New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Compound | R | Yield (%) of the Quaternization Step | |
---|---|---|---|
CP1 a | US b | ||
7 | Et | 79 | 85 |
8 | Pr | 80 | 87 |
9 | Bu | 78 | 89 |
10 | Pent | 79 | 88 |
11 | Hex | 80 | 87 |
12 | CH2Ph | 79 | 86 |
Compound | R | MY | Yield (%) for the Anion Metathesis | |
---|---|---|---|---|
CP2 a | (US) b | |||
13 | Pr | NaBF4 | 95 | 96 |
14 | KPF6 | 95 | 97 | |
15 | NaOOCCF3 | 92 | 98 | |
16 | NaN(CN)2 | 94 | 97 | |
17 | NaNCS | 92 | 97 | |
18 | NaNO3 | 94 | 95 | |
19 | Bu | NaBF4 | 94 | 98 |
20 | KPF6 | 93 | 97 | |
21 | NaOOCCF3 | 93 | 97 | |
22 | NaN(CN)2 | 92 | 96 | |
23 | NaNCS | 93 | 95 | |
24 | NaNO3 | 92 | 96 | |
25 | Pent | NaBF4 | 95 | 98 |
26 | KPF6 | 93 | 96 | |
27 | NaOOCCF3 | 95 | 97 | |
28 | NaN(CN)2 | 94 | 97 | |
29 | NaNCS | 94 | 95 | |
30 | NaNO3 | 94 | 98 | |
31 | Hex | NaBF4 | 94 | 97 |
32 | KPF6 | 93 | 96 | |
33 | NaOOCCF3 | 95 | 97 | |
34 | NaN(CN)2 | 92 | 96 | |
35 | NaNCS | 93 | 95 | |
36 | NaNO3 | 94 | 97 |
2.2. Antimicrobial Activity
Compounds | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
E. coli | K. pneumoniae | P. aeruginosa | A. baumannii | S. aureus | S. pneumoniae | B. subtilis | B. cereus | |
7 | 64 | 64 | >256 | >256 | 64 | 64 | 128 | >256 |
8 | 32 | 16 | >256 | >256 | 64 | 64 | 128 | >256 |
9 | 16 | 16 | >256 | >256 | 32 | 16 | 128 | >256 |
10 | 16 | 8 | 128 | 256 | 16 | 8 | 64 | 64 |
11 | 16 | 8 | >256 | 128 | 8 | 8 | 16 | 32 |
12 | 16 | 32 | >256 | >256 | 64 | 32 | 64 | >256 |
Mezlocillin | 128 | 128 | 128 | 128 | --- | --- | 32 | 32 |
Amikacin | 32 | 32 | 32 | 32 | 32 | 32 | --- | --- |
Tetracycline | 16 | 16 | --- | 16 | --- | 8 | 4 | 4 |
Nitrofurantion | 128 | 128 | --- | --- | 128 | 128 | --- | --- |
2.3. POM Analyses of Compounds 7–12
Compd. | R | Toxicity Risks [a] | Drug-Score [b] | ||||||
---|---|---|---|---|---|---|---|---|---|
MUT | TUMO | IRRI | REP | CLP | S | DL | DS | ||
7 | Ethyl | 2.38 | −2.67 | −0.66 | 0.60 | ||||
8 | Propyl | 2.84 | −2.94 | −0.90 | 0.56 | ||||
9 | Butyl | 3.31 | −3.21 | −3.16 | 0.43 | ||||
10 | Pentyl | 3.77 | −3.48 | −5.85 | 0.39 | ||||
11 | Hexyl | 4.23 | −3.76 | −10.23 | 0.36 | ||||
12 | Benzyl | 3.31 | −3.69 | −0.91 | 0.41 | ||||
Mezlocillin | --- | −0.03 | −2.53 | 15.14 | 0.66 | ||||
Amikacin | --- | −8.00 | −0.23 | 1.73 | 0.35 | ||||
Tetracycline | --- | −1.02 | −1.83 | 5.43 | 0.81 | ||||
Nitrofurantion | --- | −0.07 | −2.50 | 0.67 | 0.78 |
2.4. Molinspiration Calculations
Compd. | MW(g/mol) | Physico-Chemical Properties [a] | Drug Likeness [b] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TPSA | O/NH | VIOL | VOL | GPC | ICM | KI | NRL | PI | EN | ||
7 | 325 | 12.47 | 0 | 0 | 271 | −0.06 | −0.10 | −0.18 | −0.06 | −0.22 | 0.01 |
8 | 339 | 12.47 | 0 | 0 | 287 | 0.04 | −0.06 | −0.13 | 0.03 | −0.10 | 0.03 |
9 | 353 | 12.47 | 0 | 0 | 304 | 0.07 | −0.06 | −0.10 | 0.08 | −0.05 | 0.05 |
10 | 367 | 12.47 | 0 | 0 | 321 | 0.10 | −0.05 | −0.07 | 0.12 | 0.01 | 0.07 |
11 | 381 | 12.47 | 0 | 0 | 338 | 0.12 | −0.05 | −0.05 | 0.13 | 0.03 | 0.06 |
12 | 387 | 12.47 | 0 | 0 | 325 | 0.09 | −0.06 | −0.01 | 0.08 | 0.04 | 0.04 |
Mezlocillin | 539 | 173 | 3 | 2 | 434 | −0.04 | −0.43 | −0.60 | −0.58 | 0.66 | 0.10 |
Amikacin | 585 | 332 | 17 | 3 | 510 | 0.32 | −0.09 | 0.16 | −0.10 | 0.78 | 0.45 |
Tetracycline | 444 | 182 | 7 | 1 | 377 | −0.15 | −0.24 | −0.53 | −0.09 | −0.04 | 0.52 |
Nitrofurantion | 238 | 121 | 1 | 0 | 181 | −1.36 | −0.90 | −1.21 | −2.16 | −1.45 | −0.79 |
3. Materials and Methods
3.1. Experimental
3.2. Synthesis
3.3. Characterization
3.4. Determination of Minimum Inhibitory Concentrations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef]
- Davis, J.H., Jr. Task-Specific Ionic Liquids. Chem. Lett. 2004, 33, 1072–1077. [Google Scholar] [CrossRef]
- Cho, C.W.; Pham, T.P.; Jeon, Y.C.; Vijayaraghavan, K.; Choe, W.S.; Yun, Y.S. Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: Effect of alkyl-chain length. Chemosphere 2007, 69, 1003–1007. [Google Scholar] [CrossRef]
- Ventura, S.P.; Goncalves, A.M.M.; Goncalves, F.; Coutinho, J.A. Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat. Toxicol. 2010, 96, 290–297. [Google Scholar] [CrossRef]
- Docherty, K.M.; Kulpa, C.F. Toxicity and antimicrobial activity of imidazo- lium and pyridinium ionic liquids. Green Chem. 2005, 7, 185–189. [Google Scholar] [CrossRef]
- Endres, F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chem. Phys. Chem. 2002, 3, 144–154. [Google Scholar]
- Ibrahim, M.A.M.; Messali, M. Ionic Liquid [BMPy] Br as an effective additive auring Zinc electrodeposition from an aqueous Sulfate bath. Prod. Finish. 2011, 2, 14. [Google Scholar]
- Lin, Y.F.; Sun, I.W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim. Acta 1999, 44, 2771–2777. [Google Scholar] [CrossRef]
- Da Costa Lopes, A.M.; João, K.G.; Morais, A.R.C.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process 2013, 1, 3. [Google Scholar]
- Liu, J.; Jiang, G.; Chi, Y.; Cai, Y.; Zhou, Q.; Hu, J. Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal. Chem. 2003, 21, 5870–5876. [Google Scholar]
- Zhang, Q.H.; Zhang, S.G.; Deng, Y.Q. Recent advances in ionic liquid catalysis. Green Chem. 2011, 13, 2619–2637. [Google Scholar] [CrossRef]
- Wang, J.H.; Cheng, D.H.; Chen, X.Y.; Du, Z.; Fang, Z.L. Direct extraction of double stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal. Chem. 2007, 79, 620–625. [Google Scholar]
- Moniruzzaman, M.; Kamiya, N.; Goto, M. Activation and stabilization of enzymes in ionic liquids. Org. Biomol. Chem. 2010, 8, 2887–2899. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Nakashima, K.; Kamiya, N.; Goto, M. Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 2010, 48, 295–314. [Google Scholar]
- Muginova, S.V.; Galimova, A.Z.; Polyakov, A.E.; Shekhovtsova, T.N. Ionic liquids in enzymatic catalysis and biochemical methods of analysis: Capabilities and prospects. J. Anal. Chem. 2010, 65, 331–351. [Google Scholar]
- Pinto, P.C.A.G.; Saraiva, M.L.M.F.S.; Lima, J.L.F.C. Sequential injection analysis as a tool for implementation of enzymatic assays in ionic liquids. Talanta 2008, 77, 479–483. [Google Scholar] [CrossRef]
- Ibrahim, M.A.M.; Messali, M.; Moussa, Z.; Alzahrani, A.Y.; Alamry, S.N.; Hammouti, B. Corrosion inhibition of carbon steel by imidazolium and pyridiniumcations ionic liquids in acidic environment. Port. Electrochim. Acta 2011, 29, 375–389. [Google Scholar] [CrossRef]
- Messali, M. A green microwave-assisted synthesis, characterization and comparative study of new pyridazinium-based ionic liquids derivatives towards corrosion of mild steel in acidic environment. J. Mater. Environ. Sci. 2011, 2, 174–185. [Google Scholar]
- Zarrouk, A.; Messali, M.; Zarrok, H.; Salghi, R.; Al-Sheikh Ali, A.; Hammouti, B.; Al-Deyab, S.S.; Bentiss, F. Synthesis, characterization and comparative study of new functionalized imidazolium-based ionic liquids derivatives towards corrosion of C38 steel in molar hydrochloric acid. Int. J. Electrochem. Sci. 2012, 7, 6998–7015. [Google Scholar]
- Zarrouk, A.; Messali, M.; Aouad, M.R.; Zarrok, H.; Salghi, R.; Hammouti, B.; Chetouani, A. Some new ionic liquids derivatives: Synthesis, characterization and comparative study towards corrosion of C-steel in acidic media. J. Chem. Pharm. Res. 2012, 4, 3427–3436. [Google Scholar]
- Biswas, A.; Shogren, R.L.; Stevenson, D.G.; Willett, J.L.; Bhowmik, P.K. Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohydr. Polym. 2006, 66, 546–550. [Google Scholar] [CrossRef]
- Rao, C.J.; Venkatesan, K.A.; Nagarajan, K.; Srinivasan, T.G.; Rao, P.R.V. Treatment of tissue paper containing radioactive waste and electrochemical recovery of valuables using ionic liquids. Electrochim. Acta 2007, 53, 1911–1919. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry, Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Deetlefs, M.; Seddon, K.R. Improved preparations of ionic liquids using microwave irradiation. Green Chem. 2003, 5, 181–186. [Google Scholar]
- Singh, V.; Kaur, S.; Sapehiyia, V.; Singh, J.; Kad, G.L. Microwave accelerated preparation of [bmim][HSO4] ionic liquid: An acid catalyst for improved synthesis of coumarins. Catal. Commun. 2005, 6, 57–60. [Google Scholar] [CrossRef]
- Aupoix, A.; Pegot, B.; Vo-Thanh, G. Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron 2010, 66, 1352–1356. [Google Scholar] [CrossRef]
- Messali, M.; Ahmed, S.A. A green microwave-assisted synthesis of new pyridazinium-based ionic liquids as an environmentally friendly alternative. Green Sustain. Chem. 2011, 1, 70–75. [Google Scholar]
- Pernak, J.; Sobaszkiewicz, K.; Mirska, I. Anti-microbial activities of ionic liquids. Green Chem. 2003, 5, 52–56. [Google Scholar] [CrossRef]
- Pernak, J.; Goc, I.; Mirska, I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 2004, 6, 323–329. [Google Scholar]
- Pernak, J.; Feder-Kubis, J. Synthesis and properties of chiral ammonium- based ionic liquids. Chem. Eur. J. 2005, 11, 4441–4449. [Google Scholar] [CrossRef]
- Demberelnyamba, D.; Lim, K.S.; Choi, S.; Park, S.Y.; Lee, H.; Kim, C.J.; Yoo, I.D. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg. Med. Chem. 2004, 12, 853–857. [Google Scholar]
- Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem. 2009, 11, 492–497. [Google Scholar]
- Messali, M.; Moussa, Z.; Alzahrani, A.Y.; El-Naggar, M.Y.; ElDouhaibi, A.S.; Judeh, Z.M.A.; Hammouti, B. Synthesis, characterization, antimicrobial activity of new green-chemistry-friendly ionic liquids. Chemosphere 2013, 91, 1627. [Google Scholar]
- Messali, M. An efficient and green sonochemical synthesis of some new eco-friendly functionalized ionic liquids. Arab. J. Chem. 2014, 7, 63–70. [Google Scholar] [CrossRef]
- Messali, M.; Asiri, M.A.M. A green ultrasound-assisted access to some new 1-benzyl-3-(4-phenoxybutyl) imidazolium-based ionic liquids derivatives—Potential corrosion inhibitors of mild steel in acidic environment. J. Mater. Environ. Sci. 2013, 5, 770–785. [Google Scholar]
- Al-Ghamdi, A.F.; Messali, M.; Ahmed, S.A. Electrochemical studies of new pyridazinium-based ionic liquid and its determination in different detergents. J. Mater. Environ. Sci. 2011, 3, 215–224. [Google Scholar]
- Messali, M. A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids. Arab. J. Chem. 2011. [Google Scholar] [CrossRef]
- Bonhote, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Graetzel, M. Hydrophobic, highly conductive ambient-temperaturemolten salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar]
- Poole, C.F. Chromatographic and spectroscopic methods for thedetermination of solvent properties of room-temperature ionic liquids. J. Chromatogr. A 2004, 1037, 49–82. [Google Scholar] [CrossRef]
- Hossain, M.I.; El-Harbawi, M.; Noaman, Y.A.; Bustam, M.A.B.; Alitheen, N.B.M.; Affandi, N.A.; Hefter, G.; Yin, C.Y. Synthesis and anti-microbial activity of hydroxylammonium ionic liquids. Chemosphere 2011, 84, 101–104. [Google Scholar] [CrossRef]
- Jorgensen, J.H. M26-A: Methods of Determining Bactericidal Activity of Antimicrobial Agents for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved guideline; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 1999. [Google Scholar]
- Nomura, H.; Isshiki, Y.; Sakuda, K.; Sakuma, K.; Kondo, S. The antibacterial activity of compounds isolated from oakmoss against Legionella pneumophila and Other Legionella spp. Biol. Pharm. Bull. 2012, 35, 1560–1567. [Google Scholar]
- M7-A5: Methods for Antibacterial Susceptibility Test for Bacteria that Grow Aerobically, Approved Standard, 5th ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2000.
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Messali, M.; Aouad, M.R.; El-Sayed, W.S.; Al-Sheikh Ali, A.; Ben Hadda, T.; Hammouti, B. New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses. Molecules 2014, 19, 11741-11759. https://doi.org/10.3390/molecules190811741
Messali M, Aouad MR, El-Sayed WS, Al-Sheikh Ali A, Ben Hadda T, Hammouti B. New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses. Molecules. 2014; 19(8):11741-11759. https://doi.org/10.3390/molecules190811741
Chicago/Turabian StyleMessali, Mouslim, Mohamed R. Aouad, Wael S. El-Sayed, Adeeb Al-Sheikh Ali, Taibi Ben Hadda, and Belkheir Hammouti. 2014. "New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses" Molecules 19, no. 8: 11741-11759. https://doi.org/10.3390/molecules190811741
APA StyleMessali, M., Aouad, M. R., El-Sayed, W. S., Al-Sheikh Ali, A., Ben Hadda, T., & Hammouti, B. (2014). New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses. Molecules, 19(8), 11741-11759. https://doi.org/10.3390/molecules190811741