Effect of Gender, Season, and Vitamin D Status on Bone Biochemical Markers in Saudi Diabetes Patients
Abstract
:1. Introduction
2. Results
Winter_1 Males | Winter_1 Females | |
---|---|---|
N | 23 | 12 |
Age (years) | 57.1 ± 7.7 | 43.9 ± 13.2 |
BMI (kg/m2) | 29.7 ± 1.4 | 33.4 ± 1.2 |
Systolic BP (mmHg) | 116.2 ± 3.2 | 128.8 ± 5.3 |
Diastolic BP (mmHg) | 78.1 ± 1.8 | 80.0 ± 2.8 |
Glucose (mmol/L) | 10.0 ± 0.24 | 9.4 ± 0.13 |
Triglycerides (mmol/L) | 1.8 ± 0.19 | 2.7 ± 0.82 |
Total Cholesterol (mmol/L) | 5.1 ± 0.35 | 5.6 ± 0.37 |
Calcium (mmol/L) | 2.4 ± 0.11 | 2.5 ± 0.02 |
Corrected Calcium (mmol/L) | 2.3 ± 0.06 | 2.5 ± 0.03 |
25-OH Vitamin D (nmol/L) | 29.8 ± 0.10 | 35.6 ± 0.10 * |
Osteocalcin (ng/mL) | 6.5 ± 0.10 | 4.4 ± 0.24 * |
Osteoprotegerin (pg/mL) | 533.5 (274) | 559.9 (392) |
Osteopontin (ng/mL) | 1.8 ± 0.25 | 3.4 ± 0.14 * |
Crosslaps (pg/mL) | 0.27 ± 0.03 | 0.23 ± 0.04 |
Winter_1 | Summer | Winter_2 | p-value | |
---|---|---|---|---|
N | 35 | 35 | 35 | |
Gender (M/F) | 23/12 | |||
Age (years) | 52.6 ± 11.6 | |||
BMI (kg/m2) | 31.6 ± 3.8 | 31.4 ± 5.2 | 31.3 ± 5.4 | 0.84 |
Systolic BP (mmHg) | 123.0 ± 14.5 | 125.8 ± 8.7 | 122.9 ± 11.0 | 0.60 |
Diastolic BP (mmHg) | 79.1 ± 7.1 | 79.4 ± 7.4 | 76.5 ± 7.0 | 0.33 |
Glucose (mmol/L) | 9.8 ± 2.0 | 12.2 ± 1.6 | 11.1 ± 1.6 | 0.29 |
HDL-Cholesterol (mmol/L) | 0.71 ± 0.33 | 1.0 ± 0.15 | 0.91 ± 0.10 | 0.87 |
Insulin (IU/mL) | 22.6 ± 1.3 | 31.0 ± 1.4 | 33.2 ± 1.6 | 0.06 |
Calcium (mmol/L) | 2.4 ± 0.32 | 2.4 ± 0.11 | 2.5 ± 0.25 | 0.11 |
Corrected Calcium (mmol/L) | 2.3 ± 0.22 | 2.4 ± 0.13 * | 2.5 ± 0.19 # | 0.012 |
25-OH Vitamin D (nmol/L) | 31.0 ± 1.3 | 64.0 ± 1.4 * | 53.7 ± 1.2 * | <0.001 |
Osteocalcin (ng/mL) | 5.7 ± 1.6 | 7.0 ± 1.7 | 5.7 ± 1.8 | 0.27 |
Osteoprotegerin (pg/mL) | 527.1 ± 1.4 | 489.2 ± 1.4 | 476.3 ± 1.4 | 0.31 |
Osteopontin (ng/mL) | 2.3 ± 0.46 | 4.2 ± 0.36 | 5.5 ± 0.56 * | 0.011 |
Crosslaps (ng/mL) | 0.25 ± 0.03 | 0.15 ± 0.04 | 0.28 ± 0.1 | 0.28 |
Males | Females | |||||||
---|---|---|---|---|---|---|---|---|
Winter_1 | Summer | Winter_2 | p-value | Winter_1 | Summer | Winter_2 | p-value | |
N | 23 | 12 | ||||||
Age (years) | 57.1 ± 7.7 | 43.9 ± 13.2 | ||||||
BMI (kg/m2) | 29.7 ± 1.4 | 28.5 ± 1.9 | 28.5 ± 2.0 | 0.70 | 33.4 ± 1.2 | 34.3 ± 1.4 | 34.1 ± 1.4 | 0.47 |
Systolic BP (mmHg) | 116.2 ± 3.2 | 120.0 ± 2.6 | 120.0 ± 4.2 | 0.57 | 128.8 ± 5.3 | 131.1 ± 2.0 | 125.5 ± 3.4 | 0.58 |
Diastolic BP (mmHg) | 78.1 ± 1.8 | 76.2 ± 2.6 | 77.5 ± 2.5 | 0.80 | 80.0 ± 2.8 | 82.2 ± 2.2 | 75.5±2.4 | 0.27 |
Glucose (mmol/L) | 10.0 ± 0.24 | 12.9 ± 0.14 | 11.2 ± 0.15 | 0.49 | 9.4 ± 0.13 | 11.0 ± 0.12 | 11.0 ± 0.11 | 0.45 |
Triglycerides (mmol/L) | 1.8 ± 0.19 | 2.2 ± 0.25 | 2.3 ± 0.46 | 0.28 | 2.7 ± 0.82 | 2.1 ± 0.21 | 1.9 ± 0.17 | 0.54 |
Total Cholesterol (mmol/L) | 5.1 ± 0.35 | 5.1 ± 0.47 | 4.8 ± 0.21 | 0.86 | 5.6 ± 0.37 | 5.1 ± 0.29 | 5.0 ± 0.32 | 0.16 |
Calcium (mmol/L) | 2.4 ± 0.11 | 2.4 ± 0.03 | 2.6 ± 0.07 | 0.08 | 2.5 ± 0.02 | 2.4 ± 0.05 | 2.4 ± 0.07 | 0.24 |
Corrected Calcium (mmol/L) | 2.3 ± 0.06 | 2.4 ± 0.03 | 2.5 ± 0.05 *# | 0.004 | 2.5 ± 0.03 | 2.3 ± 0.05 | 2.5±0.06 | 0.07 |
Vitamin D (nmol/L) | 29.8 ± 0.10 | 61.7 ± 0.11 * | 52.6 ± 0.09 * | <0.001 | 35.6 ± 0.10 | 72.3 ± 0.16 | 57.9 ± 0.09 * | 0.02 |
Osteocalcin (ng/mL) | 6.5 ± 0.10 | 9.0 ± 0.11 | 7.3 ± 0.12 | 0.11 | 4.4 ± 0.24 | 2.3 ± 0.20 | 1.9 ± 0.25 | 0.87 |
Osteoprotegerin (pg/mL) | 533.5 (274) | 558.3 (294) | 487.9 (278) | 0.45 | 559.9 (392) | 420.2 (309) | 436.1 (248) | 0.29 |
Osteopontin (ng/mL) | 1.8 ± 0.25 | 4.5±0.21 | 6.2 ± 0.29 * | 0.01 | 3.4 ± 0.14 | 3.7 ± 0.26 | 4.3 ± 0.15 | 0.59 |
Crosslaps (ng/mL) | 0.27 ± 0.03 | 0.16 ± 0.03 * | 0.18 ± 0.02 | 0.005 | 0.23 ± 0.04 | 0.15 ± 0.03 | 0.17 ± 0.04 | 0.12 |
3. Discussion
4. Methodology
4.1. Subjects
4.2. Anthropometry and Blood Collection
4.3. Sunlight Exposure and Vitamin D Diet
4.4. Sample Analyses
4.5. Data Analysis
5. Conclusion
Acknowledgments
- Sample Availability: Serum and Urine Samples of the patients are available from the authors.
References
- Calvo, M.S.; Eyre, D.R.; Gundberg, C.M. Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 1996, 17, 333–368. [Google Scholar]
- Midtby, M.; Magnus, J.H.; Joakimsen, R.M. The Tromso Study: A population-based study on the variation in bone formation markers with age, gender, anthropometry and season in both men and women. Osteoporos. Int. 2001, 12, 835–843. [Google Scholar] [CrossRef]
- Maimoun, L.; Coste, O.; Puech, A.M.; Peruchon, E.; Jaussent, A.; Paris, F.; Rossi, M.; Sultan, C.; Mariano-Goulart, D. No negative impact of reduced leptin secretion on bone metabolism in male decathletes. Eur. J. Appl. Physiol. 2008, 102, 343–351. [Google Scholar]
- Rector, R.S.; Rogers, R.; Ruebel, M.; Hinton, P.S. Participation in road cycling vs. running is associated with lower bone mineral density in men. Metabolism 2008, 57, 226–232. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar]
- Compston, J. Monitoring osteoporosis treatment. Best Pract. Res. Clin. Rheumatol. 2009, 23, 781–788. [Google Scholar] [CrossRef]
- Blumsohn, A.; Eastell, R. The performance and utility of biochemical markers of bone turnover: do we know enough to use them in clinical practice? Ann. Clin. Biochem. 1997, 34, 449–459. [Google Scholar]
- Looker, A.C.; Bauer, D.C.; Chesnut, C.H., III.; Gundberg, C.M.; Hochberg, M.C.; Klee, G.; Kleerekoper, M.; Watts, N.B.; Bell, N.H. Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos. Int. 2000, 11, 467–480. [Google Scholar]
- Garnero, P. Bone markers in osteoporosis. Curr. Osteoporos. Rep. 2009, 7, 84–90. [Google Scholar] [CrossRef]
- Schoppet, M.; Preissner, K.T.; Hofbauer, L.C. RANK ligand and osteoprotegerin: Paracrine regulators of bone metabolism and vascular function. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 549–553. [Google Scholar]
- Hsu, H.; Lacey, D.L.; Dunstan, C.R.; Solovyev, I.; Colombero, A.; Timms, E.; Tan, H.L.; Elliott, G.; Kelley, M.J.; Sarosi, I.; et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 1999, 96, 3540–3545. [Google Scholar]
- Schoppet, M.; Sattler, A.M.; Schaefer, J.R.; Herzum, M.; Maisch, B.; Hofbauer, L.C. Increased osteoprotegerin serum levels in men with coronary artery disease. J. Clin. Endocrinol. Metab. 2003, 88, 1024–1028. [Google Scholar]
- Brown, L.F.; Berse, B.; van de Water, L.; Papadopoulos-Sergiou, A.; Perruzzi, C.A.; Manseau, E.J.; Dvorak, H.F.; Senger, D.R. Expression and distribution of osteopontin in human tissues: Widespread association with luminal epithelial surfaces. Mol. Biol. Cell 1992, 3, 1169–1180. [Google Scholar]
- Larson-Meyer, D.E.; Willis, K.S. Vitamin D and athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar]
- Storm, D.; Eslin, R.; Porter, E.S.; Musgrave, K.; Vereault, D.; Patton, C.; Kessenich, C.; Mohan, S.; Chen, T.; Holick, M.F.; Rosen, C.J. Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: A randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 1998, 83, 3817–3825. [Google Scholar]
- Woitge, H.W.; Knothe, A.; Witte, K.; Schmidt-Gayk, H.; Ziegler, R.; Lemmer, B.; Seibel, M.J. Circaannual rhythms and interactions of vitamin D metabolites, parathyroid hormone, and biochemical markers of skeletal homeostasis: A prospective study. J. Bone Miner. Res. 2000, 15, 2443–2450. [Google Scholar] [CrossRef]
- Thomsen, K.; Eriksen, E.F.; Jorgensen, J.C.; Charles, P.; Mosekilde, L. Seasonal variation of serum bone GLA protein. Scand. J. Clin. Lab. Invest. 1989, 49, 605–611. [Google Scholar] [CrossRef]
- Vanderschueren, D.; Gevers, G.; Dequeker, J.; Geusens, P.; Nijs, J.; Devos, P.; de Roo, M.; Bouillon, R. Seasonal variation in bone metabolism in young healthy subjects. Calcif. Tissue Int. 1991, 49, 84–89. [Google Scholar] [CrossRef]
- Tsai, K.S.; Wahner, H.W.; Offord, K.P.; Melton, L.J.; Kumar, R.; Riggs, B.L. Effect of aging on vitamin D stores and bone density in women. Calcif. Tissue Int. 1987, 40, 241–243. [Google Scholar] [CrossRef]
- Maeda, S.S.; Kunii, I.S.; Hayashi, L.F.; Lazaretti-Castro, M. Increases in summer serum 25-hydroxyvitamin D (25OHD) concentrations in elderly subjects in Sao Paulo, Brazil vary with age, gender and ethnicity. BMC Endocr. Disord. 2010, 10. [Google Scholar] [CrossRef]
- Johnson, L.K.; Hofso, D.; Aasheim, E.T.; Tanbo, T.; Holven, K.B.; Andersen, L.F.; Roislien, J.; Hjelmesaeth, J. Impact of gender on vitamin D deficiency in morbidly obese patients: A cross-sectional study. Eur. J. Clin. Nutr. 2011, 66, 83–90. [Google Scholar]
- Nowson, C.A.; Margerison, C. Vitamin D intake and vitamin D status of Australians. Med. J. Aust. 2002, 177, 149–152. [Google Scholar]
- Benjamin, A.; Moriakova, A.; Akhter, N.; Rao, D.; Xie, H.; Kukreja, S.; Barengolts, E. Determinants of 25-hydroxyvitamin D levels in African-American and Caucasian male veterans. Osteoporos. Int. 2009, 20, 1795–1803. [Google Scholar] [CrossRef]
- Douglas, A.S.; Miller, M.H.; Reid, D.M.; Hutchison, J.D.; Porter, R.W.; Robins, S.P. Seasonal differences in biochemical parameters of bone remodelling. J. Clin. Pathol. 1996, 49, 284–289. [Google Scholar] [CrossRef]
- Epstein, S.; Poser, J.; McClintock, R.; Johnston, C.C., Jr.; Bryce, G.; Hui, S. Differences in serum bone GLA protein with age and sex. Lancet 1984, 1, 307–310. [Google Scholar]
- Steinberg, K.K.; Rogers, T.N. Alkaline phosphatase isoenzymes and osteocalcin in serum of normal subjects. Ann. Clin. Lab. Sci. 1987, 17, 241–250. [Google Scholar]
- Van Hoof, V.O.; De Broe, M.E. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit. Rev. Clin. Lab. Sci. 1994, 31, 197–293. [Google Scholar] [CrossRef]
- Yasumura, S.; Aloia, J.F.; Gundberg, C.M.; Yeh, J.; Vaswani, A.N.; Yuen, K.; Lo Monte, A.F.; Ellis, K.J.; Cohn, S.H. Serum osteocalcin and total body calcium in normal pre- and postmenopausal women and postmenopausal osteoporotic patients. J. Clin. Endocrinol. Metab. 1987, 64, 681–685. [Google Scholar] [CrossRef]
- Gundberg, C.M.; Looker, A.C.; Nieman, S.D.; Calvo, M.S. Patterns of osteocalcin and bone specific alkaline phosphatase by age, gender, and race or ethnicity. Bone 2002, 31, 703–708. [Google Scholar] [CrossRef]
- Mauras, N.; O’Brien, K.O.; Klein, K.O.; Hayes, V. Estrogen suppression in males: Metabolic effects. J. Clin. Endocrinol. Metab. 2000, 85, 2370–2377. [Google Scholar]
- Orwoll, E.S.; Belknap, J.K.; Klein, R.F. Gender specificity in the genetic determinants of peak bone mass. J. Bone Miner. Res. 2001, 16, 1962–1971. [Google Scholar] [CrossRef]
- Cadogan, J.; Blumsohn, A.; Barker, M.E.; Eastell, R. A longitudinal study of bone gain in pubertal girls: Anthropometric and biochemical correlates. J. Bone Miner. Res. 1998, 13, 1602–1612. [Google Scholar]
- Christgau, S.; Rosenquist, C.; Alexandersen, P.; Bjarnason, N.H.; Ravn, P.; Fledelius, C.; Herling, C.; Qvist, P.; Christiansen, C. Clinical evaluation of the Serum CrossLaps One Step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides. Clin. Chem. 1998, 44, 2290–2300. [Google Scholar]
- Qvist, P.; Christgau, S.; Pedersen, B.J.; Schlemmer, A.; Christiansen, C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 2002, 31, 57–61. [Google Scholar] [CrossRef]
- Denhardt, D.T.; Giachelli, C.M.; Rittling, S.R. Role of osteopontin in cellular signaling and toxicant injury. Ann. Rev. Pharmacol. Toxicol. 2001, 41, 723–749. [Google Scholar] [CrossRef]
- Mark, M.P.; Prince, C.W.; Oosawa, T.; Gay, S.; Bronckers, A.L.; Butler, W.T. Immunohistochemical demonstration of a 44-KD phosphoprotein in developing rat bones. J. Histochem. Cytochem. 1987, 35, 707–715. [Google Scholar] [CrossRef]
- Magnusson, P.; Hager, A.; Larsson, L. Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr. Res. 1995, 38, 955–961. [Google Scholar] [CrossRef]
- Szulc, P.; Seeman, E.; Delmas, P.D. Biochemical measurements of bone turnover in children and adolescents. Osteoporos. Int. 2000, 11, 281–294. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.S.; Alkharfy, K.M.; El-Kholie, E.; Yousef, M.; Al-Othman, A.; Al-Saleh, Y.; Sabico, S.; Kumar, S.; et al. Increased vitamin D supplementation recommended during summer season in the gulf region: A counterintuitive seasonal effect in vitamin D levels in adult, overweight and obese Middle Eastern residents. Clin. Endocrinol. (Oxf) 2012, 76, 346–350. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Daghri, N.M.; Alkharfy, K.M.; Al-Othman, A.; Yakout, S.M.; Al-Saleh, Y.; Fouda, M.A.; Sulimani, R.; Sabico, S. Effect of Gender, Season, and Vitamin D Status on Bone Biochemical Markers in Saudi Diabetes Patients. Molecules 2012, 17, 8408-8418. https://doi.org/10.3390/molecules17078408
Al-Daghri NM, Alkharfy KM, Al-Othman A, Yakout SM, Al-Saleh Y, Fouda MA, Sulimani R, Sabico S. Effect of Gender, Season, and Vitamin D Status on Bone Biochemical Markers in Saudi Diabetes Patients. Molecules. 2012; 17(7):8408-8418. https://doi.org/10.3390/molecules17078408
Chicago/Turabian StyleAl-Daghri, Nasser M., Khalid M. Alkharfy, Abdulaziz Al-Othman, Sobhy M. Yakout, Yousef Al-Saleh, Mona A. Fouda, Riad Sulimani, and Shaun Sabico. 2012. "Effect of Gender, Season, and Vitamin D Status on Bone Biochemical Markers in Saudi Diabetes Patients" Molecules 17, no. 7: 8408-8418. https://doi.org/10.3390/molecules17078408
APA StyleAl-Daghri, N. M., Alkharfy, K. M., Al-Othman, A., Yakout, S. M., Al-Saleh, Y., Fouda, M. A., Sulimani, R., & Sabico, S. (2012). Effect of Gender, Season, and Vitamin D Status on Bone Biochemical Markers in Saudi Diabetes Patients. Molecules, 17(7), 8408-8418. https://doi.org/10.3390/molecules17078408