Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Reaction Temperature on the Volatile Compounds of MRPs
2.2. Sensory Characteristics of Mushroom MRPs and MH Samples
2.3. Relationship between Volatile Compounds and Sensory Characteristics of Mushroom MRPs
2.4. Comparison of Mushroom Hydrolysate and the Optimal MRPs in Terms of Free Amino Acids and 5′-Ribonucleotides
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Mushroom Hydrolysate
3.2.2. Preparation of Maillard Reaction Products (MRPs)
3.2.3. Headspace Solid Phase Micro-Extraction/Gas Chromatography/Mass Spectrometry (HS-SPME/GC/MS) Analysis
3.2.4. Determination of 5′-Ribonucleotides
3.2.5. Determination of Free Amino Acids
3.2.6. Sensory Evaluation
3.2.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, W.; Chen, Y.; He, X.X.; Hu, S.W.; Li, S.J.; Liu, Y. A study of the tyramine/glucose Maillard reaction: Characterization, cytotoxicity and preliminary application. Food Chem. 2018, 239, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Karangwa, E.; Murekatete, N.; Habimana, J.D.; Masamba, K.; Duhoranimana, E.; Muhoza, B.; Zhang, X. Contribution of crosslinking products in the flavour enhancer processing: The new concept of Maillard peptide in sensory characteristics of Maillard reaction systems. J. Food Sci. Technol. 2016, 53, 2863–2875. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, M.; Song, S.; Hayat, K.; Zhang, X.; Xia, S.; Jia, C. Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food Bioprocess Technol. 2010, 5, 1775–1789. [Google Scholar] [CrossRef]
- Karangwa, E.; Raymond, L.V.; Abbas, S.; Song, S.; Zhang, Y.; Masamba, K.; Zhang, X. Temperature and cysteine addition effect on formation of sunflower hydrolysate Maillard reaction products and corresponding influence on sensory characteristics assessed by partial least square regression. Food Res. Int. 2014, 57, 242–258. [Google Scholar]
- Karangwa, E.; Raymond, L.V.; Huang, M.; Cheserek, M.J.; Hayat, K.; Savio, N.D.; Amédée, M.; Zhang, X. Sensory attributes and antioxidant capacity of Maillard reaction products derived from xylose, cysteine and sunflower protein hydrolysate model system. Food Res. Int. 2013, 54, 1437–1447. [Google Scholar]
- Song, N.; Tan, C.; Huang, M.; Liu, P.; Karangwa, E.; Zhang, X.; Xia, S.; Jia, C. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates. Food Chem. 2013, 136, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Kitts, D.D. Antioxidant and anti-inflammatory activities of Maillard reaction products isolated from sugar-amino acid model systems. J. Agric. Food Chem. 2011, 59, 11294–11303. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Kitts, D.D. Characterization of antioxidant and anti-inflammatory activities of bioactive fractions recovered from a glucose-lysine Maillard reaction model system. Mol. Cell. Biochem. 2012, 364, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Chen, X.M.; Jing, H. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar-amino acid Maillard reaction products. J. Agric. Food Chem. 2012, 60, 6718–6727. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Zaczyńska, D.; Oracz, J. Effect of addition of green coffee extract and nanoencapsulated chlorogenic acids on aroma of different food product. LWT-Food Sci. Technol. 2016, 73, 197–204. [Google Scholar] [CrossRef]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2012, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.; Zeković, Z.; Jokić, S. Clavaria mushrooms and extracts: Investigation on valuable components and antioxidant properties. Int. J. Food Prop. 2014, 17, 2072–2081. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent developments on umami ingredients of edible mushrooms—A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Li, W.; Gu, Z.; Yang, Y.; Zhou, S.; Liu, Y.; Zhang, J. Non-volatile taste components of several cultivated mushrooms. Food Chem. 2014, 143, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Phat, C.; Moon, B.; Lee, C. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chem. 2016, 192, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Dermiki, M.; Phanphensophon, N.; Mottram, D.S.; Methven, L. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat. Food Chem. 2013, 141, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Guinard, J.X.; Miller, A.M.; Mills, K.; Wong, T.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.E.; Drescher, G. Consumer acceptance of dishes in which beef has been partially substituted with mushrooms and sodium has been reduced. Appetite 2016, 105, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.-X. Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted with mushrooms. J. Food Sci. 2014, 79, S1795–S1804. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, X.; Hayat, K.; Huang, M.; Liu, P.; Karangwa, E.; Gu, F.; Jia, C.; Xia, S.; Xiao, Z.; et al. Contribution of beef base to aroma characteristics of beeflike process flavour assessed by descriptive sensory analysis and gas chromatography olfactometry and partial least squares regression. J. Chromatogr. A 2010, 1217, 7788–7799. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, X.; Karangwa, E. Comparation sensory characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs by novel gradient temperature-elevating and traditional isothermal methods. J. Food Sci. Technol. 2015, 52, 858–866. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Luo, Y.; Shen, H.; Song, Y. Effect of substrate ratios and temperatures on development of Maillard reaction and antioxidant activity of silver carp (Hypophthalmichthys molitrix) protein hydrolysate-glucose system. Int. J. Food Sci. Technol. 2011, 46, 2467–2474. [Google Scholar] [CrossRef]
- Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Res. Int. 2016, 90, 154–176. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Liu, P.; Xia, S.; Jia, C.; Mukunzi, D.; Zhang, X.; Xia, W.; Tian, H.; Xiao, Z. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chem. 2010, 120, 967–972. [Google Scholar] [CrossRef]
- Huang, M.; Liu, P.; Song, S.; Zhang, X.; Hayat, K.; Xia, S.; Jia, C.; Gu, F. Contribution of sulfur-containing compounds to the color-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates. J. Sci. Food Agric. 2011, 91, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chem. 2018, 243, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Van Boekel, M.A.J.S. Formation of flavor compounds in the Maillard reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Taylor, A.J. On-line MS/MS monitoring of acrylamide generation in potato and cereal-based systems. J. Agric. Food Chem. 2005, 53, 8926–8933. [Google Scholar] [CrossRef] [PubMed]
- Mestdagh, F.; Maertens, J.; Cucu, T.; Delporte, K.; Van Petehem, C.; De Meulenaer, B. Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chem. 2008, 107, 26–31. [Google Scholar] [CrossRef]
- Tan, Z.W.; Yu, A.N. Volatiles from the Maillard reaction of L-ascorbic acid with L-glutamic acid/L-aspartic acid at different reaction times and temperatures. Asia-Pac. J. Chem. Eng. 2012, 7, 563–571. [Google Scholar] [CrossRef]
- Bakhiya, N.; Appel, K.E. Toxicity and carcinogenicity of furan in human diet. Arch. Toxicol. 2010, 84, 563–578. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Report Submitted to EFSA by Arvid Fromberg, Sisse Fagt and Kit Granby DTU-National Food Institute on “Furan in Heat Processed Food Including Home-Cooked Food Products and Ready-to-Eat Products”; EFSA-Q-2009-00846; Accepted for publication on October 2009; European Food Safety Authority: Parma, Italy, 2009. [Google Scholar]
- Usami, A.; Motooka, R.; Nakahashi, H.; Okuno, Y.; Miyazawa, M. Characteristic odorants from Bailingu Oyster Mushroom (Pleurotus eryngii var. tuoliensis) and Summer Oyster Mushroom (Pleurotus cystidiosus). J. Oleo Sci. 2014, 63, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, S.; Miyazawa, M. Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas. J. Oleo Sci. 2014, 63, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Donfrancesco, B.D.; Koppel, K. Sensory characteristics and volatile components of dry dog foods manufactured with sorghum fractions. Molecules 2017, 22, 1012. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, F.; Grosch, W. Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z. Lebensm. Unters. Forsch. 1987, 184, 277–282. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Machanisims and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Tressl, R.; Bahri, D.; Engel, K.-H. Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J. Agric. Food Chem. 1982, 30, 89–93. [Google Scholar] [CrossRef]
- Derewiaka, D.; Zareba, D.; Obiedziński, M.; Matuszewska, J.A. Volatile markers of cholesterol thermal changes. Eur. J. Lipid Sci. Technol. 2017, 119, 1–13. [Google Scholar] [CrossRef]
- Sghaier, L.; Cordella, C.B.; Rutledge, D.N.; Watiez, M.; Breton, S.; Sassiat, P.; Thiebaut, D.; Vial, J. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil. J. Sep. Sci. 2016, 39, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Tomic, O.; Luciano, G.; Nilsen, A.; Hyldig, G.; Lorensen, K.; Næs, T. Analysing sensory panel performance in a proficiency test using the PanelCheck software. Eur. Food Res. Technol. 2009, 230, 497–511. [Google Scholar] [CrossRef]
- Shibamoto, T. Heterocyclic compounds found in cooked meats. J. Agric. Food. Chem. 1980, 28, 237–243. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | Relative Content ng/g | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MRI a | KI b | ID | MH | MRP100 | MRP110 | MRP115 | MRP120 | MRP125 | MRP130 | MRP140 | |
Alcohols | |||||||||||
1-Pentanol | 1260 | 1271N | HOL1 | 0.42 ± 0.02 | 0.45 ± 0.03 | 0.33 ± 0.03 | 0.37 ± 0.03 | 0.35 ± 0.03 | ND | ND | ND |
3-Methyl-2-buten-1-ol | 1321 | 1323N | HOL2 | ND | 0.71 ± 0.02 | ND | 2.04 ± 0.15 | 1.17 ± 0.06 | 1.36 ± 0.06 | 1.44 ± 0.06 | 2.13 ± 0.11 |
1-Hexanol | 1324 | 1347N | HOL3PL | 0.61 ± 0.07 | 1.17 ± 0.07 | 0.95 ± 0.09 | 1.04 ± 0.09 | 1.19 ± 0.07 | 1.85 ± 0.09 | 1.17 ± 0.06 | 0.96 ± 0.07 |
Borneol | 1658 | 1675N | HOL4 | ND | ND | ND | ND | 3.92 ± 0.10 | 3.83 ± 0.12 | ND | ND |
3-Octanol | 1394 | 1394N | HOL5 | 1.98 ± 0.06 | 2.7 ± 0.21 | 2.57 ± 0.06 | 3.05 ± 0.12 | 2.73 ± 0.10 | 1.76 ± 0.08 | 2.62 ± 0.11 | 0.66 ± 0.07 |
1-Octen-3-ol | 1454 | 1456N,STD | HOL6PL | 224.83 ± 11.43 | 284.53 ± 6.04 | 235.95 ± 13.28 | 286.51 ± 6.95 | 288.35 ± 6.06 | 339.26 ± 2.58 | 250.38 ± 3.13 | 211.23 ± 2.12 |
2,6-Dimethyl-7-octen-2-ol | 1463 | 1474N | HOL7PL | 2.30 ± 0.08 | 2.64 ± 0.11 | 2.05 ± 0.12 | 3.29 ± 0.25 | 2.74 ± 0.12 | 3.58 ± 0.21 | 3.07 ± 0.08 | 1.87 ± 0.06 |
1-Octanol | 1546 | 1561N | HOL8 | 2.65 ± 0.06 | 4.46 ± 0.14 | 3.61 ± 0.13 | 5.29 ± 0.16 | 4.75 ± 0.10 | 7.08 ± 0.09 | 5.42 ± 0.10 | 5.04 ± 0.09 |
(R)-Linalool | 1536 | 1552N | HOL9 | ND | 2.92 ± 0.21 | 3.15 ± 0.14 | 7.26 ± 0.11 | 6.70 ± 0.12 | 14.27 ± 0.42 | 8.63 ± 0.11 | 9.11 ± 0.17 |
1-Hepten-4-ol | 1558 | 1585N | HOL10PL | 5.26 ± 0.14 | 8.44 ± 0.14 | 7.30 ± 0.12 | 9.07 ± 0.48 | 9.10 ± 0.16 | 11.90 ± 1.88 | 8.60 ± 0.11 | 7.53 ± 0.12 |
Terpinen-4-ol | 1595 | 1594N | HOL11 | ND | ND | 0.71 ± 0.07 | 1.04 ± 0.11 | 1.25 ± 0.12 | 1.09 ± 0.18 | 1.22 ± 0.05 | 0.94 ± 0.06 |
(Z)-2-Octen-1-ol | 1564 | 1547N | HOL12 | ND | 3.07 ± 0.17 | 3.08 ± 0.14 | 4.65 ± 0.69 | 16.77 ± 1.95 | 8.35 ± 1.1 | 5.84 ± 0.11 | 5.28 ± 0.04 |
(E)-2-Octen-1-ol | 1613 | 1603N | HOL13PL | 12.91 ± 1.54 | 17.48 ± 0.67 | 13.46 ± 1.26 | 17.29 ± 1.27 | 18.31 ± 1.52 | 21.76 ± 1.35 | 16.27±0.06 | 13.55 ± 0.55 |
2,6-Dimethyl-3,7-octadiene-2,6-diol | 1985 | 1969N | HOL14 | 5.49 ± 0.57 | 6.06 ± 0.15 | 4.56 ± 0.72 | 5.48 ± 0.65 | 5.10 ± 0.23 | 6.22 ± 0.45 | 4.55 ± 0.15 | 5.76 ± 0.12 |
256.45 ± 13.97 | 334.65 ± 1.70 | 277.72 ± 16.14 | 346.39 ± 11.08 | 362.44 ± 10.73 | 422.31 ± 8.61 | 309.47 ± 4.12 | 264.06 ± 3.50 | ||||
Ketones | |||||||||||
3-Octanone | 1244 | 1240N | ONE1 | 1.22 ± 0.1 | 1.33 ± 0.09 | 1.13 ± 0.19 | 0.84 ± 0.09 | 1.01 ± 0.07 | 2.31 ± 0.18 | 1.65 ± 0.08 | ND |
1-Octen-3-one | 1287 | 1280N | ONE2 | 0.97 ± 0.15 | 0.53 ± 0.06 | 0.59 ± 0.06 | 0.68 ± 0.08 | ND | 0.68 ± 0.06 | 0.45 ± 0.07 | ND |
2-Methyl-3-octanone | 1310 | 1322N | ONE3 | ND | 6.06 ± 0.35 | 6.02 ± 0.14 | 6.36 ± 0.14 | 5.74 ± 0.14 | 6.88 ± 0.09 | 4.84 ± 0.12 | ND |
6-Methyl-5-hepten-2-one | 1330 | 1339N, STD | ONE4PL | 2.99 ± 0.14 | 4.52 ± 0.11 | 4.17 ± 0.17 | 5.62 ± 0.41 | 5.46 ± 0.15 | 7.21 ± 0.20 | 5.48 ± 0.16 | 5.66 ± 0.20 |
(E)-3-Octen-2-one | 1338 | 1396N | ONE5PL | 2.42 ± 0.10 | 7.04 ± 0.09 | 6.64 ± 0.19 | 6.48 ± 0.10 | 5.53 ± 0.32 | 3.08 ± 0.15 | 6.14 ± 0.21 | 4.52 ± 0.15 |
5-Ethyl-6-undecanone | 1399 | 1429N | ONE6 | ND | 16.06 ± 0.28 | 14.45 ± 1.10 | 16.25 ± 0.67 | 21.16 ± 2.32 | 35.41 ± 2.11 | 28.57 ± 1.98 | 26.17 ± 1.06 |
2-Decanone | 1487 | 1493N | ONE7 PL | 3.47 ± 0.18 | 18.24 ± 0.81 | 16.50 ± 0.56 | 22.40 ± 1.42 | 21.9 ± 1.16 | 44.67 ± 2.49 | 30.48 ± 1.17 | 30.12 ± 1.04 |
(+)-2-Bornanone | 1505 | 1528N | ONE8PL | 25.51 ± 2.54 | 33.91 ± 1.23 | 27.62 ± 2.62 | 35.57 ± 1.12 | 35.84 ± 2.68 | 43.34 ± 1.45 | 33.10 ± 2.74 | 27.30 ± 0.84 |
2-Undecanone | 1589 | 1592N | ONE9 | ND | 2.04 ± 0.13 | 1.80 ± 0.16 | 3.31 ± 0.26 | ND | 3.91 ± 0.14 | 3.40 ± 0.19 | 2.23 ± 0.10 |
Carvone | 1720 | 1728N | ONE10 | 0.41 ± 0.08 | ND | ND | ND | ND | ND | ND | ND |
Geranyl acetone | 1854 | 1858N | ONE11 PL | 0.34 ± 0.02 | 1.15 ± 0.14 | 1.08 ± 0.16 | 1.66 ± 0.12 | 1.83 ± 0.12 | 2.02 ± 0.11 | 1.42 ± 0.04 | 1.50 ± 0.11 |
37.33 ± 3.3 | 90.86 ± 3.28 | 80.02 ± 5.34 | 99.17 ± 4.40 | 98.46 ± 6.96 | 149.5 ± 6.98 | 115.53 ± 6.75 | 97.51 ± 3.50 | ||||
Aldehydes | |||||||||||
Butanal | 865 | 867N | DE1 | ND | 1.32 ± 0.09 | 1.35 ± 0.13 | 1.41 ± 0.15 | 1.76 ± 0.08 | 2.50 ± 0.16 | 1.80 ± 0.06 | 3.05 ± 0.12 |
3-Methylbutanal | 896 | 900N | DE2PL | 10.46 ± 0.99 | 8.72 ± 0.11 | 10.02 ± 0.76 | 15.51 ± 1.42 | 11.62 ± 1.25 | 15.15 ± 0.20 | 17.04 ± 0.25 | 21.49 ± 1.25 |
Pentanal | 975 | 979N,STD | DE3 | 1.35 ± 0.05 | 2.16 ± 0.15 | 2.16 ± 0.17 | 2.56 ± 0.13 | 2.89 ± 0.14 | 3.94 ± 0.10 | 2.86 ± 0.07 | 3.12 ± 0.12 |
Hexanal | 1077 | 1078N,STD | DE4PL | 12.05 ± 0.15 | 41.33 ± 1.59 | 32.62 ± 1.95 | 35.35 ± 1.92 | 38.16 ± 2.22 | 45.04 ± 1.23 | 30.17 ± 1.14 | 25.56 ± 1.96 |
Heptanal | 1171 | 1183N,STD | DE5 | ND | 61.22 ± 2.64 | 55.39 ± 1.72 | 54.41 ± 1.28 | 61.82 ± 2.18 | 35.30 ± 1.35 | 47.46 ± 2.00 | 21.68 ± 1.75 |
Octanal | 1278 | 1291N,STD | DE6PL | 1.77 ± 0.05 | 10.05 ± 1.56 | 9.78 ± 1.35 | 12.33 ± 1.07 | 11.6 ± 1.15 | 15.93 ± 1.69 | 12.70 ± 0.79 | ND |
(E)-2-Heptenal | 1287 | 1318N | DE7 | ND | 7.50 ± 1.01 | 4.70 ± 0.48 | 9.31 ± 1.15 | 5.75 ± 0.1 | 11.61 ± 1.77 | 8.63 ± 0.75 | 21.76 ± 0.62 |
Nonanal | 1384 | 1396N,STD | DE8 PL | 5.44 ± 0.06 | 21.67 ± 1.59 | 21.64 ± 1.6 | 26.86 ± 1.31 | 28.37 ± 1.87 | 32.91 ± 2.86 | 25.52 ± 1.5 | 25.19 ± 1.05 |
(E)-2-Octenal | 1420 | 1427N | DE9 | ND | 4.00 ±0.16 | 1.67 ± 0.09 | 2.94 ± 0.11 | 2.55 ± 0.12 | ND | ND | ND |
Decanal | 1486 | 1498N | DE10 | ND | ND | 1.54 ± 0.06 | 1.79 ± 0.14 | ND | ND | 1.86 ± 0.20 | ND |
Benzaldehyde | 1513 | 1515N,STD | DE11PL | 6.03 ± 0.13 | 9.52 ± 0.97 | 13.16 ± 0.24 | 17.66 ± 0.83 | 21.47 ± 0.83 | 22.49 ± 2.92 | 18.26 ± 0.53 | 14.01 ± 0.18 |
Benzeneacetaldehyde | 1635 | 1640N | DE12 | 1.31 ± 0.06 | 5.19 ± 0.67 | 4.54 ± 0.30 | 6.46 ± 0.92 | 7.43 ± 0.47 | 10.55 ± 0.88 | 7.22 ± 0.29 | 7.13 ± 0.64 |
2-Butyl-2-octenal | 1662 | 1653N | DE13 | 1.53 ± 0.10 | 2.08 ± 0.15 | 2.52 ± 0.24 | ND | ND | ND | ND | ND |
39.94 ± 1.59 | 174.77 ±10.68 | 161.09 ± 9.10 | 186.58 ± 10.44 | 193.41 ± 10.39 | 195.44 ± 13.15 | 173.51 ± 7.58 | 142.99 ± 7.69 | ||||
Nitrogen-Containing Compounds | |||||||||||
2-Pentylpyridine | 1570 | 1554N | NC1 | ND | ND | ND | 2.41 ± 0.34 | ND | ND | 1.44 ± 0.07 | 2.26 ± 0.08 |
1-Furfurylpyrrole | 1792 | 1820 | NC2PL | ND | ND | ND | ND | ND | 1.03 ± 0.1 | 0.94 ± 0.06 | 2.23 ± 0.14 |
Ethylpyrazine | 1329 | 1323N | NC3 | ND | ND | ND | ND | ND | ND | ND | 0.56 ± 0.08 |
Methylpyrazine | 1264 | 1263N | NC4 | ND | ND | ND | ND | 0.93 ± 0.1 | 0.83 ± 0.09 | 1.15 ± 0.11 | 1.26 ± 0.03 |
3-Ethyl-2,5-dimethylpyrazine | 1446 | 1447N | NC5 | ND | ND | 1.7 ± 0.13 | 3.22 ± 0.14 | 1.41 ± 0.13 | 6.69 ± 0.18 | 5.24 ± 0.12 | 1.71 ± 0.09 |
2-Ethyl-6-methylpyrazine | 1369 | 1363N | NC6PL | ND | 0.65 ± 0.10 | 0.7 ± 0.05 | 0.67 ± 0.08 | 0.93 ± 0.12 | 7.50 ± 0.15 | 8.31 ± 0.30 | 6.43 ± 0.14 |
2-Formylpyrrole | 1716 | 1711F | NC7PL | ND | ND | ND | 2.56 ± 0.08 | 2.91 ± 0.13 | 2.77 ± 0.15 | 0.56 ± 0.07 | 2.73 ± 0.09 |
1-Methyl-2-pyrrolidinone | 1649 | 1646 | NC8PL | ND | ND | ND | ND | ND | 1.31 ± 0.11 | 1.05 ± 0.09 | 5.52 ± 0.35 |
0 ± 0 | 0.65 ± 0.10 | 2.4 ± 0.18 | 8.85 ± 0.64 | 6.18 ± 0.48 | 20.12 ± 0.78 | 18.68 ± 0.82 | 22.69 ± 0.98 | ||||
Sulfur-Containing Compounds | |||||||||||
3-Methyl-2-thiophenecarboxaldehyde | 1770 | 1765N | SC1 | ND | ND | ND | ND | ND | ND | ND | 2.26 ± 0.09 |
3-Methylthiophene | 1082 | 1106N | SC2PL | ND | ND | ND | ND | ND | 3.34 ± 0.11 | 3.14 ± 0.06 | 7.62 ± 0.11 |
2-Propylthiophene | 1227 | 1238N | SC3PL | ND | ND | ND | ND | ND | ND | 0.50 ± 0.03 | 0.88 ± 0.11 |
2-Methyl-5-propylthiophene | 1301 | 1314N | SC4PL | ND | 0.76 ± 0.08 | 0.68 ± 0.04 | 1.00 ± 0.08 | 0.78 ± 0.07 | 2.17 ± 0.09 | 1.66 ± 0.07 | ND |
3-Thiophenecarboxaldehyde | 1668 | 1666N | SC5PL | ND | ND | ND | ND | ND | 1.51 ± 0.08 | 1.82 ± 0.10 | 4.03 ± 0.12 |
2-Thiophenecarboxaldehyde | 1687 | 1678N | SC6PL | ND | ND | 0.75 ± 0.11 | 1.86 ± 0.10 | 1.24 ± 0.13 | 4.55 ± 0.13 | 3.67 ± 0.12 | 6.35 ± 0.09 |
Methyl furfuryl disulfide | 1721 | 1721N | SC7 | ND | ND | 0.94 ± 0.09 | ND | 2.94 ± 0.12 | ND | 3.15 ± 0.13 | 5.33 ± 0.30 |
3-Methyl-2-Thiophenecarboxaldehyde | 1770 | 1765N | SC8 | ND | ND | ND | ND | ND | ND | ND | 1.26 ± 0.08 |
5-Methyl-2-thiophenecarboxaldehyde | 1800 | 1785N | SC9PL | ND | ND | ND | ND | ND | 4.83 ± 0.10 | 4.82 ± 0.11 | 9.59 ± 0.26 |
Thieno(2,3-b)thiophene | 1857 | 1843F | SC10PL | ND | ND | ND | ND | 1.71 ± 0.08 | 1.46 ± 0.07 | 1.61 ± 0.11 | 4.09 ± 0.14 |
2,5-Thiophenedicarboxaldehyde | 1907 | 1833N | SC11PL | ND | ND | ND | 0.87 ± 0.07 | 0.94 ± 0.09 | 1.97 ± 0.05 | 1.58 ± 0.13 | 2.84 ± 0.08 |
Thiazole | 1244 | 1265N | SC12 | ND | ND | 0.49 ± 0.02 | 0.46 ± 0.05 | 3.40 ± 0.12 | 3.08 ± 0.14 | ND | 4.73 ± 0.41 |
2-Acetylthiazole | 1641 | 1667N | SC13PL | ND | ND | 15.65 ± 1.24 | 35.63 ± 2.25 | 38.19 ± 1.85 | 44.09 ± 1.90 | 52.13 ± 6.07 | 72.43 ± 1.22 |
Benzothiazole | 1959 | 1968N | SC14PL | ND | ND | ND | ND | ND | 2.04 ± 0.11 | 1.64 ± 0.25 | 1.44 ± 0.09 |
2-Pentylthiazolidine | 1828 | 1838N | SC15PL | ND | ND | ND | 0.85 ± 0.09 | 0.94 ± 0.09 | 1.85 ± 0.06 | 4.58 ± 0.09 | 3.40 ± 0.04 |
3,3′-Dithiobis(2-methyl)-furan | 2120 | 2124N | SC16PL | ND | ND | ND | ND | ND | 0.18 ± 0.01 | 0.95 ± 0.09 | 1.14 ± 0.08 |
0 ± 0 | 0.76 ± 0.08 | 18.51 ± 1.50 | 40.67 ± 2.64 | 50.14 ± 2.55 | 71.07 ± 2.84 | 81.26 ± 7.35 | 127.40 ± 3.22 | ||||
Furans | |||||||||||
3-Phenylfuran | 1849 | 1872N | OC1PL | 4.45 ± 0.15 | ND | ND | 1.35 ± 0.11 | 2.11 ± 0.10 | 4.23 ± 0.07 | 4.57 ± 0.07 | 9.21 ± 0.22 |
2-Butylfuran | 1122 | 1122N | OC2 | ND | ND | ND | 0.47 ± 0.06 | 0.28 ± 0.07 | 0.52 ± 0.04 | 0.53 ± 0.06 | 0.47 ± 0.06 |
2-Pentylfuran | 1216 | 1235N | OC3PL | ND | 21.66 ± 1.52 | 22.22 ± 1.63 | 48.11 ± 1.56 | 30.46 ± 1.80 | 56.16 ± 2.17 | 44.66 ± 4.45 | 15.37 ± 0.65 |
2-Heptylfuran | 1425 | 1429N | OC4 | 5.64 ± 0.24 | ND | 4.38 ± 0.12 | 5.51 ± 0.43 | 6.33 ± 0.50 | 5.94 ± 0.10 | 4.28 ± 0.36 | 2.64 ± 0.08 |
2-Octylfuran | 1509 | 1519N | OC5PL | ND | ND | ND | 2.08 ± 0.21 | 1.45 ± 0.07 | 1.98 ± 0.16 | 2.19 ± 0.18 | 3.20 ± 0.05 |
3-Furaldehyde | 1457 | 1455N | OC6PL | ND | ND | ND | ND | ND | 1.74 ± 0.09 | 2.48 ± 0.32 | 11.56 ± 1.36 |
2(5H)-Furanone | 1743 | 1745N | OC7 | ND | ND | ND | ND | ND | 0.50 ± 0.03 | 0.54 ± 0.06 | ND |
10.09 ± 0.39 | 21.66 ± 1.52 | 26.60 ± 1.75 | 57.52 ± 2.37 | 40.63 ± 2.54 | 71.07 ± 2.66 | 59.25 ± 5.50 | 42.45 ± 2.42 | ||||
Others | |||||||||||
Anethole | 1823 | 1809N | AN | 0.47 ± 0.06 | 1.13 ± 0.11 | 0.63 ± 0.09 | 1.59 ± 0.13 | 1.42 ± 0.06 | 1.15 ± 0.15 | 1.33 ± 0.21 | 1.21 ± 0.12 |
Eucalyptol | 1195 | 1211N | EUPL | 48.40 ± 2.26 | 50.95 ± 1.47 | 40.27 ± 1.26 | 48.34 ± 0.91 | 47.89 ± 2.54 | 63.71 ± 1.36 | 44.07 ± 3.08 | 15.45 ± 1.37 |
α-Pinene | 1040 | 1043N | PIN | 2.43 ± 0.13 | ND | ND | ND | ND | ND | ND | ND |
D-Limonene | 1168 | 1189N | LIMPL | 84.30 ± 3.59 | ND | 1.75 ± 0.07 | 7.07 ± 0.14 | 5.52 ± 0.54 | 4.54 ± 0.27 | 6.67 ± 0.33 | 5.26 ± 0.13 |
Bornyl acetate | 1573 | 1567N | BAT | 1.35 ± 0.09 | 1.61 ± 0.15 | 1.40 ± 0.03 | ND | 3.50 ± 0.48 | 4.85 ± 0.13 | 2.35 ± 0.22 | 1.02 ± 0.11 |
Octanoic acid | 2064 | 2070N | OTA | ND | ND | ND | ND | ND | ND | ND | 1.40 ± 0.04 |
Phenol | 1995 | 2008N | PHE | ND | ND | 0.60 ± 0.06 | 0.68 ± 0.07 | 0.98 ± 0.11 | 1.08 ± 0.07 | 0.85 ± 0.13 | 0.76 ± 0.06 |
136.95 ± 6.13 | 53.69 ± 1.73 | 44.65 ± 1.51 | 57.68 ± 1.25 | 59.31 ± 3.73 | 75.33 ± 1.98 | 55.27 ± 3.97 | 25.10 ± 1.83 |
Sensory Attributes | F-Values | |||||
---|---|---|---|---|---|---|
Sample (S) | Panelist (P) | Replication (R) | S × P | P × R | S × R | |
(df = 8) | (df = 15) | (df = 3) | (df = 120) | (df = 45) | (df = 24) | |
Caramel-like | 413.52 *** | 0.75 | 18.39 *** | 1.72 *** | 2.16 ** | 1.16 |
Mushroom-like | 197.20 *** | 1.17 | 11.09 *** | 2.57 *** | 1.58 * | 0.65 |
Meat-like | 455.16 *** | 1.42 | 1.92 | 2.10 *** | 1.35 | 1.14 |
Continuity | 166.60 *** | 0.92 | 0.56 | 1.91 *** | 1.48 | 2.93 **** |
Umami | 212.44 *** | 1.09 | 3.23 | 2.24 *** | 1.07 | 1.50 |
Bitterness | 404.31 *** | 1.27 | 4.79 * | 3.22 *** | 1.48 | 0.70 |
Samples | Mean Score | |||||
---|---|---|---|---|---|---|
Caramel-Like | Mushroom-Like | Meat-Like | Continuity | Umami | Bitterness | |
MH | 1.5 a | 3.6 a | 1.1 a | 3.2 b | 1.5 a | 8.1 f |
MRP100 | 3.3 b | 5.1 b | 3.5 b | 2.0 a | 2.3 b | 6.4 e |
MRP110 | 3.6 b,c | 4.6 b | 4.7 c | 3.6 b | 2.5 b | 6.7 e |
MRP115 | 4.1 c | 5.5 c | 5.6 d | 5.5 d | 3.5 c | 5.5 d |
MRP120 | 4.7 d | 6.4 d | 5.0 c,d | 5.0 c,d | 3.9 c | 4.8 c |
MRP125 | 5.9 f | 7.7 e | 5.8 d,e | 6.4 e | 4.9 d,e | 4.7 c |
MRP130 | 5.3 e | 4.8 b,c | 6.3 e | 5.8 d | 4.4 d | 3.3 b |
MRP140 | 6.0 f | 3.3 a | 6.9 f | 4.3 c | 5.6 e | 2.7 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yu, J.; Cui, H.; Xia, S.; Zhang, X.; Yang, B. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate. Molecules 2018, 23, 247. https://doi.org/10.3390/molecules23020247
Chen X, Yu J, Cui H, Xia S, Zhang X, Yang B. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate. Molecules. 2018; 23(2):247. https://doi.org/10.3390/molecules23020247
Chicago/Turabian StyleChen, Xiao, Jingyang Yu, Heping Cui, Shuqin Xia, Xiaoming Zhang, and Baoru Yang. 2018. "Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate" Molecules 23, no. 2: 247. https://doi.org/10.3390/molecules23020247
APA StyleChen, X., Yu, J., Cui, H., Xia, S., Zhang, X., & Yang, B. (2018). Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate. Molecules, 23(2), 247. https://doi.org/10.3390/molecules23020247