Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fitting the Final Reduced Models
Regression coefficient | Specific activity (Y1) | Temperature stability (Y2) | Storage stability (Y3) | Surfactant agent stability (Y4) |
---|---|---|---|---|
b0 | 15.14 | 77.01 | 81.74 | 79.82 |
b1 | 3.50 | 11.62 | 24.58 | 12.96 |
b2 | 5.50 | 13.33 | 15.20 | 24.70 |
b3 | 0.53 | −11.72 | 11.74 | 14.31 |
b12 | 2.52 | 4.15 | 4.38 | 8.65 |
b22 | 1.88 | 18.11 | 25.04 | 24.04 |
b32 | 1.92 | 9.40 | 13.38 | 15.57 |
b1b2 | 0.51 | 12.30 | 4.90 | 5.49 |
b1b3 | 5.36 | 11.73 | 13.02 | 21.04 |
b2b3 | 2.50 | 17.73 | 27.24 | 26.95 |
R2 | 0.984 | 0.978 | 0.889 | 0.980 |
p-value | 0.001 * | 0.001 * | 0.004 * | 0.002 * |
Lack of fit (p-value) | 105.77 | 195.10 | 102.99 | 111.87 |
2.2. Specific Activity of Pectinase
Variables | Main effects | Quadratic effects | Interaction effects | |||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X12 | X22 | X32 | X1X2 | X1X3 | X2X3 | ||
Specific activity(Y1, U/mg) | p-value | 0.000 * | 0.003 * | 0.187 | 0.000 * | 0.024 * | 0.001 * | 0.057 | 0.003 * | 0.016 * |
F-ratio | 110.88 | 45.42 | 2.52 | 109.66 | 12.53 | 64.48 | 4.84 | 42.12 | 16.16 | |
Temperature stability (Y2, %) | p-value | 0.066 | 0.026 * | 0.005 * | 0.100 | 0.002 * | 0.006 * | 0.055 | 0.018 * | 0.124 |
F-ratio | 3.24 | 9.79 | 22.94 | 4.04 | 33.64 | 20.88 | 7.18 | 11.83 | 2.56 | |
Storage stability (Y3, %) | p-value | 0.061 | 0.017 * | 0.039 * | 0.191 | 0.013 * | 0.009* | 0.454 | 0.103 | 0.047 * |
F-ratio | 6.70 | 15.21 | 9.06 | 2.46 | 17.80 | 23.04 | 0.67 | 4.44 | 8.00 | |
Surfactant agent stability (Y4, %) | p-value | 0.051 | 0.027 * | 0.002 * | 0.126 | 0.030 * | 0.008 * | 0.064 | 0.050 | 0.004 * |
F-ratio | 5.18 | 11.76 | 54.02 | 3.68 | 10.82 | 23.42 | 1.21 | 8.94 | 35.88 |
2.3. Temperature Stability of Pectinase
Treatment | Temperature (X1) | Buffer to sample ratio (X2) | pH of buffer (X3) | Specific activity (U/mg) | Temperature stability (%) | Storage stability (%) | Surfactant agent stability (%) |
---|---|---|---|---|---|---|---|
1 | −15 | 8:1 | 4.0 | 4.4 | 38.2 | 42.1 | 37.3 |
2 | −15 | 2:1 | 12.0 | 6.2 | 26.3 | 34.2 | 28.1 |
3 | 25 | 8:1 | 12.0 | 10.4 | 62.1 | 73.2 | 66.1 |
4 | 25 | 2:1 | 4.0 | 7.3 | 51.7 | 56.8 | 47.2 |
5 c | 5 | 5:1 | 8.0 | 15.3 | 78.0 | 88.1 | 82.5 |
6 c | 5 | 5:1 | 8.0 | 14.2 | 77.8 | 87.5 | 83.0 |
7 c | 5 | 5:1 | 8.0 | 15.3 | 78.0 | 88.0 | 83.0 |
8 | 25 | 8:1 | 4.0 | 9.2 | 58.3 | 62.1 | 54.1 |
9 c | 5 | 5:1 | 8.0 | 15.1 | 77.6 | 88.0 | 82.2 |
10 | −15 | 2:1 | 4.0 | 3.1 | 17.2 | 23.4 | 26.1 |
11 | −15 | 8:1 | 12.0 | 5.8 | 45.1 | 47.2 | 41.4 |
12 | 25 | 2:1 | 12.0 | 8.4 | 34.1 | 41.5 | 33.2 |
13 c | 5 | 5:1 | 8.0 | 15.2 | 78.0 | 87.9 | 83.0 |
14 | 5 | 9:1 | 8.0 | 12.1 | 69.2 | 70.3 | 71.2 |
15 | −27 | 5:1 | 8.0 | 1.1 | 10.2 | 11.1 | 14.3 |
16 | 37 | 5:1 | 8.0 | 2.3 | 14.0 | 21.4 | 17.2 |
17 | 5 | 1:1 | 8.0 | 12.3 | 67.1 | 61.1 | 62.2 |
18 | 5 | 5:1 | 1.4 | 8.2 | 53.1 | 50.1 | 56.5 |
19 | 5 | 5:1 | 11.2 | 11.2 | 66.4 | 53.2 | 49.2 |
20 c | 5 | 5:1 | 8.0 | 15.3 | 78.0 | 88.0 | 82.4 |
2.4. Storage Stability of Pectinase
2.5. Surfactant Agent Stability
2.6. Optimization Procedures
2.7. Model Validation
3. Experimental
3.1. Chemicals and Plant Material
3.2. Extraction of Pectinase from Pitaya Peel
3.3. Pectinase Activity Assay
3.4. Protein Concentration Determination
3.5. Determination of Specific Activity of the Pectinase
3.6. Determination of Temperature Stability
3.7. Determination of Storage Stability
3.8. Determination of Surfactant Agent Stability
3.9. Experimental Design
Treatment | Temperature (X1) | Buffer to sample ratio (X2) | pH of buffer (X3) |
---|---|---|---|
1 | −15 | 8:1 | 4.0 |
2 | −15 | 2:1 | 12.0 |
3 | 25 | 8:1 | 12.0 |
4 | 25 | 2:1 | 4.0 |
5 c | 5 | 5:1 | 8.0 |
6 c | 5 | 5:1 | 8.0 |
7 c | 5 | 5:1 | 8.0 |
8 | 25 | 8:1 | 4.0 |
9 c | 5 | 5:1 | 8.0 |
10 | −15 | 2:1 | 4.0 |
11 | −15 | 8:1 | 12.0 |
12 | 25 | 2:1 | 12.0 |
13 c | 5 | 5:1 | 8.0 |
14 | 5 | 9:1 | 8.0 |
15 | −27 | 5:1 | 8.0 |
16 | 37 | 5:1 | 8.0 |
17 | 5 | 1:1 | 8.0 |
18 | 5 | 5:1 | 1.4 |
19 | 5 | 5:1 | 11.2 |
20 c | 5 | 5:1 | 8.0 |
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of pectinases in the commercial sector: A review. Bioresource Technol. 2002, 77, 215–227. [Google Scholar]
- Gummadi, S.N.; Panda, T. Purification and biochemical properties of microbial pectinases—A review. Process Biochem. 2003, 38, 987–996. [Google Scholar] [CrossRef]
- Combo, A.M.M.; Aguedo, M.; Goffin, D.; Wathelet, B.; Paquot, M. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioprod. Process. 2012, 90, 588–596. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Rodríguez, R.; Contreras-Esquivel, J.C.; Aguilar, C.N. Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. 2012, 65, 90–95. [Google Scholar] [CrossRef]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Lim, H.; Tan, C.P.; Karim, R.; Ariffin, A.Z.; Bakar, J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil. Food Chem. 2010, 119, 1326–1331. [Google Scholar] [CrossRef]
- Gian, C.; Tenore, E.N.; Adriana, B. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruit 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Amid, M.; Chin Ping, T.; Mirhosseini, H.; Norashikin, A.; Tau Chuan, L. Optimisation of serine protease extraction from mango peel (Mangifera Indica Cv. Chokanan). Food Chem. 2011, 124, 666–671. [Google Scholar] [CrossRef]
- Chen, Y.L.; Su, C.K.; Chiang, B.H. Optimization of reversed micellar extraction of chitosanases produced by Bacillus cereus. Process. Biochem. 2006, 41, 752–758. [Google Scholar] [CrossRef]
- Bhuni, B.; Basak, B.; Mandal, T.; Bhattachary, P.; Apurb, D. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease. Int. J. Biol. Macromol. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Lundqvist, H.; Nilsson, G.S.; Eliasson, A.C.; Gorton, L. Changing the amylopectin-sodium dodecyl sulphate interaction by modifying the exterior chain length starch. Stärke. 2012, 54, 100–107. [Google Scholar]
- Asada, S.; Torabib, S.F.; Fathi-Roudsaric, M.; Ghaemia, N.; Khajehd, K. Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase. Int. J. Biol. Macromol. 2011, 48, 566–570. [Google Scholar] [CrossRef]
- Celestino, S.M.; Maria de Freitas, S.; Javier Medrano, F.; Valle de Sousa, M.; Filho, E.X. Purification and characterization of a novel pectinase from Acrophialophora nainiana with emphasis on its physicochemical properties. Biotechnology 2006, 3, 33–42. [Google Scholar]
- Mei, Y.; Chen, Y.; Zhai, R.; Liu, Y. Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. Mol. Catal. B 2013, 94, 77–81. [Google Scholar] [CrossRef]
- Gregorio, A.D.; Mandalari, G.; Arena, N.; Nucita, F.; Tripodo, M.M.; Curto, R.B. SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresource Technol. 2002, 83, 89–94. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Tan, C.P. Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chem. 2009, 115, 324–333. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Antov, M.G.; Peričin, D.M.; Dimić, G.R. Cultivation of Polyporus squamosus for pectinase production in aqueous two-phase system containing sugar beet extraction waste. Biotechnology 2001, 91, 83–87. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ngo, L.T.A.; Pham, T.L.; Le, V.V.M. Purification of endopolygalacturonase from submerged culture of Aspergillus awamori L1 using a two-step procedure: Enzyme precipitation and gel filtration. Int. Food Res. 2008, 15, 135–140. [Google Scholar]
- Kaur, G.; Kumar, S.; Satyanarayana, T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis, Bioresour. Technol. 2004, 94, 239–243. [Google Scholar]
- Li, J.; Jiang, Z.; Wu, H.; Long, Li.; Jiang, Y.; Zhang, L. Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3-alginate composite gel. Compos. Sci. Technol. 2009, 69, 539–544. [Google Scholar] [CrossRef]
- Heerd, D.; Yegina, S.; Taric, C.; Fernandez-Lahorea, M. Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: A comparative study. Food Bioprod. Process. 2012, 90, 102–110. [Google Scholar] [CrossRef]
- Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Sample Availability: Samples of the pitaya (Hylocereus polyrhizus) peel are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zohdi, N.K.; Amid, M. Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel. Molecules 2013, 18, 14366-14380. https://doi.org/10.3390/molecules181114366
Zohdi NK, Amid M. Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel. Molecules. 2013; 18(11):14366-14380. https://doi.org/10.3390/molecules181114366
Chicago/Turabian StyleZohdi, Nor Khanani, and Mehrnoush Amid. 2013. "Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel" Molecules 18, no. 11: 14366-14380. https://doi.org/10.3390/molecules181114366
APA StyleZohdi, N. K., & Amid, M. (2013). Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel. Molecules, 18(11), 14366-14380. https://doi.org/10.3390/molecules181114366