 96, 585–592. [Google Scholar] [CrossRef]
- Briguori, C.; Testa, U.; Riccioni, R.; Colombo, A.; Petrucci, E.; Condorelli, G.; Mariani, G.; D’Andrea, D.; De, Micco, F.; Rivera, N.V.; et al. Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. FASEB J. 2010, 24, 1981–1988. [Google Scholar] [CrossRef]
- Custodis, F.; Gertz, K.; Balkaya, M.; Prinz, V.; Mathar, I.; Stamm, C.; Kronenberg, G.; Kazakov, A.; Freichel, M.; Böhm, M.; Endres, M.; Laufs, U. Heart rate contributes to the vascular effects of chronic mental stress: Effects on endothelial function and ischemic brain injury in mice. Stroke 2011, 42, 1742–1749. [Google Scholar]
- Drouin, A.; Gendron, M.E.; Thorin, E.; Gillis, M.A.; Mahlberg-Gaudin, F.; Tardif, J.C. Chronic heart rate reduction by ivabradine prevents endothielial dysfunction in dyslipidaemic mice. Br. J. Pharmacol. 2008, 154, 749–757. [Google Scholar]
- Krummen, S.; Falck, J.R.; Thorin, E. Two distinct pathways account for EDHF-dependent dilatation in the gracilis artery of dyslipidaemichApoB+/+ mice. Br. J. Pharmacol. 2005, 145, 264–270. [Google Scholar] [CrossRef]
- Gendron, M.E.; Thorin-Trescases, N.; Villeneuve, L.; Thorin, E. Aging associated with mild dyslipidemia reveals that COX-2 preserves dilation despite endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H451–H458. [Google Scholar]
- Custodis, F.; Baumhäkel, M.; Schlimmer, N.; List, F.; Gensch, C.; Böhm, M.; Laufs, U. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008, 117, 2377–2387. [Google Scholar] [CrossRef]
- Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular iseases: The role of oxidant stress. Circ. Res. 2000, 87, 840–844. [Google Scholar] [CrossRef]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7–11. [Google Scholar] [CrossRef]
- Gerszten, R.E.; Garcia-Zepeda, E.A.; Lim, Y.C.; Yoshida, M.; Ding, H.A.; Gimbrone, M.A., Jr.; Luster, A.D.; Luscinskas, F.W.; Rosenzweig, A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398, 718–723. [Google Scholar] [CrossRef]
- Baumhäkel, M.; Custodis, F.; Schlimmer, N.; Laufs, U.; Böhm, M. Heart rate reduction with ivabradine improves erectile dysfunction in parallel to decrease in atherosclerotic plaque load in ApoE-knockout mice. Atherosclerosis 2010, 212, 55–62. [Google Scholar] [CrossRef]
- Kröller-Schön, S.; Schulz, E.; Wenzel, P.; Kleschyov, A.L.; Hortmann, M.; Torzewski, M.; Oelze, M.; Renné, T.; Daiber, A.; Münzel, T. Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res. Cardiol. 2011, 106, 1147–1158. [Google Scholar] [CrossRef]
- de Boer, O.J.; Becker, A.E; van der Wal, A.C. T lymphocytes in atherogenesis-functional aspects and antigenic repertoire. Cardiov. Res. 2003, 60, 78–86. [Google Scholar]
- Walcher, T.; Bernhardt, P.; Vasic, D.; Bach, H.; Durst, R.; Rottbauer, W.; Walcher, D. Ivabradine reduces chemokine-induced CD4-positive lymphocyte migration. Mediators Inflamm. 2010, 751313. [Google Scholar]
- Li, D.; Shinagawa, K.; Pang, L.; Leung, T.K.; Cardin, S.; Wang, Z.; Nattel, S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 2001, 104, 2608–2614. [Google Scholar] [CrossRef]
- Di Zhang, A.; Nguyen Dinh Cat, A.; Soukaseum, C.; Escoubet, B.; Cherfa, A.; Messaoudi, S.; Delcayre, C.; Samuel, J.L.; Jaisser, F. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension 2008, 52, 1060–1067. [Google Scholar] [CrossRef]
- Milliez, P.; Messaoudi, S.; Nehme, J.; Rodriguez, C.; Samuel, J.L.; Delcayre, C. Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H435–H441. [Google Scholar]
- Busseuil, D.; Shi, Y.; Mecteau, M.; Brand, G.; Gillis, M.A.; Thorin, E.; Asselin, C.; Roméo, P.; Leung, T.K.; Latour, J.G.; Des Rosiers, C.; Bouly, M.; Rhéaume, E.; Tardif, J.C. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 2010, 117, 234–242. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Speranza, L.; Franceschelli, S.; Riccioni, G. The Biological Effects of Ivabradine in Cardiovascular Disease. Molecules 2012, 17, 4924-4935. https://doi.org/10.3390/molecules17054924
Speranza L, Franceschelli S, Riccioni G. The Biological Effects of Ivabradine in Cardiovascular Disease. Molecules. 2012; 17(5):4924-4935. https://doi.org/10.3390/molecules17054924
Chicago/Turabian StyleSperanza, Lorenza, Sara Franceschelli, and Graziano Riccioni. 2012. "The Biological Effects of Ivabradine in Cardiovascular Disease" Molecules 17, no. 5: 4924-4935. https://doi.org/10.3390/molecules17054924
APA StyleSperanza, L., Franceschelli, S., & Riccioni, G. (2012). The Biological Effects of Ivabradine in Cardiovascular Disease. Molecules, 17(5), 4924-4935. https://doi.org/10.3390/molecules17054924