Triterpenes as Potentially Cytotoxic Compounds
Abstract
:1. Introduction
2. Origin, Classification, Chemical Structure and Role of Triterpenes
Triterpene | Type of Neoplasm | Cytotoxicity Evaluation Method |
---|---|---|
Squalene derivatives | leukemia, melanoma, sarcoma, lung cancer, kidney cancer, cancer of the peripheral nervous system, colon cancer, breast cancer, ovarian carcinoma, cervical carcinoma, prostate cancer | MTT test, evaluation of apoptosis |
Dammarane derivatives | glioma, lung cancer, ovarian carcinoma, colorectal carcinoma, colon cancer | MTT test, evaluation of apoptosis |
Lanostane and its derivatives | leukemia, melanoma, glioma, gastric carcinoma, pancreatic cancer, colon cancer, hepatic cancer, lung cancer, breast cancer, ovarian carcinoma | MTT test, SRB evaluation of apoptosis |
Lupeol | colorectal cancer, gastric cancer | MTT test, LDH evaluation of apoptosis |
Oleanolic acid and its derivatives | thyroid carcinoma, ovarian carcinoma, breast cancer, colorectal cancer, glioma, leukemia, gastric adenocarcinoma | MTT test, evaluation of apoptosis |
Betulinic acid and its derivatives | lung cancer, prostatic carcinoma, breast cancer, prostate cancer, ovarian carcinoma, cervical carcinoma, lung cancer, colorectal cancer, colon cancer, glioma, melanoma, thyroid tumor, colon adenocarcinoma, leukemia | MTT test, SRB evaluation of apoptosis |
Ursolic acid and its derivatives | ovarian carcinoma, pancreatic carcinoma, prostate cancer, cervical carcinoma, hepatic cancer, breast cancer, colorectal cancer, leukemia, neuroma, colon adenocarcinoma | MTT test, SRB evaluation of apoptosis |
Vegetal extracts | leukemia, melanoma, glioma, laryngeal cancer, breast cancer, hepatic cancer, gastric cancer, lung cancer, ovarian carcinoma, prostate cancer, colon cancer, epithelial carcinoma | MTT, evaluation of apoptosis |
Fungal extracts | melanoma, lymphoma, glioma, breast cancer, ovarian carcinoma, prostate cancer, breast cancer, hepatic cancer, gastric cancer, colon cancer, epidermal nasopharyngeal carcinoma | MTT |
3. Cytotoxicity and Evaluation Methods
4. Cytotoxic Activity of Triterpenes
Triterpene | Chemical Structure | Triterpene | Chemical Structure |
---|---|---|---|
Squalene | Dammarane | ||
Ginsenoide | Lupane | ||
Lanostane | Lupeol | ||
Oleane | Oleanolic acid | ||
Betulinic acid | Ursane | ||
Ursolic acid | Isopropyl 3β-hydroxyurs-12-en-28-oat (ursolic acid derivative) | ||
Cycloart-23E-ene-3β,25-diol (cycloartane troterpenoid) | 3-oxo-16β,29-hydroxy-firedelane (friedelane-type triterpene) | ||
7α-hydroksyfern-8-en-11-one (fernane-type triterpenoid) | 3β-hydroxyfilic-4(23)-ene (filicane-type triterpenoid) | ||
Hemslepenside A (cucurbitane troterpenoid) |
5. Conclusions
Conflicts of Interest
References
- World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 26 October 2014).
- Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002, 175, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Rhourri-Frih, B.; Renimel, I.; Chaimbault, P.; André, P.; Herbette, G.; Lafosse, M. Pentacyclic triterpenes from Manilkara bidentata resin. Isolation, identification and biological properties. Fitoterapia 2013, 88, 101–108. [Google Scholar] [CrossRef] [PubMed]
- El-Askary, H.I.; El-Olemy, M.M.; Salama, M.M.; Sleem, A.A.; Amer, M.H. Bioguided isolation of pentacyclic triterpenes from the leaves of Alstonia scholaris (Linn.) R. Br. growing in Egypt. Nat. Prod. Res. 2012, 26, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Martyyas, E.A.; Kalinin, V.I. Triterpene glycosides from the sea cucumber Eupentacta fraudatrix. Structure and biological action of cucumariosides I1, I3, I4, three new minor disulfated pentaosides. Nat. Prod. Commun. 2013, 8, 1053–1058. [Google Scholar] [PubMed]
- Kolesnikova, S.A.; Lyakhova, E.G.; Kalinovsky, A.I.; Pushilin, M.A.; Afiyatullov, S.S.; Yurchenko, E.A.; Dyshlovoy, S.A.; Minh, C.V.; Stonik, V.A. Isolation, structures, and biological activities of triterpenoids from a Penares sp. marine sponge. J. Nat. Prod. 2013, 76, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Moon, E.; Choi, S.U.; Kim, S.Y.; Lee, K.R. Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J. Nat. Prod. 2013, 76, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Cornelio, K.B. Triterpenes from Euphorbia hirta and their cytotoxicity. Chin. J. Nat. Med. 2013, 11, 528–533. [Google Scholar] [PubMed]
- McMurry, J. Chemia Organiczna, 3rd ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2005; pp. 1035–1045. [Google Scholar]
- Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–10. [Google Scholar]
- Fulda, S. Betulinic acid: A natural product with anticancer activity. Mol. Nutr. Food Res. 2009, 53, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. (Landmark Ed.) 2011, 16, 980–996. [Google Scholar] [CrossRef]
- Liaw, C.C.; Chen, Y.C.; Huang, G.J.; Tsai, Y.C.; Chien, S.C.; Wu, J.H.; Wang, S.Y.; Chao, L.K.; Sung, P.J.; Huang, H.C.; et al. Anti-inflammatory lanostanoids and lactone derivatives from Antrodia camphorata. J. Nat. Prod. 2013, 76, 489–494. [Google Scholar] [CrossRef] [PubMed]
- De Silva, M.L.; David, J.P.; Silva, L.C.; Santos, R.A.; David, J.M.; Lima, L.S.; Reis, P.S.; Fontana, R. Bioactive oleanane, lupane and ursane triterpene acid derivatives. Molecules 2012, 17, 12197–12205. [Google Scholar] [CrossRef] [PubMed]
- Baltina, L.A.; Flekhter, O.B.; Nigmatullina, L.R.; Boreko, E.I.; Pavlova, N.I.; Nikolaeva, S.N.; Savinova, O.V.; Tolstikov, G.A. Lupane triterpenes and derivatives with antiviral activity. Bioorg. Med. Chem. Lett. 2003, 13, 3549–3552. [Google Scholar] [CrossRef] [PubMed]
- Galaĭko, N.V.; Tolmacheva, I.A.; Grishko, V.V.; Volkova, L.V.; Prevozchikova, E.N.; Pestereva, S.A. Antiviral activity of 2,3-secotriterpenic hydrazones of lupane and 19beta,28-epoxy-18alpha-oleanane type. Bioorganicheskaya Khimiya 2010, 36, 556–562. [Google Scholar] [PubMed]
- Ahmed, Y.; Sohrab, M.H.; Al-Reza, S.M.; Tareq, F.S.; Hasan, C.M.; Sattar, M.A. Antimicrobial and cytotoxic constituents from leaves of Sapium baccatum. Food Chem. Toxicol. 2010, 48, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Mokoka, T.A.; McGaw, L.J.; Mdee, L.K.; Bagla, V.P.; Iwalewa, E.O.; Eloff, J.N. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae). BMC Complement. Altern. Med. 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Tang, J.; Zhu, Z.F.; Chen, L. Design, synthesis, and anti-tumor activity of novel betulinic acid derivatives. J. Asian Nat. Prod. Res. 2014, 16, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Boryczka, S.; Bębenek, E.; Wietrzyk, J.; Kempińska, K.; Jastrzębska, M.; Kusz, J.; Nowak, M. Synthesis, structure and cytotoxic activity of new acetylenic derivatives of betulin. Molecules 2013, 18, 4526–4543. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.D.; Hill, R.A. Triterpenoids. Nat. Prod. Rep. 2001, 18, 560–578. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Zhao, C.; Jing, Z. An evaluation of the colorimetric assays based on enzymatic reactions used in the measurement of human natural cytotoxicity. J. Immunol. Methods 2001, 251, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Bopp, S.K.; Lettieri, T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol. 2008, 8. [Google Scholar] [CrossRef]
- Fricker, S.P.; Buckley, R.G. Comparison of two colorimetric assays as cytotoxicity endpoints for an in vitro screen for antitumour agents. Anticancer Res. 1996, 16, 3755–3760. [Google Scholar] [PubMed]
- Urban, M.; VLK, M.; Dzubak, P.; Hajduch, M.; Sarek, J. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid. Bioorg. Med. Chem. 2012, 20, 3666–3674. [Google Scholar] [CrossRef] [PubMed]
- Baratto, L.C.; Porsani, M.V.; Pimentel, I.C.; Pereira Netto, A.B.; Paschke, R.; Oliveira, B.H. Preparation of betulinic acid derivatives by chemical and biotransformation methods and detrmination of cytotoxicity against selected cancer cell lines. Eur. J. Med. Chem. 2013, 68, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Challa, S.; Zhao, H.; Gumbs, A.; Chetty, C.S.; Bose, H.S. New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorg. Med. Chem. Lett. 2012, 22, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, X.; Zhao, M.; Wang, Y.; Cheng, X.; Wang, D.; Xu, Y.; Du, Z.; Yu, X. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cho, H.J.; Sim, S.H.; Chung, Y.K.; Kim, D.D.; Sung, S.H.; Kim, J.; Kim, Y.C. Cytotoxic terpenoids from Juglans sinensis leaves and twigs. Bioorg. Med. Chem. Lett. 2012, 22, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- Hai, W.; Cheng, H.; Zhao, M.; Wang, Y.; Hong, L.; Tang, H.; Tian, X. Two new cytotoxic triterpenoid saponins from the roots of Clematis argentilucida. Fitoterapia 2012, 83, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.Y.; Chen, J.H.; Zhou, G.S.; Tang, Y.P.; Duan, J.A.; Tian, L.J.; Liu, X.H. Pentacyclic triterpenes from the resin of Liquidambar formosana. Fitoterapia 2011, 82, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, S.; Kashiwada, Y.; Lee, K.H.; Takaishi, Y. Triterpenes and a triterpene glucoside from Dysoxylum cumingianum. Phytochemistry 2011, 72, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Baniadam, S.; Rahiminejad, M.R.; Ghannadian, M.; Saeidi, H.; Ayatollahi, A.M.; Aghaei, M. Cycloartane Triterpenoids from Euphorbia Macrostegia with their Cytotoxicity against MDA-MB48 and MCF-7 Cancer Cell Lines. Iran J. Pharm. Res. 2014, 13, 135–141. [Google Scholar] [PubMed]
- Sousa, G.F.; Soares, D.C.F.; Nova Mussel, W.; Pompeu, N.F.E.; Fátima Silva, G.D.; Filho, S.A.V.; Duarte, L.P. Pentacyclic Triterpenes from Branches of Maytenus robusta and in vitro Cytotoxic Property Against 4T1 Cancer Cells. J. Braz. Chem. Soc. 2014, 25, 1338–1345. [Google Scholar]
- Xu, X.; Bai, H.; Zhou, L.; Deng, Z.; Zhong, H.; Wu, Z.; Yao, Q. Three new cucurbitane triterpenoids from Hemsleya penxianensis and their cytotoxic activities. Bioorg. Med. Chem. Lett. 2014, 24, 2159–2162. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.K.; Choi, S.U.; Lee, K.R. Triterpene saponins from Pleurospermum kamtschaticum and their biological activity. Chem. Pharm. Bull. 2012, 60, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Tang, X.; Chen, L.; Wang, M.; Jian, J.; Cao, S.; Wang, X.; Kang, N.; Qiu, F. Oleanane-type triterpenoid saponins from Xanthoceras sorbifolia Bunge. Fitoterapia 2012, 83, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Samadi, A.K.; Rao, K.V.; Cohen, M.S.; Timmermann, B.N. Cytotoxic oleanane-type saponins from Albizia inundata. J. Nat. Prod. 2011, 74, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, J.C.; Li, Y.; Qing, C.; Wang, Y.Y.; Nian, Y.; Qiu, M.H. Studies on the constituents of Cimicifuga foetida collected in Guizhou Province and their cytotoxic activities. Chem. Pharm. Bull. 2012, 60, 571–577. [Google Scholar] [PubMed]
- Lien, H.M.; Chiu, C.H.; Chen, C.C.; Chang, W.L.; Chyau, C.C.; Peng, R.Y. Comparison of the apoptotic effects of supercritical fluid extracts of Antrodia cinnamomea mycelia on hepatocellular carcinoma cells. Molecules 2014, 19, 9033–9050. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.S.; Wu, C.H.; Yang, T.C.; Yao, C.W.; Lin, H.C.; Chang, W.L. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 2014, 97, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Li, S.M.; Li, Y.L.; Feng, L.; Shen, Y.H.; Lin, S.; Tian, J.M.; Zeng, H.W.; Wang, N.; Steinmetz, A.; et al. Chemical constituents of Abies delavayi. Phytochemistry 2014, 105, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Irungu, B.N.; Orwa, J.A.; Gruhonjic, A.; Fitzpatrick, P.A.; Landberg, G.; Kimani, F.; Midiwo, J.; Erdélyi, M.; Yenesew, A. Constituents of the roots and leaves of Ekebergia capensis and their potential antiplasmodial and cytotoxic activities. Molecules 2014, 19, 14235–14246. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.R.; Liao, Y.W.; Wu, H.T.; Shih, W.L.; Tzeng, C.Y.; Yang, S.Z.; Hernandez, C.E.; Chang, C.I. Triterpenoids from Angiopteris palmiformis. Chem. Pharm. Bull. 2010, 58, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Xu, M.Y.; Shehzad, O.; Seo, E.K.; Kim, Y.S. Separation of triterpenoid saponins from the root of Bupleurum falcatum by counter current chromatography: The relationship between the partition coefficients and solvent system composition. J. Sep. Sci. 2014, 37, 3587–3594. [Google Scholar] [CrossRef] [PubMed]
- Melek, F.R.; Kassem, I.A.; Miyase, T.; Fayad, W. Caspicaosides E-K, triterpenoid saponins and cytotoxic acylated saponins from fruits of Gleditsia caspica Desf. Phytochemistry 2014, 100, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Manase, M.J.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Lacaille-Dubois, M.A. Triterpenoid saponins from Polycarpaea corymbosa Lamk. var. eriantha Hochst. Phytochemistry 2014, 100, 150–155. [Google Scholar] [CrossRef]
- Holmes, S.E.; Bachran, C.; Fuchs, H.; Weng, A.; Melzig, M.F.; Flavell, S.U.; Flavell, D.J. Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol. Immunotoxicol. 2015, 37, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, N.; Qiu, F.; Tian, X.; Zhang, Y.; Tang, H.; Liu, X. Triterpenoid saponins from the roots of Clematis argentilucida. Fitoterapia 2014, 97, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Xi-Yu, X.; Fu-Lei, L.; Wen-Yuan, L.; Ning, X. Triterpenoid saponins from Patrinia scabra. Chin. J. Nat. Med. 2014, 12, 43–46. [Google Scholar] [PubMed]
- Roy, A.; Saraf, S. Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull. 2006, 29, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.L.; Zhang, P.; Hu, H.B.; Hua, S.; Liao, S.G.; Xu, Y.K. Limonoids from the Leaves and Twigs of Walsura yunnanensis. J. Nat. Prod. 2014, 77, 1764–1769. [Google Scholar] [CrossRef]
- Pan, X.; Matsumoto, M.; Nakamura, Y.; Kikuchi, T.; Zhang, J.; Ukiya, M.; Suzuki, T.; Koike, K.; Akihisa, R.; Akihisa, T. Three new and other limonoids from the hexane extract of Melia azedarach fruits and their cytotoxic activities. Chem. Biodivers. 2014, 11, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.N.; Lam, D.M.; Hanh, N.T.; Que, D.D. Cytotoxic constituents from the fungus Daldinia colconcentrica (Xylariaceae). Nat. Prod. Res. 2013, 27, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Liaw, C.C.; Yang, H.L.; Hseu, Y.C.; Kuo, H.T.; Tsai, Y.C.; Chien, S.C.; Amagaya, S.; Chen, Y.C.; Kuo, Y.H. Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 2012, 84, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.N.; Maria, N.R.; Schuck, D.C.; Cruz, L.N.; Moraes, M.S.; Nakabashi, M.; Graebin, C.; Gosmann, G.; Garcia, C.R.; Gnoatto, S.C. Two series of new semisynthetic triterpene derivatives: Differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar. J. 2013, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthier, C.; Legault, J.; Lavoie, S.; Rondeau, S.; Tremblay, S.; Pichette, A. Synthesis and cytotoxicity of bidesmosidic betulin and betulinic acid saponins. J. Nat. Prod. 2009, 72, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.B.; Ghaffari Moghaddam, M.; Basri, M.; Abdul Rahman, M.B. Anticancer activity of 3-O-acylated betulinic acid derivatives obtained by enzymatic synthesis. Biosci. Biotechnol. Biochem. 2010, 74, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.C.; Salvador, J.A.; Marín, S.; Cascante, M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg. Med. Chem. 2009, 17, 6241–6250. [Google Scholar] [CrossRef] [PubMed]
- Mathabe, M.C.; Hussein, A.A.; Nikolova, R.V.; Basson, A.E.; Meyer, J.J.; Lall, N.J. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J. Ethnopharmacol. 2008, 116, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, C.; Legault, J.; Piochon, M.; Lavoie, S.; Tremblay, S.; Pichette, A. Synthesis, cytotoxicity, and haemolytic activity of chacotrioside lupane-type neosaponins and their germanicane-type rearrangement products. Bioorg. Med. Chem. Lett. 2009, 19, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; He, Y.; Liang, Y.; Wen, L.; Zhu, Y.; Wu, Y.; Zhao, L.; Li, Y.; Mao, X.; Liu, H. PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in hepatocellular carcinoma. Cancer Cell Int. 2013, 13. [Google Scholar] [CrossRef]
- He, Y.; Liu, F.; Zhang, L.; Wu, Y.; Hu, B.; Zhang, Y.; Li, Y.; Liu, H. Growth inhibition and apoptosis induced by lupeol, a dietary triterpene, in human hepatocellular carcinoma cells. Biol. Pharm. Bull. 2011, 34, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Tarapore, R.S.; Siddiqui, I.A.; Adhami, V.M.; Spiegelman, V.S.; Mukhtar, H. The dietary terpene lupeol targets colorectal cancer cells with constitutively active Wnt/β-catenin signaling. Mol. Nutr. Food Res. 2013, 57, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.T.; Liu, J.Q.; Lu, X.T.; Chen, F.X.; Zhou, Z.H.; Wang, T.; Zhu, S.P.; Fei, S.J. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells. Int. Immunopharmacol. 2013, 16, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Jeong, S.J.; Kwon, H.Y.; Kim, B.; Kim, S.H.; Yoo, D.Y. Ursolic acid from Oldenlandia diffusa induces apoptosis via activation of caspases and phosphorylation of glycogen synthase kinase 3 beta in SK-OV-3 ovarian cancer cells. Biol. Pharm. Bull. 2012, 35, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, X.; Yang, X. Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-κB pathways. Oncol. Rep. 2012, 28, 501–510. [Google Scholar] [PubMed]
- Park, J.H.; Kwon, H.Y.; Sohn, E.J.; Kim, K.A.; Kim, B.; Jeong, S.J.; Song, J.H.; Koo, J.S.; Kim, S.H. Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol. Rep. 2013, 65, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, K.; Tanaka, K.; Fukase, K. Cytotoxic activity of ursolic acid derivatives obtained by isolation and oxidative derivatization. Molecules 2013, 18, 8929–8944. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.W.; Dai, Y.C.; Xue, J.P.; Wang, J.C.; Lin, F.P.; Guo, Y.H. In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives. Eur. J. Med. Chem. 2011, 46, 2652–2661. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Yang, S.J.; Jin, L.H.; Hu, D.Y.; Xue, W.; Song, B.A.; Yang, S. Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. Eur. J. Med. Chem. 2012, 58, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.K.; Yu, Z.; Chen, F.L.; Li, F.; Li, W.Y.; Guo, Y.H. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents. Bioorg. Med. Chem. Lett. 2012, 22, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.Y.; Huang, A.M.; Wei, B.L.; Gan, K.H.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorg. Med. Chem. 2009, 17, 7265–7274. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.W.; Huang, A.M.; Lin, C.C.; Chang, C.C.; Hsu, W.C.; Hour, T.C.; Pu, Y.S.; Lin, C.N. Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer. Eur. J. Pharmacol. 2014, 740, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Siewert, B.; Wiemann, J.; Köwitsch, A.; Csuk, R. The chemical and biological potential of C ring modified triterpenoids. Eur. J. Med. Chem. 2013, 72, 84–101. [Google Scholar] [CrossRef] [PubMed]
- George, V.C.; Kumar, D.R.; Suresh, P.K.; Kumar, R.A. Apoptosis-induced cell death due to oleanolic acid in HaCaT keratinocyte cells—A proof-of-principle approach for chemopreventive drug development. Asian Pac. J. Cancer Prev. 2012, 13, 2015–2020. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Liu, J.; Wen, X.; Sun, H. Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 2074–2077. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, H.; Zhang, L.; Guo, T.; Wang, P.; Geng, M.; Li, Y. Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives. Eur. J. Med. Chem. 2013, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Wu, X.H.; Masao, H.; Wang, X.J.; Kano, Y. HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives. J. Pharm. Pharm. Sci. 2009, 12, 243–248. [Google Scholar] [PubMed]
- Cheng, S.Y.; Wang, C.M.; Hsu, Y.M.; Huang, T.J.; Chou, S.C.; Lin, E.H.; Chou, C.H. Oleanane-type triterpenoids from the leaves and twigs of Fatsia polycarpa. J. Nat. Prod. 2011, 74, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Gao, H.; Zhang, W.; Li, Y.; Cheng, G.; Sun, X.L.; Tang, H.F. Bioactive oleanane-type saponins from the rhizomes of Anemone taipaiensis. Bioorg. Med. Chem. Lett. 2013, 23, 5714–5720. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, M.; Xu, M.; Wang, Y.; Tang, H.; Sun, X. Cytotoxic oleanane-type triterpenoid saponins from the Rhizomes of Anemone rivularis var. flore-minore. Molecules 2014, 19, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.L.; Xiong, J.; Wu, S.B.; Zhu, J.J.; Hong, J.L.; Zhao, Y.; Xia, G.; Hu, J.F. Tetracyclic triterpenoids and terpenylated coumarins from the bark of Ailanthus altissima (“Tree of Heaven”). Phytochemistry 2013, 86, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Jiang, B.; Liu, W.; Wang, P.; Mou, Y.; Liu, Y.; Zhao, Y.; Bi, X. Anti-tumor activity of three novel derivatives of ginsenoside on colorectal cancer cells. Steroids 2014, 80, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.W.; Li, X.J.; Gao, J.M.; Zhang, X.C. Fasciculols H and I, two lanostane derivatives from Chinese mushroom Naematoloma fasciculare. Chem. Biodivers. 2011, 8, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, S.; Gauthier, C.; Legault, J.; Mercier, S.; Mshvildadze, V.; Pichette, A. Lanostane- and cycloartane-type triterpenoids from Abies balsamea oleoresin. J. Org. Chem. 2013, 9, 1333–1339. [Google Scholar]
- Zhou, L.; Zhang, Y.; Gapter, L.A.; Ling, H.; Agarwal, R.; Ng, K.Y. Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem. Pharm. Bull (Tokyo) 2008, 56, 1459–1462. [Google Scholar] [CrossRef]
- Kikuchi, T.; Uchiyama, E.; Ukiya, M.; Tabata, K.; Kimura, Y.; Suzuki, T.; Akihisa, T. Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos. J. Nat. Prod. 2011, 74, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Ozawa, M.; Iwamoto, K.; Fukuyama, Y.; Kishida, A.; Ohsaki, A. A lanostane triterpenoid and three cholestane sterols from Tilia kiusiana. Chem. Pharm. Bull. 2014, 62, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.T.; Rao, Y.K.; Yao, C.J.; Yeh, C.F.; Li, C.H.; Chuang, S.E.; Luong, J.H.; Lai, G.M.; Tzeng, Y.M. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett. 2009, 285, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhou, Y.; Kong de, Y.; Zhang, W.D. Antitumor activities of dammarane triterpene saponins from Bacopa monniera. Phytother. Res. 2010, 24, 864–868. [Google Scholar] [PubMed]
- Zhao, J.M.; Li, N.; Zhang, H.; Wu, C.F.; Piao, H.R.; Zhao, Y.Q. Novel dammarane-type sapogenins from Panax ginseng berry and their biological activities. Bioorg. Med. Chem. Lett. 2011, 21, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.L.; Wu, Q.; Yang, J.; Park, S.Y.; Chen, D.J.; Liu, H.M. Dammarane-type saponins from heat-processed Gynostemma pentaphyllum show fortified activity against A549 cells. Arch. Pharm. Res. 2013, 36, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Song, G.Y.; Kim, J.A.; Hyun, J.H.; Kang, H.K.; Kim, Y.H. Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg. Med. Chem. Lett. 2010, 20, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.B.; Norman, V.L.; Goering, M.G.; O’Neil-Johnson, M.; Eldridge, G.R.; Starks, C.M. Acetylated dammarane-type bisdesmosides from Combretum inflatum. J. Nat. Prod. 2013, 76, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.K.; Dou, D.Q.; Cai, L.P.; Jiang, H.P.; Kang, T.G.; Yang, B.Y.; Kuang, H.X.; Li, M.Z. Dammarane-type saponins from Panax quinquefolium and their inhibition activity on human breast cancer MCF-7 cells. Fitoterapia 2009, 80, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Cen-Pacheco, F.; Villa-Pulgarin, J.A.; Mollinedo, F.; Norte, M.; Daranas, A.H.; Fernández, J.J. Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur. J. Med. Chem. 2011, 46, 3302–3308. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.H.; Renoir, J.M.; Marsaud, V.; Lepetre-Mouelhi, S.; Desmaële, D.; Couvreur, P. Anticancer efficacy of squalenoyl gemcitabine nanomedicine on 60 human tumor cell panel and on experimental tumor. Mol. Pharm. 2009, 6, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as Potentially Cytotoxic Compounds. Molecules 2015, 20, 1610-1625. https://doi.org/10.3390/molecules20011610
Chudzik M, Korzonek-Szlacheta I, Król W. Triterpenes as Potentially Cytotoxic Compounds. Molecules. 2015; 20(1):1610-1625. https://doi.org/10.3390/molecules20011610
Chicago/Turabian StyleChudzik, Malwina, Ilona Korzonek-Szlacheta, and Wojciech Król. 2015. "Triterpenes as Potentially Cytotoxic Compounds" Molecules 20, no. 1: 1610-1625. https://doi.org/10.3390/molecules20011610
APA StyleChudzik, M., Korzonek-Szlacheta, I., & Król, W. (2015). Triterpenes as Potentially Cytotoxic Compounds. Molecules, 20(1), 1610-1625. https://doi.org/10.3390/molecules20011610