Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of MNA-Uridine Phosphoramidite
2.2. Evaluation of Exon Skipping Using MNA-Modified 2′-OMePS AO
3. Materials and Methods
3.1. Synthesis of MNA-Uridine Phosphoramidite
3.2. Synthesis of Chemically Modified Antisense Oligonucleotides (AOs)
3.2.1. Oligonucleotide Synthesis
3.2.2. Melting Temperature Study of the Antisense Oligonucleotides (AOs)
3.3. Evaluation of Exon Skipping Using the MNA-Modified 2′-OMePS AO
3.3.1. Cell Culture and Transfection
3.3.2. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
3.3.3. In Vitro Evaluation of Cell Viability
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations:
2′OMe | 2′-O-methyl |
AO | antisense oligonucleotides |
DMEM | Dulbecco’s Modified Eagle Medium |
DMD | Duchenne muscular dystrophy |
DNA | deoxyribonucleic acid |
EDTA | ethylenediaminetetraacetic acid |
FDA | Food and Drug Administration |
HPLC | high-performance liquid chromatography |
LCMS | liquid chromatography-mass spectrometry |
LNA | locked nucleic acid |
MNA | morpholino nucleic acid |
MS | mass spectrometry |
NMR | nuclear magnetic resonance |
PNA | peptide nucleic acid |
PMO | phosphorodiamidate morpholino |
PS | phosphorothioate |
RNA | ribonucleic acid |
RT-PCR | reverse-transcriptase polymerase chain reaction |
UNA | unlocked nucleic acid |
References
- Lundin, K.E.; Gissberg, O.; Smith, C.I. Oligonucleotide therapies: The past and the present. Hum. Gene Ther. 2015, 26, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Majlessi, M.; Nelson, N.C.; Becker, M.M. Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res. 1998, 26, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Geary, R.S.; Watanabe, T.A.; Truong, L.; Freier, S.; Lesnik, E.A.; Sioufi, N.B.; Sasmor, H.; Manoharan, M.; Levin, A.A. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 2001, 296, 890–897. [Google Scholar] [PubMed]
- Summerton, J.; Weller, D. Morpholino antisense oligomers: Design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997, 7, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Veedu, R.N.; Wengel, J. Locked nucleic acids: Promising nucleic acid analogs for therapeutic applications. Chem. Biodivers. 2010, 7, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Veedu, R.N.; Wengel, J. Locked nucleic acid as a novel class of therapeutic agents. RNA Biol. 2009, 6, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Hyrup, B.; Nielsen, P.E. Peptide nucleic acids (PNA): Synthesis, properties and potential applications. Bioorg. Med. Chem. 1996, 4, 5–23. [Google Scholar] [CrossRef]
- Renneberg, D.; Leumann, C.J. Watson-crick base-pairing properties of tricyclo-DNA. J. Am. Chem. Soc. 2002, 124, 5993–6002. [Google Scholar] [CrossRef] [PubMed]
- Langkjaer, N.; Pasternak, A.; Wengel, J. UNA (unlocked nucleic acid): A flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg. Med. Chem. 2009, 17, 5420–5425. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F. Phosphorothioate oligodeoxynucleotides: What is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000, 10, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Tazi, J.; Bakkour, N.; Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 2009, 1792, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Muntoni, F. Muscular dystrophies. Lancet 2013, 381, 845–860. [Google Scholar] [CrossRef]
- Davies, K.E.; Nowak, K.J. Molecular mechanisms of muscular dystrophies: Old and new players. Nat. Rev. Mol. Cell Biol. 2006, 7, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.L.; Veedu, R.N.; Fletcher, S.; Wilton, S.D. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opin. Orphan Drugs 2016, 4, 139–152. [Google Scholar] [CrossRef]
- Fletcher, S.; Adkin, C.F.; Meloni, P.; Wong, B.; Muntoni, F.; Kole, R.; Fragall, C.; Greer, K.; Johnsen, R.; Wilton, S.D. Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Mol. Ther. Nucleic Acids 2012, 1, e48. [Google Scholar] [CrossRef] [PubMed]
- Wilton, S.D.; Veedu, R.N.; Fletcher, S. The emperor's new dystrophin: Finding sense in the noise. Trends Mol. Med. 2015, 21, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Govoni, A.; Magri, F.; Brajkovic, S.; Zanetta, C.; Faravelli, I.; Corti, S.; Bresolin, N.; Comi, G.P. Ongoing therapeutic trials and outcome measures for Duchenne muscular dystrophy. Cell. Mol. Life Sci. CMLS 2013, 70, 4585–4602. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ishizuka, T.; Kimura, T.; Komiyama, M. A U-tetrad stabilizes human telomeric RNA g-quadruplex structure. J. Am. Chem. Soc. 2010, 132, 7231–7233. [Google Scholar] [CrossRef] [PubMed]
- Hansske, F.; Cramer, F. Untersuchungen zur struktur perjodatoxydierter ribonucleoside und ribonucleotide. Carbohydr. Res. 1977, 54, 75–84. [Google Scholar] [CrossRef]
- Tronchet, J.M.J.; Zsély, M.; Cabrini, D.; Jorand, C.; Barbalat-Rey, F.; Komaromi, I.; Ricca, A.; Geoffroy, M. Spin labeled nucleoside analogues: 4′-Hydroxymorpholin-2′-ylpurines and pyrimidines. Nucleosides Nucleotides 1993, 12, 615–629. [Google Scholar] [CrossRef]
- Morgan, J.E.; Beauchamp, J.R.; Pagel, C.N.; Peckham, M.; Ataliotis, P.; Jat, P.S.; Noble, M.D.; Farmer, K.; Partridge, T.A. Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: A model system for the derivation of tissue-specific and mutation-specific cell lines. Dev. Biol. 1994, 162, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.J.; Honeyman, K.; Cheng, A.J.; Ly, T.; Lloyd, F.; Fletcher, S.; Morgan, J.E.; Partridge, T.A.; Wilton, S.D. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. USA 2001, 98, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the amidites may be available from the authors.
AO Names | Sequence, 5′→3′ Direction | Tm, °C |
---|---|---|
2′-OMePS | GGCCAAACCUCGGCUUACCU | 59.8 |
MNA/2′-OMePS | GGCCAAACCUMCGGCUUACCU | 55.4 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Le, B.T.; Rahimizadeh, K.; Shaikh, K.; Mohal, N.; Veedu, R.N. Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide. Molecules 2016, 21, 1582. https://doi.org/10.3390/molecules21111582
Chen S, Le BT, Rahimizadeh K, Shaikh K, Mohal N, Veedu RN. Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide. Molecules. 2016; 21(11):1582. https://doi.org/10.3390/molecules21111582
Chicago/Turabian StyleChen, Suxiang, Bao T. Le, Kamal Rahimizadeh, Khalil Shaikh, Narinder Mohal, and Rakesh N. Veedu. 2016. "Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide" Molecules 21, no. 11: 1582. https://doi.org/10.3390/molecules21111582
APA StyleChen, S., Le, B. T., Rahimizadeh, K., Shaikh, K., Mohal, N., & Veedu, R. N. (2016). Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide. Molecules, 21(11), 1582. https://doi.org/10.3390/molecules21111582