Facile Synthesis of the Naturally Cytotoxic Triterpenoid Saponin Patrinia-Glycoside B-II and Its Conformer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Computational Calculations
Compound 1 | Patrinia-Glycoside B-II | Transition State | |
---|---|---|---|
Energy(Kcal/mol) | −19,986.949 | −19,987.263 | −19,801.469 |
2.3. Biological Evaluation
Compd | HeLa | HepG2 | HT1080 | A549 | A375-S2 | K562 | HL60 | U937 |
---|---|---|---|---|---|---|---|---|
PB-II | 5.4 ± 0.2 | 4.2 ± 0.8 | 18.0 ± 0.5 | 27.9 ± 0.8 | 15.8 ± 0.1 | 6.2 ± 0.6 | 6.6 ± 0.3 | 5.5 ± 0.3 |
Compound 1 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
5-FU | >50 | >50 | 15.2 | >50 | 25.31.6 | 36.4 ± 3.1 | 9.6 ± 0.9 | 18.2 ± 2.0 |
3. Experimental
3.1. General
3.2. Benzyl Oleanolate 3-O-3,4-O-isopropylidene-α-l-arabinopyranoside (5)
3.3. Benzyl Oleanolate 3-O-2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl-(1→2)-3,4-O-isopropylidene-α-l-arabinopyranoside (6)
3.4. Benzyl Oleanolate 3-O-2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (7)
3.5. Benzyl Oleanolate 3-O-2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl-(1→2)-3-O- benzoyl-a-l-arabinopyranoside (8) and benzyl oleanolate 3-O-2,3,4-tri- O-benzoyl-α-l-rhamnopyranosyl-(1→2)-4-O-benzoyl-α-l-arabinopyranoside (9)
3.6. Benzyl Oleanolate 3-O-2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl-(1→2)- [2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl-(1→3)]-3-O-benzoyl-α-l-arabinopyranoside (10)
3.7. Oleanolic Acid 3-O-α-l-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-l-arabino-pyranoside (1)
3.8. Benzyl Oleanolate 3-O-2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl-(1→2)-3,4-O- isopropylidene-α-l-arabinopyranoside (11)
3.9. Benzyl Oleanolate 3-O-2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl-(1→2)-α-l- arabinopyranoside (12)
3.10. Benzyl Oleanolate 3-O-2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl-(1→2)-4-O- acetyl-α-l-arabino-pyranoside (13)
3.11. Oleanolic Acid 3-O-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→3)]-α-l-arabino-pyranoside (Patrinia-glycoside B-II)
3.12. Computational Methods
3.13. Cell Culture
3.14. Cell Viability Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Parente, J.P.; da Silva, B.P. Bioactive complex triterpenoid saponins from the Leguminosae family. Nat. Prod. Commun. 2009, 4, 143–155. [Google Scholar]
- Luo, J.; Ma, L.; Kong, L. New triterpenoid saponins with strong alpha-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorg. Med. Chem. 2008, 16, 2912–2920. [Google Scholar] [CrossRef]
- Lanzotti, V. Bioactive saponins from allium and aster plants. Phytochem. Rev. 2005, 4, 95–110. [Google Scholar] [CrossRef]
- Ekabo, O.A.; Farnsworth, N.R. Antifungal and molluscicidal saponins from Serjania salzmanniana. J. Nat. Prod. 1996, 59, 431–435. [Google Scholar] [CrossRef]
- Mimaki, Y.; Kuroda, M.; Asano, T.; Sashida, Y. Triterpene saponins and lignans from the roots of Pulsatilla chinensis and their cytotoxic activity against HL-60 cells. J. Nat. Prod. 1999, 62, 1279–1283. [Google Scholar] [CrossRef]
- Barthomeuf, C.; Debiton, E.; Mshvidadze, V.; Kemertelidze, E.; Balansard, G. In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med. 2002, 68, 672–675. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, C.O.; Lee, K.T.; Choi, J.; Park, H.J. Structure-activity relationship of oleanane disaccharides isolated from Akebia quinata versus cytotoxicity against cancer cells and NO inhibition. Biol. Pharm. Bull. 2004, 27, 744–747. [Google Scholar] [CrossRef]
- Park, H.J.; Kwon, S.H.; Lee, J.H.; Lee, K.H.; Miyamoto, K.; Lee, K.T. Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med. 2001, 67, 118–121. [Google Scholar] [CrossRef]
- Cheng, M.S.; Yan, M.C.; Liu, Y.; Zheng, L.G.; Liu, J. Synthesis of β-hederin and Hederacolchiside A1: Triterpenoid saponins bearing a unique cytotoxicity-inducing disaccharide moiety. Carbohydr. Res. 2006, 341, 60–67. [Google Scholar] [CrossRef]
- Yan, M.C.; Liu, Y.; Lu, W.X.; Wang, H.; Sha, Y.; Cheng, M.S. Facile synthesis and cytotoxicity of triterpenoid saponins bearing a unique disaccharide moiety: Hederacolchiside A1 and its analogues. Carbohydr. Res. 2008, 343, 780–784. [Google Scholar] [CrossRef]
- Nakanishi, T.; Tanaka, K.; Murata, H.; Somekawa, M.; Inada, A. Phytochemical studies of seeds of medicinal plants. III. Ursolic acid and oleanolic acid glycosides from seeds of Patrinia scabiosaefolia Fischer. Chem. Pharm. Bull. 1993, 41, 183–186. [Google Scholar] [CrossRef]
- Schmidt, R.R. New methods for the synthesis of glycosides and oligosaccharides—Are there alternatives to the koenigs-knorr method? Angew. Chem. Int. Ed. Engl. 1986, 25, 212–235. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Hui, Y.; Han, X. Trichloroacetimidate as an efficient protective group for alcohols. Synlett 1999, 6, 753–755. [Google Scholar]
- David, S.; Hanessian, S. Regioselective manipulation of hydroxyl groups via organotin derivatives. Tetrahedron 1985, 41, 643–663. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Zang, J.; Song, N.; Zhang, X.; Li, Y.X. Synthesis of two bidesmosidic ursolic acid saponins bearing a 2,3-branched trisaccharide residue. Carbohydr. Res. 2005, 340, 2086–2096. [Google Scholar] [CrossRef]
- Gu, G.; Du, Y.; Linhardt, R.J. Facile synthesis of saponins containing 2,3-branched oligosaccharides by using partially protected glycosyl donors. J. Org. Chem. 2004, 69, 5497–5500. [Google Scholar] [CrossRef]
- Yamada, H.; Nakatani, M.; Ikeda, T.; Marumoto, Y. Stable axial-rich conformation of pyranoses derived from L-rhamnose and d-mannose. Tetrahedron Lett. 1999, 40, 5573–5576. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.X.; Yan, M.C.; Yu, Y.; Ikejima, T.; Cheng, M.S. Synthesis and tumor cytotoxicity of novel amide derivatives of β-Hederin. Molecules 2010, 15, 7871–7883. [Google Scholar] [CrossRef]
- Danishefsky, S.J.; de Ninno, M.P.; Chen, S.H. Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-d-manno-2-octulosonic acid. A new and stereospecific approach to sialo and 3-deoxy-d-manno-2-octulosonic acid conjugates. J. Am. Chem. Soc. 1988, 110, 3929–3940. [Google Scholar] [CrossRef]
- Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, F.C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ren, L.; Liu, Y.-X.; Lv, D.; Yan, M.-C.; Nie, H.; Liu, Y.; Cheng, M.-S. Facile Synthesis of the Naturally Cytotoxic Triterpenoid Saponin Patrinia-Glycoside B-II and Its Conformer. Molecules 2013, 18, 15193-15206. https://doi.org/10.3390/molecules181215193
Ren L, Liu Y-X, Lv D, Yan M-C, Nie H, Liu Y, Cheng M-S. Facile Synthesis of the Naturally Cytotoxic Triterpenoid Saponin Patrinia-Glycoside B-II and Its Conformer. Molecules. 2013; 18(12):15193-15206. https://doi.org/10.3390/molecules181215193
Chicago/Turabian StyleRen, Li, Yong-Xiang Liu, Dan Lv, Mao-Cai Yan, Han Nie, Yang Liu, and Mao-Sheng Cheng. 2013. "Facile Synthesis of the Naturally Cytotoxic Triterpenoid Saponin Patrinia-Glycoside B-II and Its Conformer" Molecules 18, no. 12: 15193-15206. https://doi.org/10.3390/molecules181215193
APA StyleRen, L., Liu, Y. -X., Lv, D., Yan, M. -C., Nie, H., Liu, Y., & Cheng, M. -S. (2013). Facile Synthesis of the Naturally Cytotoxic Triterpenoid Saponin Patrinia-Glycoside B-II and Its Conformer. Molecules, 18(12), 15193-15206. https://doi.org/10.3390/molecules181215193