Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Loss on Drying and Loading Capacity of Hydroxyapatite (HAP-S)
Parameter | Time (h) | Mean and Std. Dev. |
---|---|---|
Loss on drying (%) | 0 | 1.43 ± 0.60 |
Loading capacity (%) | 1 | 27.94 ± 1.84 |
2 | 30.21 ± 4.41 | |
3 | 29.51 ± 1.40 |
2.2. pH Determination
2.3. Characterization of HAP-S and HAP-S/CCL
Sample | Peak 1 | Peak 2 | ζ Potential (mV) | ||
---|---|---|---|---|---|
Mean Particle Size (nm) | % | Mean Particle Size (nm) | % | ||
CCL | 113.2 | 87.3 | 25.6 | 12.7 | 87.3 |
HAP-S | 209.0 | 100.0 | - | - | −20.20 |
HAP-S/CCL | 173.2 | 100.2 | - | - | −20.20 |
2.4. Antibacterial Activity of HAP-S
2.5. Nutritive Mixture and Bacterial Fluorescence Detection
2.6. Activation (Hydration) of HAP-S/CCL before Detection of Bacteria
2.7. Fluorescence Detection with Different Inoculum Volumes and Concentrations
2.8. Detection of E. coli Fluorescence by the Spectroscopic Method
3. Experimental Section
3.1. Materials
3.2. Preparation of the HAP-S/CCL Composite
3.3. Loss on Drying Test
3.4. Loading Capacity Test
3.5. pH Determination
3.6. Characterization of the HAP-S and HAP-S/CCL
3.7. Determination of the Possible Antibacterial Activity of HAP-S
3.8. Role of the Nutritive Mixture on the Fluorescence Detection of Bacteria
3.9. Activation (Hydration) of HAP-S/CCL before Detection of Bacteria
3.10. Fluorescence Detection with Different Volumes and Concentrations of Inoculums
3.11. Detection of E. coli Fluorescence by a Spectroscopic Method
3.12. Statistics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Boer, E.; Beumer, R.R. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 1999, 50, 119–130. [Google Scholar]
- Settanni, L.; Corsetti, A. The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: A review. J. Microbiol. Methods 2007, 69, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Deschaght, P.; van Daele, S.; de Baets, F.; Vaneechoutte, M. PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. J. Cyst. Fibros. 2011, 10, 293–297. [Google Scholar]
- Manafi, M. New developments in chromogenic and fluorogenic culture media. Int. J. Food Microbl. 2000, 60, 205–218. [Google Scholar] [CrossRef]
- Aguilera-Arreola, M.G.; Portillo-Munoz, M.I.; Rodriguez-Martinez, C.; Castro-Escarpulli, G. Usefulness of Chromogenic CromoCen (R) AGN agar medium for the identification of the genus Aeromonas: Assessment of faecal samples. J. Microbiol. Methods 2012, 90, 100–104. [Google Scholar]
- Jain, K.K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007, 53, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.Y.; Hu, J.; Zhang, Z.L.; Tian, Z.Q.; Ou, G.P.; Liao, Y.L.; Li, Y.; Xie, M.; Sun, Z.Y.; Pang, D.W. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Anal. Chem. 2013, 85, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Huang, K.L.; Liu, S.Q. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe. Anal. Bioanal. Chem. 2010, 396, 1397–1404. [Google Scholar] [CrossRef]
- He, W.; Henne, W.A.; Wei, Q.S.; Zhao, Y.; Doorneweerd, D.D.; Cheng, J.X.; Low, P.S.; Wei, A. Two-photon luminescence imaging of bacillus spores using peptide-functionalized gold nanorods. Nano Res. 2008, 1, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Guo, Z.X.; Wu, H.F.; Liu, Y.; Yang, Z.G.; Woo, C.H. Rapid analysis of gram-positive bacteria in water via membrane filtration coupled with nanoprobe-based MALDI-MS. Anal. Bioanal. Chem. 2010, 397, 2465–2476. [Google Scholar] [CrossRef] [PubMed]
- Markova, Z.; Siskova, K.; Filip, J.; Safarova, K.; Prucek, R.; Panacek, A.; Kolar, M.; Zboril, R. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem. 2012, 14, 2550–2558. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Sultan, A.; Azam, A. Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum beta-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India. Appl. Microbiol. Biotechnol. 2012, 94, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.L.; Li, Y.F.; Fang, T.L.; Zhou, J.; Li, X.L.; Wang, Y.C.; Dong, J. Vancomycin-loaded nanohydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm. Res. 2012, 61, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Ionita, D.; Dilea, M.; Titorencu, I.; Demetrescu, I. Merit and demerit effects of silver nanoparticles in the bioperformance of an electrodeposited hydroxyapatite: Nanosilver composite coating. J. Nanopart. Res. 2012, 14, 1152. [Google Scholar] [CrossRef]
- Woodard, J.R.; Hilldore, A.J.; Lan, S.K.; Park, C.J.; Morgan, A.W.; Eurell, J.A.C.; Clark, S.G.; Wheeler, M.B.; Jamison, R.D.; Wagoner Johnson, A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007, 28, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Kilpadi, K.L.; Chang, P.L.; Bellis, S.L. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J. Biomed. Mat. Res. 2001, 57, 258–267. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wang, A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater. 2010, 6, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.; Fowler, B.O.; Tung, M.S. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J. Res. Nat. Inst. Stand. Technol. 2004, 109, 553–568. [Google Scholar] [CrossRef]
- Zhurbenko, R.; Rodríguez, C.; Mezquida, I.; Ortega, A.; Abreut, Y. Development of a liquid médium (CromoCen CCL) for the simultaneous detection and confirmation of Escherichia coli and other coliforms in biotechnological industrial water samples. In Proceedings of the International Biotechnology Congress 2007, La Habana, Cuba, 5–9 November 2007; Valdés, R., Torres, D., Zumalacárregui, L., González, M., Aragón, H., Martínez, E., Galbán, E., Lago, R., Barreto, J., Eds.; Elfos Scientiae: La Habana, Cuba, 2007; pp. 159–161. [Google Scholar]
- Saleeb, F.Z.; Debruyn, P.L. Surface properties of alkaline-earth apatites. J. Electroanal. Chem. 1972, 37, 99–118. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, A.P.; Wang, W.P.; Shi, H.C. New bioactive hybrid material of nano-hydroxyapatite based on N-carboxyethylchitosan for bone tissue engineering. Appl. Surf. Sci. 2010, 256, 7228–7233. [Google Scholar] [CrossRef]
- Rodenas, L.G.; Palacios, J.M.; Apella, M.C.; Morando, P.J.; Blesa, M.A. Surface properties of various powdered hydroxyapatites. J. Colloid Interface Sci. 2005, 290, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Estévez, G.F.; Cervantes, M.L.R.; García-Menocal, J.A.D.; Yurell, J.C.L.; Avés, E.P. Physical chemical and thermoanalytical characterization of cements based on synthetic hydroxyapatite. Rev. CENIC Cienc. Quim. 2006, 37, 63–68. [Google Scholar]
- Clark, W.B.; Lane, M.D.; Beem, J.E.; Bragg, S.L.; Wheeler, T.T. Relative hydrophobicities of actinomyces-viscosus and actinomyces-naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect. Immun. 1985, 47, 730–736. [Google Scholar] [PubMed]
- An, Y.H.; Friedman, R.J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998, 43, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Anselme, K.; Davidson, P.; Popa, A.M.; Giazzon, M.; Liley, M.; Ploux, L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010, 6, 3824–3846. [Google Scholar] [CrossRef] [PubMed]
- Kohutova, A.; Honcova, P.; Svoboda, L.; Bezdicka, P.; Marikova, M. Structural characterization and thermal behaviour of biological hydroxyapatite. J. Therm. Anal. Calorim. 2012, 108, 163–170. [Google Scholar] [CrossRef]
- Doss, S.K. Surface properties of hydroxyapatite. 1. The effect of various inorganic-ions on electrophoretic behavior. J. Dent. Res. 1976, 55, 1067–1075. [Google Scholar]
- Conz, M.B.; Granjeiro, J.M.; Soares, G.A. Physicochemical characterization of six commercial hydroxyapatites for medical-dental applicatons as bone graft. J. Appl. Oral Sci. 2005, 13, 135–140. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Moller, L. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.D.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B.; Popov, V.O. Methods of detection and identification of manufactured nanoparticles. Biophysics 2011, 56, 961–986. [Google Scholar] [CrossRef]
- Rodriguez, C.; González, J.E.; Lobaina, T.; Zhurbenko, R.; Brito, A.I.; López, M.; Aragón, J.; Alfonso, I.; Ortega, A. Method for Simultaneous Detection, Recovery, Identification and Counting of Microorganisms and Devices for the Implementation of Said Method. WO/2013/143508, 3 October 2013. [Google Scholar]
- El-Boubbou, K.; Gruden, C.; Huang, X. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 2007, 129, 13392–13393. [Google Scholar]
- Silbert, L.; Ben Shlush, I.; Israel, E.; Porgador, A.; Kolusheva, S.; Jelinek, R. Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl. Environ. Microbiol. 2006, 72, 7339–7344. [Google Scholar] [CrossRef] [PubMed]
- U.S. Pharmacopeia/National Formulary. U.S. Pharmacopeia National Formulary 2012; USP 35 NF 30; United States Pharmacopeial: Rockville, MD, USA, 2012; p. 344. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martínez, C.R.; Rodríguez, T.L.; Zhurbenko, R.; Valdés, I.A.; Gontijo, S.M.L.; Gomes, A.D.M.; Suarez, D.F.; Sinisterra, R.D.; Cortés, M.E. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria. Molecules 2014, 19, 13948-13964. https://doi.org/10.3390/molecules190913948
Martínez CR, Rodríguez TL, Zhurbenko R, Valdés IA, Gontijo SML, Gomes ADM, Suarez DF, Sinisterra RD, Cortés ME. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria. Molecules. 2014; 19(9):13948-13964. https://doi.org/10.3390/molecules190913948
Chicago/Turabian StyleMartínez, Claudio R., Tamara L. Rodríguez, Raisa Zhurbenko, Ivonne A. Valdés, Sávio M. L. Gontijo, Alinne D. M. Gomes, Diego F. Suarez, Rubén D. Sinisterra, and Maria E. Cortés. 2014. "Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria" Molecules 19, no. 9: 13948-13964. https://doi.org/10.3390/molecules190913948
APA StyleMartínez, C. R., Rodríguez, T. L., Zhurbenko, R., Valdés, I. A., Gontijo, S. M. L., Gomes, A. D. M., Suarez, D. F., Sinisterra, R. D., & Cortés, M. E. (2014). Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria. Molecules, 19(9), 13948-13964. https://doi.org/10.3390/molecules190913948