Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Properties
2.2. NMR and ESI-MS Stability and Interaction Studies
2.3. In Vitro Cytotoxicity
HOS | MCF7 | G361 | HeLa | A2780 | A2780R | A549 | LNCaP | |
---|---|---|---|---|---|---|---|---|
1 | >1.0 | >1.0 | nt | nt | nt | nt | nt | nt |
2 | 27.5 ± 3.4 | 18.3 ± 3.6 | 17.3 ± 3.1 | 31.8 ± 6.2 | 19.2 ± 3.7 | >50.0 | >50.0 | >50.0 |
3 | >1.0 | >1.0 | nt | nt | nt | nt | nt | nt |
CDDP | 25.4 ± 8.5 | 18.1 ± 5.1 | 5.8 ± 2.4 | 39.9 ± 4.6 | 21.8 ± 3.9 | 32.0 ± 9.6 | >50.0 | 3.8 ± 1.5 |
OXA | >50.0 | >50.0 | >50.0 | >50.0 | >50.0 | >50.0 | >50.0 | >50.0 |
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Complexes 1–3
3.3. In Vitro Cytotoxicity Testing
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Kelland, L.R.; Farrell, N.P. Platinum Based Drugs in Cancer Therapy; Humana Press: Totowa, NJ, USA, 2000. [Google Scholar]
- Gielen, M.; Tiekink, E.R.T. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Harrap, K.R. Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat. Rev. 1985, 12, 21–33. [Google Scholar] [CrossRef]
- Akaza, H.; Togashi, M.; Nishio, Y.; Miki, T.; Kotake, T.; Matsumura, Y.; Yoshida, O.; Aso, Y. Phase II study of cis-diammine(glycolato)platinum, 254-S, in patients with advanced germ-cell testicular cancer, prostatic cancer, and transitional-cell carcinoma of the urinary tract. Cancer Chemoth. Pharm. 1992, 31, 187–192. [Google Scholar] [CrossRef]
- McKeage, M.J. Lobaplatin: A new antitumour platinum drug. Expert Opin. Inv. Drugs 2001, 10, 119–128. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, G.; Gam, J.; Cho, Y.B.; Kim, H.T.; Tai, J.H.; Kim, K.H.; Hong, W.S.; Park, J.G. Synthesis and antitumor activity of a series of [2-substituted-4,5-bis(aminomethyl)-1,3-dioxolane] platinum(II) complexes. J. Med. Chem. 1994, 37, 1471–1485. [Google Scholar] [CrossRef]
- Kelland, L.R.; Abel, G.; McKeage, M.J.; Jones, M.; Goddard, P.M.; Valenti, M.; Murrer, B.A.; Harrap, K.R. Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): An orally active platinum drug. Cancer Res. 1993, 53, 2581–2583. [Google Scholar]
- Dragovich, T.; Mendelson, D.; Kurtin, S.; Richardson, K.; Von Hoff, D.; Hoos, A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemoth. Pharm. 2006, 58, 759–764. [Google Scholar] [CrossRef]
- Kidani, Y.; Inagaki, K.; Iigo, M.; Hoshi, A.; Kuretani, K. Antitumor activity of 1,2-diaminocyclohexaneplatinum complexes against Sarcoma-180 ascites form. J. Med. Chem. 1978, 21, 1315–1318. [Google Scholar] [CrossRef]
- Zhang, J.C.; Liu, D.D.; Li, Y.P.; Sun, J.; Wang, L.W.; Zang, A.M. Status of Non-classical mononuclear platinum anticancer drug development. Mini-Rev. Med. Chem. 2009, 9, 1357–1366. [Google Scholar] [CrossRef]
- Butler, J.S.; Sadler, P.J. Targeted delivery of platinum-based anticancer complexes. Curr. Opin. Chem. Biol. 2013, 17, 175–188. [Google Scholar] [CrossRef]
- Harper, B.W.; Krause-Heuer, A.M.; Grant, M.P.; Manohar, M.; Garbutcheon-Singh, K.B.; Aldrich-Wright, J.R. Advances in platinum chemotherapeutics. Chem. Eur. J. 2010, 16, 7064–7077. [Google Scholar] [CrossRef]
- Holford, J.; Sharp, S.Y.; Murrer, B.A.; Abrams, M.; Kelland, L.R. In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br. J. Cancer 1998, 77, 366–373. [Google Scholar] [CrossRef]
- Stein, A.; Arnold, D. Oxaliplatin: A review of approved uses. Expert Opin. Pharmacother. 2012, 13, 125–137. [Google Scholar] [CrossRef]
- Cleare, M.J. Transition metal complexes in cancer chemotherapy. Coord. Chem. Rev. 1974, 12, 349–405. [Google Scholar] [CrossRef]
- Štarha, P.; Trávníček, Z.; Popa, I. Platinum(II) oxalato complexes with adenine-based carrier ligands showing significant in vitro antitumor activity. J. Inorg. Biochem. 2010, 104, 639–647. [Google Scholar] [CrossRef]
- Trávníček, Z.; Štarha, P.; Popa, I.; Vrzal, R.; Dvořák, Z. Roscovitine-based CDK inhibitors acting as N-donor ligands in the platinum(II) oxalato complexes: Preparation, characterization and in vitro cytotoxicity. Eur. J. Med. Chem. 2010, 45, 4609–4614. [Google Scholar] [CrossRef]
- Vrzal, R.; Štarha, P.; Dvořák, Z.; Trávníček, Z. Evaluation of in vitro cytotoxicity and hepatotoxicity of platinum(II) and palladium(II) oxalato complexes with adenine derivatives as carrier ligands. J. Inorg. Biochem. 2010, 104, 1130–1132. [Google Scholar] [CrossRef]
- Utku, S.; Topal, M.; Dögen, A.; Serin, M.S. Synthesis, characterization, antibacterial and antifungal evaluation of some new platinum(II) complexes of 2-phenylbenzimidazole ligands. Tur. J. Chem. 2010, 34, 427–436. [Google Scholar]
- Silva, H.; Barra, C.V.; Rocha, F.V.; Frézard, F.; Lopes, M.T.P.; Fontes, A.P.S. Novel platinum(II) complexes of long chain aliphatic diamine ligands with oxalato as the leaving group. Comparative cytotoxic activity relative to chloride precursors. J. Braz. Chem. Soc. 2010, 21, 1961–1967. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, R.; Gou, S.; Zhao, J. Antitumor platinum(II) complexes of N-monoalkyl-1R, 2R-diaminocyclohexane derivatives with alkyl groups as hindrance. J. Inorg. Biochem. 2012, 112, 68–76. [Google Scholar] [CrossRef]
- Štarha, P.; Marek, J.; Trávníček, Z. Cisplatin and oxaliplatin derivatives involving 7-azaindole: Structural characterisations. Polyhedron 2012, 33, 404–409. [Google Scholar] [CrossRef]
- Štarha, P.; Trávníček, Z.; Popa, A.; Popa, I.; Muchová, T.; Brabec, V. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: Highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J. Inorg. Biochem. 2012, 105, 57–63. [Google Scholar]
- Štarha, P.; Trávníček, Z.; Popa, I. Synthesis, characterization and in vitro cytotoxicity of the first palladium(II) oxalato complexes involving adenine-based ligands. J. Inorg. Biochem. 2009, 103, 978–988. [Google Scholar] [CrossRef]
- Štarha, P.; Popa, I.; Trávníček, Z. Palladium(II) oxalato complexes involving N6-(benzyl)-9-isopropyladenine-based N-donor carrier ligands: Synthesis, general properties, 1H, 13C and 15N{1H} NMR characterization and in vitro cytotoxicity. Inorg. Chim. Acta 2010, 363, 1469–1478. [Google Scholar] [CrossRef]
- Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279. [Google Scholar] [CrossRef]
- Berners-Price, S.J.; Ronconi, L.; Sadler, P.J. Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy. Prog. Nucl. Mag. Res. Sp. 2006, 49, 65–98. [Google Scholar] [CrossRef]
- Mistry, P.; Kelland, L.R.; Abel, G.; Sidhar, S.; Harrap, K.R. The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br. J. Cancer 1991, 64, 215–220. [Google Scholar]
- Luo, F.R.; Yen, T.Y.; Wyrick, S.D.; Chaney, S.G. High-performance liquid chromatographic separation of the biotransformation products of oxaliplatin. J. Chromatogr. B 1999, 724, 345–356. [Google Scholar] [CrossRef]
- Ravera, M.; Bagni, G.; Mascini, M.; Dabrowiak, J.C.; Osella, D. The activation of platinum(II) antiproliferative drugs in carbonate medium evaluated by means of a DNA-biosensor. J. Inorg. Biochem. 2007, 101, 1023–1027. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, S.; Cheong, M.; Hah, S.S. Mechanistic Insights into in vitro DNA Adduction of Oxaliplatin. Bull. Korean Chem. Soc. 2010, 31, 2043–2046. [Google Scholar] [CrossRef]
- Reedijk, J. Increased understanding of platinum anticancer chemistry. Pure Appl. Chem. 2011, 83, 1709–1719. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 1–3 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Štarha, P.; Trávníček, Z.; Popa, I.; Dvořák, Z. Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands. Molecules 2014, 19, 10832-10844. https://doi.org/10.3390/molecules190810832
Štarha P, Trávníček Z, Popa I, Dvořák Z. Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands. Molecules. 2014; 19(8):10832-10844. https://doi.org/10.3390/molecules190810832
Chicago/Turabian StyleŠtarha, Pavel, Zdeněk Trávníček, Igor Popa, and Zdeněk Dvořák. 2014. "Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands" Molecules 19, no. 8: 10832-10844. https://doi.org/10.3390/molecules190810832
APA StyleŠtarha, P., Trávníček, Z., Popa, I., & Dvořák, Z. (2014). Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands. Molecules, 19(8), 10832-10844. https://doi.org/10.3390/molecules190810832