An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by GC/SAW
Peak No. | Compound | Houttuynia cordata Thunb | |||||||
---|---|---|---|---|---|---|---|---|---|
Leaves | Aerial Stems | Underground Stems | |||||||
GC/SAW | HS-SPME | GC/SAW | HS-SPME | GC/SAW | HS-SPME | ||||
a | cis-3-Hexenal | 1.1(14.81) | 0.3 (3.85) | 2.1(12.78) | - | 0.9(3.71) | - | ||
1 | Hexanal | - | 0.3(31.33) | - | - | - | - | ||
2 | 2-Hexenal | - | 1.2(22.09) | - | - | - | - | ||
b | 3-Hexen-1-ol | 3.5(9.75) | 2.5(10.80) | 0.2(4.68) | 1.1(6.67) | - | - | ||
3 | α-Thujene | - | 0.1(8.93) | - | 0.2(9.01) | - | 0.2(5.56) | ||
c | α-Pinene | 8.3(3.28) | 0.2(6.48) | 4.2(4.39) | 5.3(4.31) | - | 15.3(6.10) | ||
d | Camphene | - | - | 0.6(3.14) | 1.8(3.16) | 1.9(17.06) | 1.3(3.99) | ||
e | Sabinene | 0.8(13.09) | 3.0(4.64) | 2.1(9.92) | 4.5(4.92) | 3.2(1.49) | 6.9(2.23) | ||
f | β-Pinene | 0.3(14.28) | 0.3(5.86) | - | 4.0(7.11) | 1.5(2.81) | 28.8(3.07) | ||
g | β-Myrcene | 15.8(5.71) | 26.2(8.39) | 23.3(9.32) | 48.1(10.76) | 33.9(10.50) | 14.3(7.21) | ||
4 | δ-3-Carene | - | 0.1(30.34) | - | - | - | - | ||
5 | α-Terpinene | - | 0.1(12.78) | - | 0.1(8.98) | - | 0.1(7.95) | ||
6 | p-Cymene | - | 0.1(9.81) | - | 0.4(6.23) | - | 0.2(4.61) | ||
h | Limonene | 0.6(12.57) | 0.1(8.61) | 2.3(7.47) | 4.0(5.13) | 17.4(8.06) | 9.4(4.33) | ||
i | cis-Ocimene | 18.4(5.93) | 18.2(2.33) | 11.1(14.55) | 6.6(4.63) | 15.9(16.93) | 0.2(2.15) | ||
7 | trans-Ocimene | - | 0.5(21.92) | - | 0.2(15.73) | - | 0.2(13.76) | ||
8 | γ-Terpinene | - | 0.1(2.81) | - | 0.2( 3.45) | - | 0.2(1.09) | ||
9 | trans-Sabinene hydrate | - | - | - | - | - | t | ||
j | α-Terpinolene | 0.1(4.02) | - | 0.9(15.06) | - | 0.8(14.96) | 0.5(5.67) | ||
10 | cis-Sabinene hydrate | - | - | - | - | - | t | ||
11 | Nonanal | - | 0.2(11.95) | - | 0.1(13.32) | - | t | ||
12 | 2,6-Dimethyl-1,3,5,7-octatetraene | - | 0.1(5.35) | - | - | - | - | ||
13 | neo-allo-Ocimene | - | 0.3(5.30) | - | 0.1(3.94) | - | - | ||
14 | 1-Nonanol | - | 0.1(9.66) | - | 0.1(5.31) | - | 0.1(6.11) | ||
15 | Terpinene-4-ol | - | 0.1(10.14) | - | 0.1(8.83) | - | 0.1(4.31) | ||
k | Decanal | 36.8(11.58) | 26.8(49.82) | 15.7(15.00) | 1.4(30.23) | 1.2(1.46) | 0.1(15.36) | ||
16 | α-Fencyl acetate | - | - | - | - | - | t | ||
17 | β-Cyclocitral | - | 0.3(24.19) | - | 0.1(19.12) | - | 0.3(17.42) | ||
18 | Thymyl methyl ether | - | - | - | - | - | t | ||
19 | Citral | - | - | - | - | - | 0.1(9.53) | ||
20 | 1-Decanol | - | 0.8(50.12) | - | 0.2(35.29) | - | - | ||
l | Bornyl acetate | 1.7(6.75) | 0.2(12.92) | 17.4(8.06) | 9.3(9.54) | 14.6(9.16) | 7.2(6.63) | ||
m | 2-Undecanone | 1.3(10.49) | 0.7(9.56) | - | 0.7(8.90) | - | 2.3(7.19) | ||
21 | Undecanal | - | 1.3(1.66) | - | 0.3(4.73) | - | 0.1(3.71) | ||
22 | α-Cyclogeranyl acetate | - | 0.9(26.34) | - | 0.4(17.71) | - | 0.8(15.03) | ||
23 | 5-Methyl-3-(1-methyl-ethenyl)cyclohexene | - | 0.2(20.98) | - | 0.1(19.01) | - | 0.3(13.77) | ||
24 | 1-Methyl-3-(1-methyl-ethenyl)cyclohexene | - | 0.1(16.37) | - | 0.1(25.93) | - | 0.2(15.79) | ||
25 | α-Terpinenyl acetate | - | - | - | 0.1(23.01) | - | 0.4(19.04) | ||
26 | Neryl acetate | - | t | - | 0.1(20.01) | - | 0.2(15.90) | ||
n | Geranyl acetate | - | 2.5(34.74) | 10.4(2.45) | 1.6(23.63) | 3.1(7.94) | 1.1(29.07) | ||
27 | β-Elemene | - | 0.1(27.35) | - | 0.1(26.17) | - | 0.1(21.45) | ||
o | Lauraldehyde | 3.5(7.69) | 4.4(50.59) | - | 0.4(35.12) | - | 0.1(43.17) | ||
p | β-Caryophyllene | 7.8(8.73) | 5.5(34.50) | 9.7(9.31) | 6.6(40.31) | 5.6(11.87) | 5.1(30.01) | ||
28 | Aromadendrene | - | t | - | - | - | - | ||
29 | β-Farnesene | - | 0.2(48.56) | - | 0.2(37.81) | - | 0.1(40.48) | ||
30 | α-Humulene | - | 0.3(37.04) | - | 0.3(40.89) | - | 0.3(33.67) | ||
31 | Azulene | - | - | - | 0.1(26.38) | - | 0.4(22.93) | ||
32 | Germacrene-D | - | 0.2(55.55) | - | 0.1(43.10) | - | t | ||
33 | α-Farnesene | - | 0.2(54.50) | - | - | - | - | ||
34 | Aromadendrene | - | 0.1(41.41) | - | 0.1(47.17) | - | 2.2(38.38) | ||
35 | allo-Aromadendrene | - | 0.2(46.97) | - | 0.1(39.05) | - | - | ||
36 | Bicyclogermacrene | - | 0.9(56.26) | - | - | - | - | ||
37 | α-Selinene | - | - | - | 0.7(41.42) | - | 0.7(42.59) | ||
38 | δ-Cadinene | - | t | - | - | - | - | ||
39 | Caryophyllene oxide | - | - | - | - | - | 0.1(27.67) |
2.2. Comparison of GC/SAW and HS-SPME-GC-MS method for H. cordata Thunb
Peak No. | Compound | Houttuynia cordata Thunb | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Aerial Stems | Underground Stems | ||||||||||||||
A | B | C | D | E | A′ | B′ | C′ | D′ | E′ | A′′ | B′′ | C′′ | D′′ | E′′ | ||
a | cis-3-Hexenal | 1.1(10.60) | 1.1(14.81) | 0.8(12.87) | 0.9(8.49) | 1.0(3.83) | 2.1(6.97) | 2.1(12.78) | 1.7(13.66) | 2.4(8.47) | 1.5(16.69) | 0.7(9.15) | 0.9(3.71) | 0.4(16.13) | 0.6(3.47) | 0.5(10.11) |
b | 3-Hexen-1-ol | 4.9(7.78) | 3.5(9.75) | 2.9(17.89) | 3.4(2.03) | 4.0(4.09) | 0.2(4.55) | 0.2(4.68) | 0.2(3.76) | 0.3(11.26) | 0.3(18.23) | - | - | - | - | - |
c | α-Pinene | 6.1(0.81) | 8.3(3.28) | 8.3(7.52) | 11.7(1.55) | 8.2(1.23) | 2.2(1.71) | 4.2(4.39) | 3.0(7.47) | 3.2(13.94) | 2.7(2.36) | - | - | - | - | - |
d | Camphene | - | - | - | - | - | 0.9(4.05) | 0.6(3.14) | 0.5(9.35) | 0.6(12.61) | 0.5(10.25) | 1.8(0.29) | 1.9(17.06) | 2.3(3.52) | 2.3(13.74) | 1.7(6.24) |
e | Sabinene | 0.6(11.11) | 0.8(13.09) | 0.7(14.73) | 1.3(9.21) | 0.7(5.68) | 2.0(11.70) | 2.1(9.92) | 1.7(12.31) | 1.6(8.98) | 1.7(4.95) | 3.1(4.29) | 3.2(1.49) | 2.8(2.67) | 3.6(4.34) | 3.2(5.07) |
f | β-Pinene | - | 0.3(14.28) | 0.5(13.00) | 0.5(4.92) | 0.5(5.46) | 0.8(13.19) | - | - | - | - | 1.9(6.45) | 1.5(2.81) | 4.2(4.61) | 3.6(8.53) | 2.8(7.74) |
g | β-Myrcene | 21.3(3.58) | 15.8(5.71) | 13.5(10.59) | 17.5(6.79) | 18.9(0.80) | 26.3(12.64) | 23.3(9.32) | 20.7(11.75) | 26.7(0.81) | 22.9(7.43) | 38.0(13.26) | 33.9(10.50) | 46.6(7.85) | 36.9(2.58) | 36.3(2.65) |
h | Limonene | 0.3(14.29) | 0.6(12.57) | 0.5(3.27) | 0.8(17.17) | 0.6(13.65) | 3.5(12.24) | 2.3(7.47) | 2.2(3.39) | 2.7(0.81) | 2.4(5.29) | 18.6(10.09) | 17.4(8.06) | 17.3(2.87) | 17.5(2.58) | 16.4(3.32) |
i | cis-Ocimene | 19.6(1.03) | 18.4(5.93) | 16.7(7.82) | 22.6(5.42) | 16.9(1.51) | 14.6(15.36) | 11.1(14.55) | 14.2(11.92) | 16.1(4.85) | 14.3(10.68) | 15.0(9.17) | 15.9(16.93) | 11.9(2.32) | 15.0(6.70) | 14.9(5.92) |
j | α-Terpinolene | - | 0.1(4.02) | 0.2(14.28) | 0.3(7.87) | 0.2(13.62) | 0.9(8.02) | 0.9(15.06) | 0.3(22.04) | 0.3(13.04) | 0.7(6.02) | 0.3(9.90) | 0.8(14.96) | 0.5(8.52) | 0.6(11.12) | 0.4(18.87) |
k | Decanal | 31.9(4.56) | 36.8(11.58) | 41.9(8.65) | 29.9(0.92) | 36.8(6.43) | 8.7(7.28) | 15.7(15.00) | 29.4(8.37) | 21.4(5.83) | 20.7(2.13) | 0.4(10.27) | 1.2(1.46) | 1.0(10.34) | 1.3(8.76) | 2.6(8.29) |
l | Bornyl acetate | 3.1(5.87) | 1.7(6.75) | 1.1(9.49) | 1.1(2.23) | 1.8(2.87) | 16.9(3.35) | 17.4(8.06) | 10.1(7.20) | 9.9(3.98) | 13.6(0.53) | 12.4(8.67) | 14.6(9.16) | 8.3(6.38) | 11.7(8.46) | 12.8(5.82) |
m | 2-Undecanone | 0.6(14.19) | 1.3(10.49) | 1.9(11.47) | 1.2(4.74) | 0.5(12.73) | - | - | - | - | - | - | - | - | - | - |
n | Geranyl acetate | - | - | - | - | - | 9.9(2.81) | 10.4(2.45) | 8.4(8.11) | 7.9(10.80) | 8.2(1.11) | 2.2(6.82) | 3.1(7.94) | 1.9(3.43) | 2.0(1.57) | 2.6(2.17) |
o | Lauraldehyde | 3.3(2.98) | 3.5(7.69) | 3.8(1.54) | 3.7(3.76) | 3.2(3.78) | - | - | - | - | - | - | - | - | - | - |
p | β-Caryophyllene | 7.2(2.62) | 7.8(8.73) | 7.2(6.65) | 5.1(2.47) | 6.7(10.04) | 11.0(0.92) | 9.7(9.31) | 7.6(5.32) | 6.9(4.22) | 10.5(5.07) | 5.6(5.30) | 5.6(11.87) | 2.8(4.20) | 4.9(9.60) | 5.8(3.73) |
2.3. Discrimination and Quality Control of H. cordata Thunb by GC/SAW and Principal Component Analysis for GC/SAW Responses
3. Experimental Section
3.1. Materials
3.2. GC/SAW (zNose) Description
3.3. GC/SAW Analytical Conditions and Procedure
3.4. Headspace Solid-Phase Microextraction
3.5. GC-MS Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nuengchamnong, N.; Krittasilp, K.; Ingkaninan, K. Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC-ESI-MS coupled with DPPH assay. Food Chem. 2009, 117, 750–756. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G. Bioactive components and functional properties of Houttuynia cordata and its applications. Pharm. Biol. 2009, 47, 1154–1161. [Google Scholar] [CrossRef]
- Zimmermann, M.; Schieberle, P. Important odorants of sweet bell pepper powder (Capsicum annuum cv. Annuum): Differences between samples of Hungarian and Morrocan origin. Eur. Food Res. Technol. 2000, 211, 175–180. [Google Scholar] [CrossRef]
- Nickerson, G.B.; Likens, S.T. Gas chromatographic evidence for the occurrence of hope oil components in beer. J. Chromatogr. 1966, 21, 1–5. [Google Scholar] [CrossRef]
- Suvarnalatha, G.; Narayans, M.S.; Ravishandar, G.A.; Venkataraman, L.V. Flavor production in plant cell cultures of basmati rice (Oryza sative L). J. Sci. Food Agric. 1994, 66, 439–442. [Google Scholar] [CrossRef]
- Bicchi, C.; Drigo, S.; Rubiolo, P. The influence of fibre coating in headspace-solid phase microextraction gas chromatography (HS-SPME-GC) analysis of aromatic and medicinal plants. J. Chromatogr. A 2000, 892, 469–485. [Google Scholar] [CrossRef]
- Kovaćević, M.; Kać, M. Solid-phase microextraction of hop volatiles: Potential use for determination and verification of hop varieties. J. Chromatogr. A 2001, 918, 159–167. [Google Scholar] [CrossRef]
- Alvarez, A.P.; Maya, E.R.; Suárez, L.Á.A. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 2843–2847. [Google Scholar] [CrossRef] [PubMed]
- Boothe, D.D.H.; Arnold, J.W. Electronic nose analysis of volatile compounds from poultry meat samples, fresh and after refrigerated storage. J. Sci. Food Agric. 2002, 82, 315–322. [Google Scholar] [CrossRef]
- Sinesio, F.; di Natale, C.; Quaglia, G.B.; Bucarelli, F.M.; Moneta, E.; Macagnano, A.; Paolesse, R.; D’Amico, A. Use of electronic nose and trained sensory panel in the evaluation of tomato quality. J. Sci. Food Agric. 2000, 80, 63–71. [Google Scholar] [CrossRef]
- Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers. Sensors 2010, 10, 6361–6376. [Google Scholar] [CrossRef] [PubMed]
- Saevels, S.; Lammertyn, J.; Berna, A.; Veraverbeke, E.A.; di Natale, C.; Nicolaï, B.M. An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biol. Technol. 2004, 31, 9–19. [Google Scholar] [CrossRef]
- Staples, E.J.; Matsura, T.; Viswanathan, S. Real Time Environmental Screening of Air, Water and Soil Matrices Using A Novel Field Potable GC/SAW System. In Proceedings of the Environmental Strategies for the 21st Century, Asia Pacific Conference, Singapore, Singapore, 8–10 April 1998.
- Staples, E.J. Development of Novel Electronic Nose as an Environmental Tool; EST Public Report; Electronic Sensor Technology: Newbury Park, CA, USA, 1999. [Google Scholar]
- Staples, E.J. Detecting 2,4,6 TCA in Corks and Wine Using the zNose. Available online: http://www.estcal.com/TechPapers/TCA_in_Wine.doc (accessed on 15 September 2000).
- Staples, E.J. The zNose™, a new electronic nose technology for analytical exploration of the chemical world which surrounds us. In Proceedings of the On-Site Conference (Geo-Odyssey Meeting), Boston, MA, USA, 8 November 2001.
- Staples, E.J. The Chemistry of Black Tea Aromas; EST Internal Report; Electronic Sensor Technology: Newbury Park, CA, USA, 2002. [Google Scholar]
- Kunert, M.; Biedermann, A.; Koch, T.; Boland, W. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production. J. Sep. Sci. 2002, 25, 677–684. [Google Scholar] [CrossRef]
- Lammertyn, J.; Els Veraverbeke, A.; Irudayaraj, J. zNose™ technology for the classification of honey based on rapid aroma profiling. Sens. Actuators B 2004, 98, 54–62. [Google Scholar] [CrossRef]
- Noh, B.S.; Oh, S.Y.; Kim, S.J. Pattern Analysis of Volatile Components for Domestic and Imported Angelica gigas Nakai Using GC Based on SAW Sensor. Korean J. Food Sci. Technol. 2003, 35, 144–148. [Google Scholar]
- Oh, S.Y.; Noh, B.S. Pattern Analysis of Volatile Components for Domestic and imported Cnidium officinale Using GC Based on SAW Sensor. Korean J. Food Sci. Technol. 2003, 35, 994–997. [Google Scholar]
- Oh, S.Y.; Shin, H.D.; Kim, S.J.; Hong, J. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor. J. Chromatogr. A 2008, 1183, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Ko, J.W.; Jeong, S.Y.; Hong, J. Application and exploration of fast gas chromatography-surface acoustic wave sensor to the analysis of thymus species. J. Chromatogr. A 2008, 1205, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, D. (Ed.) Acoustic Waves; Sciyo Publisher: Rijeka, Croatia, 2010; Chapter 13; pp. 299–316.
- Oh, S.Y. Fast gas chromatography-surface acoustic wave sensor: An effective tool for discrimination and quality control of Lavandula species. Sens. Actuators B 2013, 182, 223–231. [Google Scholar] [CrossRef]
- Wohltjen, H.; Dessy, R. Surface Wave Probe for Chemical Analysis: I. Introduction and Instrument Description, II. Gas Chromatography Detector. Anal. Chem. 1979, 51, 1458–1470. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption. Sensors 2014, 14, 6844–6853. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Ge, X.; Liang, M.; Fu, R. Flash gas chromatography for analysis of volatile compounds from Houttuynia cordata Thunb. Anal. Chim. Acta 2004, 527, 69–72. [Google Scholar] [CrossRef]
- Lu, H.M.; Liang, Y.Z.; Chen, S. Identification and quality assessment of Houttuynia cordata injection using GC-MS fingerprint: A standardization approach. J. Ethnopharmacol. 2006, 105, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.W.; Cai, Q.R.; Zhao, D.; Wu, W. Monoterpene composition of flower and bract from Houttuynia cordata. J. Med. Plants Res. 2011, 5, 3883–3886. [Google Scholar]
- Liang, M.; Qi, M.; Zhang, C.; Zhou, S.; Fu, R.; Huang, J. Gas chromatography-mass spectrometry analysis of volatile compounds from Houttuynia cordata Thunb after extraction by solid-phase microextraction, flash evaporation and steam distillation. Anal. Chim. Acta 2005, 531, 97–104. [Google Scholar] [CrossRef]
- Moon, G.S. Components and Usage for Medicinal Plant; Ilweolseoga: Seoul, Korea, 1999; p. 158. [Google Scholar]
- Lee, J.H.; Jeong, S.I.; You, I.S.; Kim, S.K.; Lee, K.N.; Han, D.S.; Baek, S.H. The inhibitory effects of the methanol extracts of Houttuynia cordata Thunb against cadmium induced cytotoxicity (V). Korean J. Pharmacogn. 2000, 32, 61–67. [Google Scholar]
- Hübschmann, H.J. Hand Book of GC-MS, Fundamentals and Applications, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2015; pp. 513–518. [Google Scholar]
- Zabaras, D.; Wyllie, S.G. Quantitative analysis of terpenoids in the gas phase using headspace solid-phase microextraction (HS-SPME). Flavour Frag. J. 2001, 16, 411–416. [Google Scholar] [CrossRef]
- Sample Availability: Not available
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.Y. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor. Molecules 2015, 20, 10298-10312. https://doi.org/10.3390/molecules200610298
Oh SY. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor. Molecules. 2015; 20(6):10298-10312. https://doi.org/10.3390/molecules200610298
Chicago/Turabian StyleOh, Se Yeon. 2015. "An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor" Molecules 20, no. 6: 10298-10312. https://doi.org/10.3390/molecules200610298
APA StyleOh, S. Y. (2015). An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor. Molecules, 20(6), 10298-10312. https://doi.org/10.3390/molecules200610298