Cytotoxic and Antioxidant Compoundsfrom the Stem Bark of Goniothalamus tapisoides Mat Salleh
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Chemistry
Atom | 1 | 2 | ||||
---|---|---|---|---|---|---|
No. | δ 13C | δ 1H | HMBC | δ 13C | δ 1H | HMBC |
1 | 169.6 | - | 166.8 | - | ||
2 | 125.3 | 5.96 (1H, d, J = 11.5) | C-1, C-3, C-4 | 123.9 | 5.94 (1H, d, J = 15.6) | C-1, C-4 |
3 | 140.6 | 6.12 (1H, dt, J = 8.6, 11.5) | C-1, C-4, C-5 | 144.7 | 7.00 (1H, m) | C-1, C-4 |
4α | 36.6 | 2.76 (1H, m) | C-2, C-3, C-5, C-6 | 40.2 | 2.54 (2H, m) | C-2, C-3, C-5, C-6 |
4β | 2.81 (1H, m) | |||||
5 | 71.5 | 4.41 (1H, m) | C-3, C-4, C-7 | 71.6 | 4.44 (1H, dd, J = 6.6, 13.3) | C-3, C-7 |
6 | 131.9 | 6.20 (1H, dd, J = 16.0, 6.7) | C-4, C-5, C-8 | 130.9 | 6.22 (1H, dd, J = 16.0, 6.6) | C-5, C-8 |
7 | 129.9 | 6.59 (1H, d, J = 16.0) | C-5, C-8, C-9, C-13 | 131.3 | 6.61 (1H, d, J = 16.0) | C-5, C-9, C-13 |
8 | 136.7 | - | 136.3 | - | ||
9,13 | 126.5 | 7.19–7.34 (m) | 126.5 | 7.24–7.38 (m) | ||
10,12 | 128.6 | 7.19–7.34 (m) | C-8 | 128.6 | 7.24–7.38 (m) | C-8 |
11 | 127.6 | 7.19–7.34 (m) | 128.0 | 7.24–7.38 (m) | ||
1-OH | - | 6.27 (OH, br s) | C-2 | - | - | |
5-OH | - | 6.57 (OH, br s) | C-5 | - | - | |
1-OMe | - | - | 51.6 | 3.72 (3H, s) | C-1 |
Atom no. | δ 13C | δ 1H | HMBC | Atom no. | δ 13C | δ 1H | HMBC |
---|---|---|---|---|---|---|---|
1 | 169.7 | - | 7 | 132.5 | 6.68 (1H, d, J = 16.0) | C-5, C-9, C-13 | |
2 | 35.7 | 2.73 (2H, td, J = 4.3, 1.4) | C-1 | 8 | 136.0 | - | |
3 | 71.4 | 3.82 (1H, m) | 9,13 | 126.7 | 7.24–7.37 (m) | ||
4α | 33.7 | 1.87 (1H, ddd, J = 14.8, 11.0, 3.5) | 10,12 | 128.8 | 7.24–7.37 (m) | ||
4β | 2.18 (1H, m) | 11 | 128.3 | 7.24–7.37 (m) | |||
5 | 76.2 | 5.20 (1H, ddd, J = 11.0, 6.4, 3.5) | C-3 | 3-OMe | 56.3 | 3.36 (3H, s) | C-3 |
6 | 126.6 | 6.18 (1H, dd, J = 16.0, 6.4) | C-5, C-8 |
Atom no. | δ 13C | δ 1H | HMBC | Atom no. | δ 13C | δ 1H | HMBC |
---|---|---|---|---|---|---|---|
1 | 168.9 | - | 9,13 | 126.6 | 7.19–7.34 (m) | ||
2α | 37.2 | 2.28 (1H, dd, J = 17.6, 7.8) | C-1, C-3, C-4 | 10,12 | 128.7 | 7.19–7.34 (m) | |
2β | 2.64 (1H, dd, J = 17.6, 5.5) | C-1 | 11 | 128.0 | 7.19–7.34 (m) | ||
3 | 54.1 | 2.98 (1H, m) | 14α | 82.9 | 4.13 (1H, d, J = 9.2) | C-15, C-3, C-5 | |
4 | 35.6 | 1.74 (2H, m) | C-3, C-5 | 14β | 4.64 (1H, d, J = 9.2) | C-3, C-5 | |
5 | 77.3 | 4.17 (1H, m) | 15α | 58.9 | 3.82 (1H, d, J = 8.7) | C-1, C-3 | |
6 | 128.3 | 6.20 (1H, dd, J = 16.0, 6.0) | C-5, C-8 | 15β | 4.34 (1H, dd, J = 8.7, 2.7) | ||
7 | 131.3 | 6.63 (1H, d, J = 16.0) | C-5, C-9, C-13 | N-H | - | 6.41 (NH, br s) | |
8 | 136.4 | - |
Atom no. | δ 13C | δ1H | HMBC | Atom no. | δ 13C | δ1H | HMBC |
---|---|---|---|---|---|---|---|
1 | 123.1 | - | 8a | 131.3 | - | ||
2 | 105.9 | 7.23 (1H, s) | C-3, C-4, C-10a, C-12 | 9α | 34.8 | 2.73 (1H, t, J = 13.8) | C-8a, C-10, C-10a |
3 | 150.5 | - | 9β | 3.49 (1H, dd, J = 13.8, 6.0) | C-10a | ||
4 | 155.7 | - | 10 | 57.3 | 4.60 (1H, dd, J = 13.8, 6.0) | C-10a | |
4a | 123.8 | - | 10a | 134.4 | - | ||
4b | 135.1 | - | 12 | 167.9 | - | ||
5 | 127.7 | 8.35 (1H, dd, J = 7.9, 1.4) | C-4a, C-4b | 3-OCH3 | 59.7 | 3.89 (3H, s) | C-3 |
6 | 127.9 | 7.40 (1H, dd, J = 7.9, 1.4) | C-7 | 4-OCH3 | 56.0 | 4.00 (3H, s) | C-4 |
7 | 130.0 | 7.44 (1H, dd, J = 7.9, 1.4) | C-6, C-8a | N-OCH3 | 63.7 | 3.96 (3H, s) | |
8 | 128.7 | 7.35 (1H, dd, J = 7.9, 1.4) | C-6, C-4b |
2.2. Bioactivity
Extracts | Cell Viability (%) | ||
---|---|---|---|
A549 | MCF-7 | DU-145 | |
Hexane | 2.9 | 6.2 | 9.4 |
CH2Cl2 | 2.9 | 6.4 | 8.3 |
Methanol | 87.2 | 94.8 | 82.3 |
Cmpd. | Antioxidant activity | Cytotoxicity | |||||||
---|---|---|---|---|---|---|---|---|---|
A549 1 | DU-145 2 | SK-MEL-5 3 | BxPC-3 4 | Hep G2 5 | HT-29 6 | MCF-7 7 | MDA-MB-231 8 | ||
1 | 0.328 | >150 | >150 | >150 | >150 | >150 | >150 | >150 | >150 |
2 | 0.207 | >150 | >150 | >150 | >150 | >150 | >150 | >150 | >150 |
3 | 1.748 | >150 | >150 | >150 | >150 | >150 | >150 | >150 | >150 |
4 | 0.252 | >150 | >150 | >150 | >150 | >150 | >150 | >150 | >150 |
5 | 0.772 | >150 | >150 | >150 | >150 | >150 | >150 | >150 | >150 |
6 | 2.024 | 107.62 ± 4.67 | 71.79 ± 1.61 | 100.14 ± 11.84 | 130.48 ± 7.69 | 128.73 ± 1.81 | 64.17 ± 5.60 | 120.37 ± 11.11 | >150 |
Cisplatin | - | 37.37 ± 3.00 | 15.18 ± 0.49 | 31.82 ± 0.23 | 20.10 ± 1.21 | 22.07 ± 0.64 | 77.24 ± 3.23 | 91.49 ± 6.54 | 276.53 ± 1.29 |
Ascorbic acid | 0.075 | - | - | - | - | - | - | - | - |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Cytotoxicity Assay
3.5. Antioxidant Assay
4. Conclusions
Acknowledgments
Supplementary Materials
- Sample Availability: Samples of the compounds are available from the authors.
References
- Wiart, C. Goniothalamus species: A source of drugs for the treatment of cancers and bacterial infections? Evid. Based Complement. Alternat. Med. 2007, 4, 299–311. [Google Scholar] [CrossRef]
- Ahmad, F.; Moharm, B.A.; Jantan, I. A comparative study of the constituents of the essential oils of Goniothalamus tapis Miq. and G. tapisoides Mat Salleh from Borneo. J. Essent. Oil Res. 2010, 22, 499–502. [Google Scholar] [CrossRef]
- Fátima, Â.; Modolo, L.V.; Conegero, L.S.; Pilli, R.A.; Ferreira, L.K.; Kohn, L.K.; Carvalho, J.E. Styryl lactones and their derivatives: Biological activities, mechanisms of action and potential leads for drug design. Curr. Med. Chem. 2006, 13, 3371–3384. [Google Scholar] [CrossRef]
- Inayat-Hussain, S.H.; Osman, A.B.; Din, L.B.; Ali, A.M.; Snowden, R.T.; MacFarlane, M.; Cain, K. Caspases-3 and -7 are activated in goniothalamin-induced apoptosis in human Jurkat T-cells. FEBS Lett. 1999, 456, 379–383. [Google Scholar] [CrossRef]
- Lee, A.T.C.; Azimahtol, H.L.P.; Tan, A.N. Strylpyrone Derivative (SPD) induces apoptosis in a capase-7-dependent manner in the human breast cancer cell line MCF-7. Cancer Cell Int. 2003, 3, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Inayat-Hussain, S.H.; Osman, A.B.; Din, L.B.; Ali, A.M.; Ross, D. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol. In Vitro 2003, 17, 433–439. [Google Scholar] [CrossRef]
- Litaudon, M.; Guéritte, F.; Bousserouel, H.; Awang, K.; Nosjean, O.; Martin, M.T.; Tran Huu Dau, M.E.; Sévenet, T. A dimeric sesquiterpenoid from a Malaysian Meiogyne as a new inhibitor of Bcl-xL/BakBH3 domain peptide interaction. J. Nat. Prod. 2009, 72, 480–483. [Google Scholar] [CrossRef]
- Mohamad, K.; Hirasawa, Y.; Litaudon, M.; Awang, K.; Hadi, A.H.A.; Takeya, K.; Ekasari, W.; Morita, H. Ceramicines B–D, new antiplasmodial limonoids from Chisocheton ceramicus. Bioorg. Med. Chem. 2009, 17, 727–730. [Google Scholar] [CrossRef]
- Mohamad, K.; Hirasawa, Y.; Lim, C.S.; Awang, K.; Hadi, A.H.A.; Takeya, K.; Morita, H. Ceramicine A and walsogyne A, novel limonoids from two species of Meliaceae. Tetrahedron Lett. 2008, 49, 4276–4278. [Google Scholar] [CrossRef]
- Mukhtar, M.R.; Martin, M.T.; Domansky, M.; Pais, M.; Hadi, A.H.A.; Awang, K. Phoebegrandines A and B, proaporphine-tryptamine dimmers, from Phoebe grandis. Phytochemistry 1997, 45, 1543–1546. [Google Scholar] [CrossRef]
- Anderson, R.J.; Bendell, D.J.; Groundwater, P.W. Organic Spectroscopic Analysis; Royal Society of Chemistry: Cambridge, UK, 2004; pp. 13–80. [Google Scholar]
- Desai, S.J.; Charturvedi, R.N.; Badheka, L.P.; Mulchandani, N.P. Aristolactams and 4,5 dioxoaporphines from Indian PIPER species. Indian J. Chem. 1989, 28, 775–777. [Google Scholar]
- Fátima, Â.; Kohn, L.K.; Antônio, M.A.; Carvalho, J.E.; Pilli, R.A. (R)-Goniothalamin: Total syntheses and cytotoxic activity against cancer cell lines. Bioorg. Med. Chem. 2005, 13, 2927–2933. [Google Scholar] [CrossRef]
- Tai, B.H.; HuYen, V.T.; Huong, T.T.; Nhiem, N.X.; Choi, E.M. New prano–pyrone from Goniothalamus tamirensis Enchances the Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells. Chem. Pharm. Bull. 2010, 58, 521–525. [Google Scholar] [CrossRef]
- Zhu, W.M.; Zhao, Q.; Li, S.L.; Hao, X.J. Sesquiterpenoids from Hedychium yunnanense and Porana discifera, and the structural revision of two sesquiterpenoids from Laggera pterodonta. J. Asian Nat. Prod. Res. 2007, 9, 277–283. [Google Scholar] [CrossRef]
- Bick, I.R.C.; Douglas, G.K. Yellow alkaloids of Atherosperma moschatum. Tetrahedron Lett. 1964, 25, 1629–1633. [Google Scholar]
- Aires-de-Sousa, J.; Hemmer, M.C.; Gasteiger, J. Prediction of 1H-NMR chemical shifts using nueral networks. Anal. Chem. 2002, 74, 80–90. [Google Scholar] [CrossRef]
- Hanai, K.; Kuwae, A.; Takai, T.; Senda, H.; Kunimoto, K. A comparative vibrational and NMR study of cis-cinnamic acid polymorphs and trans-cinnamic acid. Spectrochim. Acta A 2001, 57, 513–519. [Google Scholar] [CrossRef]
- Wattanapiromsakul, C.; Wangsintaweekul, B.; Sangprapan, P.; Itharat, A.; Keawpradub, N. Goniothalamin, a cytotoxic compound, isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus. Songklanakarin J. Sci. Technol. 2005, 27, 479–487. [Google Scholar]
- Pihie, A.H.L.; Stanslas, J.; Bin, D.L. Non-steroid receptor-mediated antiproliferative activity of styrylpyrone derivative in human breast cancer cell lines. Anticancer Res. 1998, 18, 1739–1744. [Google Scholar]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C.M. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities ofcarotenes and xanthophylls. FEBS Lett. 1996, 384, 240–242. [Google Scholar] [CrossRef]
- Tian, B.; Xu, Z.; Sun, Z.; Lin, J.; Hua, Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta 2007, 1770, 902–911. [Google Scholar] [CrossRef]
- Prism, 5.0 software; GraphPad Software Inc.: La Jolla, CA, USA, 2009.
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthin onautoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, R.P.T.; Bihud, V.; Bin Mohamad, K.; Leong, K.H.; Bin Mohamad, J.; Bin Ahmad, F.; Hazni, H.; Kasim, N.; Halim, S.N.A.; Awang, K. Cytotoxic and Antioxidant Compoundsfrom the Stem Bark of Goniothalamus tapisoides Mat Salleh. Molecules 2013, 18, 128-139. https://doi.org/10.3390/molecules18010128
Kim RPT, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, Hazni H, Kasim N, Halim SNA, Awang K. Cytotoxic and Antioxidant Compoundsfrom the Stem Bark of Goniothalamus tapisoides Mat Salleh. Molecules. 2013; 18(1):128-139. https://doi.org/10.3390/molecules18010128
Chicago/Turabian StyleKim, Rosalind Pei Theng, Vicky Bihud, Khalit Bin Mohamad, Kok Hoong Leong, Jamaludin Bin Mohamad, Fasihuddin Bin Ahmad, Hazrina Hazni, Noraini Kasim, Siti Nadiah Abdul Halim, and Khalijah Awang. 2013. "Cytotoxic and Antioxidant Compoundsfrom the Stem Bark of Goniothalamus tapisoides Mat Salleh" Molecules 18, no. 1: 128-139. https://doi.org/10.3390/molecules18010128
APA StyleKim, R. P. T., Bihud, V., Bin Mohamad, K., Leong, K. H., Bin Mohamad, J., Bin Ahmad, F., Hazni, H., Kasim, N., Halim, S. N. A., & Awang, K. (2013). Cytotoxic and Antioxidant Compoundsfrom the Stem Bark of Goniothalamus tapisoides Mat Salleh. Molecules, 18(1), 128-139. https://doi.org/10.3390/molecules18010128