High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Identification of Ginsenosides
2.2. Quantitative Analysis: Ginsenosides Determination
2.2.1. Chromatographic Conditions
2.2.2. LC–DAD Method Validation
2.2.3. HPLC Quantitative Analysis
2.2.4. Principal Component Analysis
3. Experimental Section
3.1. Plant Materials
3.2. Chemical and Reagents
3.3. Chromatographic and Mass Spectrometric Conditions
3.4. Preparation of Sample and Standard Solutions
3.5. LC–DAD Method Validation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, X.B.; Yang, X.W.; Liu, J.X. Study on ginsenosides in the roots and rhizomes of Panax ginseng. Mod. Chin. Med. 2013, 15, 349–358. [Google Scholar]
- Dong, H.; Bai, L.P.; Wong Vincent, K.W.; Zhou, H.; Wang, J.R.; Liu, Y.; Jiang, Z.H.; Liu, L. The in vitro structure-related anti-cancer activity of ginsenosides and their derivatives. Molecules 2011, 16, 10619–10630. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Nao, J.F.; Zhang, M.; He, P. 20(S)-Ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol. 2014, 35, 11985–11994. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Y.; Yang, X.W. Six new dammarane-type triterpenes from acidic hydrolysate of the stems-leaves of Panax ginseng and their inhibitory–activities against three human cancer cell lines. Phytochem. Lett. 2015, 13, 406–412. [Google Scholar] [CrossRef]
- Yang, X.W.; Fu, L. Biological and pharmacological activities of triterpenoids from of Panax ginseng. Mod. Chin. Med. 2016, 18, 36–55. [Google Scholar]
- Liu, J.; He, J.; Huang, L.; Dou, L.; Wu, S.; Yuan, Q.L. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen. Res. 2014, 9, 943–950. [Google Scholar] [PubMed]
- Xie, C.L.; Li, J.H.; Wang, W.W.; Zheng, G.Q.; Wang, L.X. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci. 2015, 121, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.T.; Zu, G.; Zhang, X.G.; Wang, X.; Li, S.; Gong, X.Y.; Liang, Z.H.; Zhao, J. Neuroprotective effects of ginsenoside Rg1 through the wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology 2015, 101, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hou, J.C.; Lei, H.T.; Fu, J.H.; Pan, Y.S.; Liu, J.X. Synergistic neuroprotective effect of microglial conditioned media treated with geniposide and ginsenoside Rg1 on hypoxia injured neurons. Mol. Med. Rep. 2015, 12, 5328–5334. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Ryu, G.H. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng. J. Ginseng Res. 2013, 37, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.R.; Lee, S.H.; Jang, G.Y.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.S.; Jeong, H.S. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J. Ginseng Res. 2014, 38, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.J.; Chung, S.I.; Lee, S.C.; Kang, M.Y. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.). J. Food Sci. 2014, 79, H2127–H2131. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.J.; Kim, K.H.; Lim, C.J. Ginsenoside Rb2 attenuates UV-B radiation-induced reactive oxygen species and matrix metalloproteinase-2 through upregulation of antioxidant components in human dermal fibroblasts. Pharmacology 2015, 96, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Gum, S.I.; Cho, M.K. Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: The role of ginsenoside Rg3, a protopanaxadiol. Liver Int. 2013, 33, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Nemmani, K.V.S.; Ramarao, P. Ginsenoside Rf potentiates U-50, 488H-induced analgesia and inhibits tolerance to its analgesia in mice. Life Sci. 2003, 72, 759–768. [Google Scholar] [CrossRef]
- Zhou, Q.L.; Yang, X.W. Four new ginsenosides from red ginseng with inhibitory activity on melanogenesis in melanoma cells. Bioorg. Med. Chem. Lett. 2015, 25, 3112–3116. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Y.; Zhou, Q.L.; Yang, X.W. New SIRT1 activator from alkaline hydrolysate of total saponins in the stems-leaves of Panax ginseng. Bioorg. Med. Chem. Lett. 2015, 25, 5321–5325. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Y.; Zhang, Y.B.; Zhou, Q.L.; Yang, Y.F.; Yang, X.W. Simultaneous determination of eight ginsenosides in rat plasma by liquid chromatography–electrospray ionization tandem mass spectrometry: Application to their pharmacokinetics. Molecules 2015, 20, 21597–21608. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W. Pharmacokinetic studies of chemical constituents of ginseng. Mod. Chin. Med. 2016, 18, 16–35. [Google Scholar]
- Zhang, Y.C.; Pi, Z.F.; Liu, C.M.; Song, F.R.; Liu, Z.Q.; Liu, S.Y. Analysis of low-polar ginsenosides in steamed Panax ginseng at high-temperature by HPLC-ESI-MS/MS. Chem. Res. Chin. Univ. 2012, 28, 31–36. [Google Scholar]
- Xie, Y.Y.; Luo, D.; Cheng, Y.J.; Ma, J.F.; Wang, Y.M.; Liang, Q.L.; Luo, G.A. Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MSn-based multicomponent quantification fingerprint. J. Agric. Food Chem. 2012, 60, 8213–8224. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Y.T.; Li, J.; Zhang, H.Q.; Ding, L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 2007, 102, 664–668. [Google Scholar] [CrossRef]
- Sun, B.S.; Gu, L.J.; Fang, Z.M.; Wang, C.Y.; Wang, Z.; Lee, M.R.; Li, Z.; Li, J.J.; Sung, C.K. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J. Pharm. Biomed. Anal. 2009, 50, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Vanhaelen-Fastre, R.J.; Faes, M.L.; Vanhaelen, M.H. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J. Chromatogr. A 2000, 868, 269–276. [Google Scholar] [CrossRef]
- Kim, S.N.; Ha, Y.W.; Shin, H.S.; Son, S.H.; Wu, S.J.; Kim, Y.S. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J. Pharm. Biomed. Anal. 2007, 45, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.W.; Han, S.B.; Park, I.H.; Kim, J.M.; Park, M.K.; Park, J.H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A 2001, 921, 335–339. [Google Scholar] [CrossRef]
- Lee, D.Y.; Cho, J.G.; Lee, M.K.; Lee, J.W.; Lee, Y.H.; Yang, D.C.; Baek, N.I. Discrimination of Panax ginseng roots cultivated in different areas in Korea using HPLC-ELSD and principal component analysis. J. Ginseng Res. 2011, 35, 31–38. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Li, Y.W.; Hau, D.K.P.; Jiang, Z.H.; Yu, Z.L.; Fong, W.F. Acylated protopanaxadiol-type ginsenosides from the root of Panax ginseng. Chem. Biodivers. 2011, 8, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Song, X.M.; Liu, Y.; Cai, B.C. Chemical constituents of rhizome of Panacis Majori. J. Shenyang Pharm. Univ. 2010, 27, 626–629. [Google Scholar]
- Zou, K.; Liu, Z.X.; Zhu, Z.; Cai, S.Q. Research of ginsenosides in kou zi qi using HPLC-MS-MS. Acta Pharm. Sin. 2004, 39, 385–388. [Google Scholar]
- Liang, C.; Ding, Y.; Nguyen, H.T.; Kim, J.A.; Boo, H.J.; Kang, H.K.; Nguyen, M.C.; Kim, Y.H. Oleanane-type triterpenoids from Panax stipuleanatus and their anticancer activities. Bioorg. Med. Chem. Lett. 2010, 20, 7110–7115. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Yang, X.B.; Yang, X.W.; Liu, J.X.; Wang, Y.P.; Zhang, L.X. Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province. China J. Chin. Mater. Med. 2013, 38, 2807–2817. [Google Scholar]
- Zhou, Q.L.; Xu, W.; Yang, X.W. Chemical constituents of Chinese red ginseng. China J. Chin. Mater. Med. 2016, 41, 233–249. [Google Scholar]
- Lau, A.J.; Woo, S.O.; Koh, H.L. Analysis of saponins in raw and steamed Panax notoginseng using high-performance liquid chromatography with diode array detection. J. Chromatogr. A 2003, 1011, 77–87. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are not available from the authors.
Analyte | Calibration Curve | r2 | Linear Range (μg/mL) | LLOD (ng) | LLOQ (ng) |
---|---|---|---|---|---|
G-Ra1 | y = 3.625x + 37.274 | 0.9995 | 22.5–720 | 5.78 | 19.23 |
G-Ra2 | y = 3.507x + 7.198 | 0.9999 | 15–480 | 2.94 | 9.79 |
G-Rb1 | y = 5.455x + 193.800 | 0.9995 | 100–3200 | 3.31 | 11.04 |
G-Rb2 | y = 4.634x + 93.950 | 0.9995 | 50–1600 | 6.09 | 20.30 |
G-Rb3 | y = 4.288x + 2.264 | 0.9996 | 15–480 | 1.83 | 6.09 |
G-Rc | y = 5.289x + 97.009 | 0.9996 | 50–1600 | 3.96 | 13.19 |
G-Rd | y = 3.707x + 132.820 | 0.9998 | 60–1920 | 6.40 | 21.33 |
G-Re | y = 3.694x + 73.629 | 0.9996 | 37.5–1200 | 7.74 | 25.81 |
G-Rf | y = 7.637x + 136.930 | 0.9995 | 30–960 | 3.43 | 11.44 |
G-Rg1 | y = 4.202x + 89.410 | 0.9999 | 50–1600 | 6.90 | 23.00 |
G-Ro | y = 3.873x + 42.919 | 0.9996 | 7.5–1920 | 8.82 | 29.39 |
20-glc-G-Rf | y = 3.446x + 18.670 | 0.9996 | 7.5–240 | 0.73 | 2.44 |
NG-R1 | y = 3.359x + 19.016 | 0.9994 | 7.5–240 | 0.66 | 2.21 |
NG-R2 | y = 7.407x + 20.821 | 0.9998 | 7.5–480 | 1.97 | 6.57 |
Analyte | Original Amount (μg) | Spiked Amount (μg) | Total Amount Detected (μg) | Mean Recovery (%) | RSD (%) |
---|---|---|---|---|---|
G-Ra1 | 152.99 | 225 | 377 ± 2 | 99.72 | 0.46 |
280 | 333 ± 2 | 100.11 | 0.72 | ||
135 | 286 ± 2 | 98.52 | 0.70 | ||
G-Ra2 | 82.45 | 120 | 202 ± 1 | 99.74 | 0.69 |
90 | 173 ± 1 | 100.43 | 0.52 | ||
60 | 144 ± 1 | 102.03 | 0.69 | ||
G-Rb1 | 214.26 | 240 | 455 ± 1 | 100.20 | 0.22 |
200 | 413 ± 2 | 99.49 | 0.53 | ||
160 | 377 ± 1 | 101.26 | 0.25 | ||
G-Rb2 | 115.45 | 140 | 257 ± 2 | 101.39 | 0.94 |
120 | 238 ± 3 | 102.40 | 1.30 | ||
100 | 218 ± 2 | 102.73 | 1.03 | ||
G-Rb3 | 76.30 | 120 | 194 ± 2 | 98.32 | 1.22 |
90 | 165 ± 3 | 98.32 | 1.67 | ||
60 | 137 ± 4 | 101.67 | 2.64 | ||
G-Rc | 114.91 | 140 | 254 ± 1 | 99.16 | 0.33 |
120 | 235 ± 0 | 99.80 | 0.19 | ||
100 | 215 ± 0 | 100.17 | 0.11 | ||
G-Rd | 71.07 | 84 | 158 ± 2 | 103.63 | 1.54 |
72 | 142 ± 2 | 98.37 | 1.44 | ||
60 | 134 ± 3 | 104.40 | 2.14 | ||
G-Re | 196.86 | 180 | 376 ± 0 | 99.37 | 0.11 |
150 | 345 ± 2 | 98.55 | 0.56 | ||
120 | 317 ± 1 | 100.31 | 0.28 | ||
G-Rf | 71.69 | 84 | 154 ± 2 | 97.41 | 1.14 |
72 | 143 ± 2 | 99.63 | 1.14 | ||
60 | 129 ± 0 | 95.37 | 0.27 | ||
G-Rg1 | 240.78 | 300 | 546 ± 1 | 101.76 | 0.20 |
240 | 487 ± 2 | 102.44 | 0.34 | ||
180 | 428 ± 1 | 103.93 | 0.15 | ||
G-Ro | 128.41 | 144 | 271 ± 3 | 99.27 | 1.19 |
120 | 246 ± 5 | 97.67 | 1.96 | ||
96 | 222 ± 4 | 97.90 | 1.84 | ||
20-glc-G-Rf | 29.65 | 45 | 73.7 ± 1 | 97.80 | 1.60 |
30 | 60.7 ± 0.9 | 103.43 | 1.46 | ||
15 | 45.0 ± 0.3 | 102.60 | 0.58 | ||
NG-R1 | 18.55 | 24 | 41.7 ± 0.3 | 96.65 | 0.71 |
18 | 36.7 ± 0.2 | 100.81 | 0.52 | ||
15 | 34.0 ± 0.3 | 103.22 | 0.99 | ||
NG-R2 | 11.99 | 18 | 29.3 ± 0.3 | 95.93 | 1.15 |
12 | 24.1 ± 0.5 | 100.92 | 2.22 | ||
6 | 17.9 ± 0.4 | 98.90 | 1.97 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-P.; Zhang, Y.-B.; Yang, X.-W.; Yang, X.-B.; Xu, W.; Xu, F.; Cai, S.-Q.; Wang, Y.-P.; Xu, Y.-H.; Zhang, L.-X. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions. Molecules 2016, 21, 603. https://doi.org/10.3390/molecules21050603
Wang H-P, Zhang Y-B, Yang X-W, Yang X-B, Xu W, Xu F, Cai S-Q, Wang Y-P, Xu Y-H, Zhang L-X. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions. Molecules. 2016; 21(5):603. https://doi.org/10.3390/molecules21050603
Chicago/Turabian StyleWang, Hong-Ping, You-Bo Zhang, Xiu-Wei Yang, Xin-Bao Yang, Wei Xu, Feng Xu, Shao-Qing Cai, Ying-Ping Wang, Yong-Hua Xu, and Lian-Xue Zhang. 2016. "High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions" Molecules 21, no. 5: 603. https://doi.org/10.3390/molecules21050603
APA StyleWang, H. -P., Zhang, Y. -B., Yang, X. -W., Yang, X. -B., Xu, W., Xu, F., Cai, S. -Q., Wang, Y. -P., Xu, Y. -H., & Zhang, L. -X. (2016). High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions. Molecules, 21(5), 603. https://doi.org/10.3390/molecules21050603