A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of the Essential Oils
2.2. Anti-Inflammatory Activity of the Essential Oils
2.3. Antinociceptive Activity of the Essential Oils
2.3.1. Acetic Acid Induced Writhing Test in Mice
2.3.2. Hot Plate Test in Mice
3. Materials and Methods
3.1. Plant Material and Essential Oil Isolation
3.2. GC-MS Analysis of the Essential Oils
3.3. Animals
3.4. Anti-Inflammatory Activity
3.5. Antinociceptive Activity
3.5.1. Acetic Acid Induced Writhing Test
3.5.2. Hot Plate Test in Mice
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Tucker, A.O.; Naczi, R.F.C. Mentha: An overview of its classification and relationships. In Mint: The Genus Mentha: Medicinal and Aromatic Plants-Industrial Profiles, 1st ed.; Lawrence, B.M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 3. [Google Scholar]
- Saric-Kundalic, B.; Fialova, S.; Dobes, C.; Olzant, S.; Tekelova, D.; Grancai, D.; Reznicek, G.; Saukel, J. Multivariate numerical taxonomy of Mentha species, hybrids, varieties and cultivars. Sci. Pharm. 2009, 77, 851–8766. [Google Scholar] [CrossRef]
- Kokkini, S. Chemical races within the genus Mentha L. In Essential Oils and Waxes, 1st ed.; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 63–64. [Google Scholar]
- Turner, G.W.; Croteau, R. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localization of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase and pulegone reductase. Plant Physiol. 2004, 136, 4215–4227. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C. Peppermint: Medicinal herb and flavouring agent. Can. Pharm. J. 1993, 126, 89–92. [Google Scholar]
- Mimica-Dukic, N.; Bozin, B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Des. 2008, 14, 3141–3150. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Stringaro, A.; Vavala, E.; Colone, M.; Pepi, F.; Mignogna, G.; Garzoli, S.; Cecchetti, S.; Ragno, R.; Angiolella, L. Effects of Mentha suaveolens essential oil alone or in combination with other drugs in Candida albicans. Evid. Based Complement. Altern. Med. 2014, 125904. [Google Scholar] [CrossRef]
- Abdel-Shafi, S. Preliminary studies on antibacterial and antiviral activities of five medicinal plants. J. Plant Pathol. Microb. 2013, 4, 190. [Google Scholar] [CrossRef]
- Mkaddem, M.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Romdhane, M. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 2009, 74, M358–M363. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Hussain, S.; Gupta, M.; Saxena, A.K. In vitro anticancer activity of extracts of Mentha spp. against human cancer cells. Indian J. Biochem. Biophys. 2014, 51, 416–419. [Google Scholar] [PubMed]
- Amabeoku, G.J.; Erasmus, S.J.; Ojewole, J.A.; Mukinda, J.T. Antipyretic and antinociceptive properties of Mentha longifolia Huds. (Lamiaceae) leaf aqueous extract in rats and mice. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, P.; Priya, N.G.; Subathra, M.; Ramesh, A. Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats. Environ. Toxicol. Pharmacol. 2008, 26, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Sugimoto, Y.; Masuda, H.; Kamei, C. Antiallergic effect of flavonoid glycosides obtained from Mentha piperita L. Biol. Pharm. Bull. 2002, 25, 256–259. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Maheshwari, P.; Kumar, S.; Kumar, A. Mentha species: In vitro regeneration and genetic transformation. Mol. Biol. Today 2002, 3, 11–23. [Google Scholar]
- Muntean, L.S.; Tamas, M.; Muntean, S.; Muntean, L.; Duda, M.; Varban, D.; Florian, S. A Treatise of Cultivated and Spontaneous Medicinal Plants; Risoprint: Cluj-Napoca, Romania, 2007; p. 372. [Google Scholar]
- Moreno, L.; Bello, R.; Primo-Yufera, E.; Esplugues, J. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother. Res. 2002, 16, S10–S13. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency Public Statement on the Use of Herbal Medicinal Products Containing Estragole. 24 November 2014. Available online: Http://www.ema.europa.eu/docs/en_GB/document_library/Public_statement/2014/12/WC500179557.pdf (accessed on 8 October 2016).
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha piperita. Nat. Prod. Commun. 2009, 4, 1107–1112. [Google Scholar] [PubMed]
- Chauhan, R.S.; Kaul, M.K.; Shahi, A.K.; Kumar, A.; Ram, G.; Tawa, A. Chemical composition of essential oils in Mentha spicata L. accession [IIIM(J)26] from north-west Himalayan region, India. Ind. Crops Prod. 2009, 29, 654–656. [Google Scholar] [CrossRef]
- Telci, I.; Sahbaz, N.; Yilmaz, G.; Tugay, M.E. Agronomical and chemical characterization of spearmint (Mentha spicata L.) originating in Turkey. Econ. Bot. 2004, 58, 721–728. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef] [PubMed]
- El-Kashouri, E.-S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A.; Sleem, A.A. Chemical composition and biological activities of the essential oil of Mentha suaveolens Ehrh. Z. Naturforsch. C 2012, 67, 571–579. [Google Scholar] [CrossRef]
- Fahlen, A.; Walander, M.; Wennersten, R. Effect of light-temperature regime on growth and essential oil yield of selected aromatic plants. J. Sci. Food Agric. 1997, 73, 111–119. [Google Scholar] [CrossRef]
- Vineagar, R.; Traux, J.F.; Selph, J.H.; Johnston, P.R.; Vinable, A.H.; McKenzie, R.K. Pathway to carrageenan-induced inflammation of the hind limb of the rat. Fed. Proc. 1987, 6, 118–126. [Google Scholar]
- Ribeiro, R.A.; Vale, M.L.; Thomazzi, S.M.; Paschoalato, A.B.P.; Poole, S.; Ferreira, S.H.; Cunha, F.Q. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur. J. Pharmacol. 2000, 387, 111–118. [Google Scholar] [CrossRef]
- Yan, W.X.; Zhang, J.H.; Zhang, Y.; Meng, D.-L.; Yan, D. Anti-inflammatory activity studies on the stems and roots of Jasminum lanceolarium Roxb. J. Ethnopharmacol. 2015, 171, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kolassa, N. Menthol differs from other terpenic essential oil constituents. Regul. Toxicol. Pharmacol. 2013, 65, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, N.; di Cesare, M.L.; Mazzanti, G.; Bartolini, A.; Ghelardini, C. Menthol: A natural analgesic compound. Neurosci. Lett. 2002, 322, 145–148. [Google Scholar] [CrossRef]
- Gaudioso, C.; Hao, J.; Martin-Eauclaire, M.F.; Gabriac, M.; Delmas, P. Menthol pain relief through cumulative inactivation of voltage-gated sodium channels. Pain 2012, 153, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol. Life Sci. 2008, 65, 2979–2999. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, D.P.; Junior, E.V.M.; Oliveira, F.S.; de Almeida, R.N.; Nunes, X.P.; Barbosa-Filho, J.M. Antinociceptive activity of structural analogues of rotundifolone: Structure-activity relationship. Z. Naturforsch. C 2007, 62, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.J.; Linard, C.F.; Azevedo-Batista, D.; Oliveira, A.C.; Coelho-de-Souza, A.N. Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone-oxide in mice. Braz. J. Med. Biol. Res. 2009, 42, 655–659. [Google Scholar] [PubMed]
- Moldovan, R.I.; Oprean, R. Comparative study of essential oil from two species of Mint grown in Orastie. Farmacia 2014, 62, 169–182. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenine induced oedema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Griesbacher, T.; Suttlif, R.L.; Lembeck, F. Antiinflammatory and analgesic activity of the bradykinin antagonist icatibant against an extract from Porhyromonas gingivalis. Br. J. Pharmacol. 1994, 112, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Mogosan, C.; Vostinaru, O.; Parvu, A.E.; Pop, C.; Zaharia, V. An evaluation of the anti-inflammatory potential of some polyheterocyclic compounds with thiazole rings in acute inflammation models. Part 1. Vascular response. Farmacia 2013, 61, 323–329. [Google Scholar]
- Koster, R.; Anderson, M.; de Beer, E.J. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412–418. [Google Scholar]
- Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl and dithienylbutylamines. J. Pharmacol. Exp. Ther. 1953, 107, 385–393. [Google Scholar] [PubMed]
- Sample Availability: Samples of the essential oils are available from the authors.
No. | Compound | RIlit a | RIcal b | % in EOMPA c | % in EOMSP d | % in EOMSU e |
---|---|---|---|---|---|---|
1 | alpha-pinene | 939 | 950 | 0.133 ± 0.03 | 0.220 ± 0.05 | 0.791 ± 0.12 |
2 | sabinene | 971 | 980 | 0.071 ± 0.00 | 0.136 ± 0.03 | 0.342 ± 0.08 |
3 | beta-pinene | 976 | 983 | 0.232 ± 0.04 | 0.471 ± 0.19 | 1.497 ± 0.42 |
4 | myrcene | 990 | 994 | 0.119 ± 0.02 | 0.095 ± 0.00 | 0.462 ± 0.11 |
5 | 2-octanol | 997 | 997 | 0.617 ± 0.18 | 0.201 ± 0.06 | 0.305 ± 0.07 |
6 | para-cymene | 1022 | 1025 | 0.292 ± 0.11 | 0.140 ± 0.02 | 0.230 ± 0.05 |
7 | limonene | 1027 | 1028 | 0.346 ± 0.09 | 1.569 ± 0.48 | 2.969 ± 1.02 |
8 | 1,8-cineole | 1029 | 1031 | 1.587 ± 0.64 | 2.567 ± 0.69 | 0.118 ± 0.04 |
9 | gamma-terpinene | 1057 | 1058 | 0.407 ± 0.05 | 0.106 ± 0.00 | - |
10 | menthone | 1151 | 1155 | 15.742 ± 2.73 | 7.225 ± 1.81 | - |
11 | isomenthone | 1162 | 1165 | 7.735 ± 2.03 | 3.325 ± 0.82 | - |
12 | menthol | 1170 | 1177 | 39.695 ± 3.26 | 12.774 ± 2.48 | 0.128 ± 0.03 |
13 | terpineol 4 | 1175 | 1179 | 2.182 ± 0.55 | 1.221 ± 0.33 | 0.679 ± 0.19 |
14 | isomenthol | 1181 | 1184 | 0.493 ± 0.14 | 0.192 ± 0.04 | - |
15 | alpha-terpineol | 1188 | 1191 | 0.449 ± 0.17 | 0.622 ± 0.21 | 0.246 ± 0.04 |
16 | dihydrocarveol | 1192 | 1195 | 0.120 ± 0.02 | 1.120 ± 0.24 | - |
17 | estragole | 1195 | 1199 | 0.929 ± 0.18 | - | - |
18 | trans-carveol | 1216 | 1219 | 0.085 ± 0.00 | 1.113 ± 0.47 | - |
19 | cis-carveol | 1228 | 1232 | - | 1.221 ± 0.31 | - |
20 | pulegone | 1235 | 1239 | 2.140 ± 0.80 | 3.763 ± 1.04 | - |
21 | carvone | 1240 | 1244 | 2.377 ± 0.73 | 41.215 ± 4.18 | 1.555 ± 0.44 |
22 | piperitone | 1250 | 1254 | 2.096 ± 0.75 | 0.647 ± 0.13 | 0.340 ± 0.08 |
23 | neomenthyl acetate | 1274 | 1276 | 0.135 ± 0.02 | 0.101 ± 0.00 | - |
24 | trans-anethole | 1282 | 1286 | 5.374 ± 0.94 | 0.113 ± 0.02 | - |
25 | menthyl-acetate | 1294 | 1295 | 3.022 ± 1.21 | 1.912 ± 0.89 | - |
26 | menthylcamphor | - | 1300 | 0.478 ± 0.17 | 0.497 ± 0.12 | 0.498 ± 0.15 |
27 | eugenol | 1354 | 1357 | 0.214 ± 0.05 | 0.184 ± 0.03 | - |
28 | piperitenone oxide | 1366 | 1366 | - | - | 73.773 ± 6.41 |
29 | beta-bourbonene | 1383 | 1384 | 0.222 ± 0.04 | 0.951 ± 0.27 | 0.293 ± 0.05 |
30 | cis-jasmone | 1395 | 1399 | - | - | 2.124 ± 0.65 |
31 | caryophyllene | 1418 | 1418 | 0.112 ± 0.03 | 2.289 ± 0.99 | 0.604 ± 0.23 |
32 | germacrene-d | 1479 | 1480 | - | - | 3.309 ± 1.19 |
33 | viridoflorol | 1592 | 1590 | - | - | 1.455 ± 0.68 |
Group | Dose | Edema 1 h (mL) | Edema 2 h (mL) | Edema 3 h (mL) | Edema 4 h (mL) |
---|---|---|---|---|---|
(% inhib.) | (% inhib.) | (% inhib.) | (% inhib.) | ||
Control (vehicle) | - | 0.56 ± 0.11 | 1.30 ± 0.13 | 2.00 ± 0.20 | 2.34 ± 0.27 |
EOMPA | 500 mg/kg | 0.36 ± 0.20 | 0.96 ± 0.40 | 1.40 ± 0.64 | 1.12 ± 0.84 * |
(35.71%) | (25.15%) | (30.00%) | (52.13) | ||
EOMPA | 250 mg/kg | 0.42 ± 0.04 | 1.11 ± 0.53 | 1.69 ± 0.73 | 1.80 ± 0.46 |
(25.00%) | (14.61%) | (15.50%) | (23.07%) | ||
EOMPA | 125 mg/kg | 0.50 ± 0.15 | 1.21 ± 0.66 | 1.81 ± 0.98 | 2.03 ± 1.18 |
(10.71%) | (6.92%) | (9.50%) | (13.24%) | ||
EOMSP | 500 mg/kg | 0.36 ± 0.17 | 0.52 ± 0.28 * | 0.74 ± 0.26 * | 0.88 ± 0.26 * |
(35.71%) | (60.00%) | (63.00%) | (62.39%) | ||
EOMSP | 250 mg/kg | 0.44 ± 0.27 | 0.78 ± 0.19 * | 1.23 ± 0.46 | 1.54 ± 0.86 |
(21.42%) | (40.00%) | (38.50%) | (34.18%) | ||
EOMSP | 125 mg/kg | 0.50 ± 0.37 | 1.03 ± 0.69 | 1.68 ± 1.13 | 2.01 ± 0.64 |
(10.71%) | (20.76%) | (16.00%) | (14.10%) | ||
EOMSU | 500 mg/kg | 0.54 ± 0.35 | 0.98 ± 0.64 | 1.23 ± 0.89 | 1.41 ± 0.78 |
(3.57%) | (24.61%) | (38.50%) | (39.74%) | ||
EOMSU | 250 mg/kg | 0.63 ± 0.22 | 1.20 ± 0.80 | 1.56 ± 0.73 | 1.84 ± 0.98 |
(-) | (7.69%) | (22.00%) | (21.36%) | ||
EOMSU | 125 mg/kg | 0.70 ± 0.31 | 1.42 ± 0.69 | 1.79 ± 0.46 | 2.13 ± 1.36 |
(-) | (-) | (10.5%) | (8.9%) | ||
Diclofenac | 20 mg/kg | 0.36 ± 0.06 * | 0.55 ± 0.11 * | 0.68 ± 0.08 * | 1.06 ± 0.17 * |
(35.71%) | (57.69%) | (66.00%) | (54.70%) |
Group | Dose (mg/kg) | No. of Writhes (X ± SD) | Percentage of Inhibition (%) |
---|---|---|---|
Control (vehicle) | - | 32.4 ± 10.19 | - |
EOMPA | 500 mg/kg | 20.8 ± 4.25 | 35.80 |
EOMPA | 250 mg/kg | 23.6 ± 7.22 | 27.16 |
EOMPA | 125 mg/kg | 25.6 ± 5.15 | 20.98 |
EOMSP | 500 mg/kg | 17 ± 7.87 * | 47.53 |
EOMSP | 250 mg/kg | 18.8 ± 9.23 * | 41.97 |
EOMSP | 125 mg/kg | 19.8 ± 6.60 * | 38.88 |
EOMSU | 500 mg/kg | 24.2 ± 2.56 | 25.30 |
EOMSU | 250 mg/kg | 28 ± 2.89 | 13.58 |
EOMSU | 125 mg/kg | 30.6 ± 2.05 | 5.55 |
Diclofenac | 20 mg/kg | 12.8 ± 4.12 * | 60.49 |
Group | Response (s) at 0 min (PAS) | Response (s) at 30 min (PAS) | Response (s) at 60 min (PAS) | Response (s) at 90 min (PAS) | Response (s) at 120 min (PAS) |
---|---|---|---|---|---|
Control (Vehicle) | 8.78 ± 2.18 | 9.12 ± 1.94 | 8.19 ± 1.53 | 7.85 ± 1.80 | 7.13 ± 1.96 |
(-) | (-) | (-) | (-) | (-) | |
EOMPA 500 mg/kg | 9.05 ± 1.76 | 15.89 ± 2.27 | 20.98 ± 6.17 * | 23.44 ± 4.72 * | 25.12 ± 8.47 * |
(-) | (43.04%) | (56.86%) | (61.39%) | (63.97%) | |
EOMPA 250 mg/kg | 10.34 ± 2.20 | 13.44 ± 3.67 | 17.39 ± 4.99 * | 19.89 ± 4.63 | 21.27 ± 5.46 * |
(-) | (23.06%) | (40.54%) | (48.01%) | (51.38%) | |
EOMPA 125 mg/kg | 9.42 ± 1.96 | 11.29 ± 2.16 | 14.52 ± 4.21 | 17.11 ± 3.92 | 18.41 ± 4.52 |
(-) | (16.56%) | (35.12%) | (44.94%) | (48.83%) | |
EOMSP 500 mg/kg | 9.84 ± 1.98 | 18.23 ± 3.76 | 24.75 ± 6.71 * | 27.42 ± 6.06 * | 28.44 ± 4.77 * |
(-) | (46.02%) | (60.24%) | (64.11%) | (65.40%) | |
EOMSP 250 mg/kg | 10.31 ± 0.84 | 14.97 ± 3.70 | 19.42 ± 4.63 | 22.93 ± 6.35 * | 24.03 ± 6.15 * |
(-) | (31.12%) | (46.91%) | (55.03%) | (57.09%) | |
EOMSP 125 mg/kg | 9.24 ± 1.87 | 12.19 ± 3.90 | 15.55 ± 3.09 * | 18.32 ± 4.57 * | 20.84 ± 5.82 * |
(-) | (24.20%) | (40.57%) | (49.56%) | (55.66%) | |
EOMSU 500 mg/kg | 10.11 ± 3.09 | 13.42 ± 3.23 | 18.11 ± 2.04 | 20.75 ± 4.54 * | 21.04 ± 6.64 * |
(-) | (24.66%) | (44.17%) | (51.27%) | (51.94%) | |
EOMSU 250 mg/kg | 9.19 ± 1.96 | 11.41 ± 2.74 | 15.14 ± 4.41 | 17.02 ± 5.15 | 16.14 ± 3.90 |
(-) | (19.45%) | (39.29%) | (46.00%) | (43.06%) | |
EOMSU 125 mg/kg | 10.04 ± 2.11 | 10.11 ± 1.76 | 13.45 ± 2.98 | 14.25 ± 4.50 | 13.89 ± 3.70 |
(-) | (6.9%) | (25.35%) | (29.54%) | (27.71%) | |
Morphine 10 mg/kg | 10.23 ± 2.92 | 11.50 ± 4.21 | 35.63 ± 7.58 * | 38.72 ± 6.64 * | 37.45 ± 6.77 * |
(-) | (11.04%) | (71.28%) | (73.57%) | (72.68) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogosan, C.; Vostinaru, O.; Oprean, R.; Heghes, C.; Filip, L.; Balica, G.; Moldovan, R.I. A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania. Molecules 2017, 22, 263. https://doi.org/10.3390/molecules22020263
Mogosan C, Vostinaru O, Oprean R, Heghes C, Filip L, Balica G, Moldovan RI. A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania. Molecules. 2017; 22(2):263. https://doi.org/10.3390/molecules22020263
Chicago/Turabian StyleMogosan, Cristina, Oliviu Vostinaru, Radu Oprean, Codruta Heghes, Lorena Filip, Georgeta Balica, and Radu Ioan Moldovan. 2017. "A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania" Molecules 22, no. 2: 263. https://doi.org/10.3390/molecules22020263
APA StyleMogosan, C., Vostinaru, O., Oprean, R., Heghes, C., Filip, L., Balica, G., & Moldovan, R. I. (2017). A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania. Molecules, 22(2), 263. https://doi.org/10.3390/molecules22020263