Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluations
2.3. Molecular Docking Studies
3. Materials and Methods
3.1. Chemistry
3.2. Biological Evaluations
3.2.1. Antibacterial and Antifungal Activity (Agar Well Diffusion Assay)
3.2.2. Determination of the Minimum Inhibitory Concentration (MIC)
3.3. Molecular Docking Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, S.; Babu, B.V. Extraction of Pyridine-3-carboxylic Acid Using 1-Dioctylphosphoryloctane (TOPO) with Different Diluents: Equilibrium Studies. J. Chem. Eng. Data 2009, 54, 2669–2677. [Google Scholar] [CrossRef]
- Yadav, R.; France, M.; Younis, N.; Hama, S.; Ammori, B.J.; Kwok, S.; Soran, H. Extended-release niacin with laropiprant: A review on efficacy, clinical effectiveness and safety. Expert Opin. Pharmacother. 2012, 13, 1345–1362. [Google Scholar] [CrossRef] [PubMed]
- Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: Meta-analysis of randomised controlled trials including 117 411 patients. BMJ (Clin. Res.) 2014, 349, 4379–4391. [Google Scholar] [CrossRef] [PubMed]
- Bruckert, E.; Labreuche, J.; Amarenco, P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 2010, 210, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Fang, D.; Hou, X.; Le, Y.; Fang, J.; Wen, F.; Gong, W.; Chen, K.; Wang, J.M.; Su, S.B. HCV Peptide (C5A), an Amphipathic α-Helical Peptide of Hepatitis Virus C, Is an Activator of N-Formyl Peptide Receptor in Human Phagocytes. J. Immunol. 2011, 186, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Ruchala, P.; Navab, M.; Jung, C.; Hama-Levy, S.; Micewicz, E.D.; Luong, H.; Reyles, J.E.; Sharma, S.; Waring, A.J.; Fogelman, A.M.; et al. Oxpholipin 11D: An anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS ONE 2010, 5, e10181. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, F.; Wang, A.; Li, H.; Wang, Q.; Zeng, Z.; Wang, S.; Xie, T. Recent progress in the chemo-enzymatic peptide synthesis. Afr. J. Pharm. Pharacol. 2010, 4, 721–730. [Google Scholar]
- Burrows, L.L.; Stark, M.; Chan, C.; Glukhov, E.; Sinnadurai, S.; Deber, C.M. Activity of novel non-amphipathic cationic antimicrobial peptides againstCandidaspecies. J. Antimicrob. Chemother. 2006, 57, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumari, V.; Singh, S.; Nagaraj, R. Antibacterial activities of synthetic peptides corresponding to the carboxy-terminal region of human beta-defensins 1-3. Peptides 2006, 27, 2607–2613. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial Peptides for Therapeutic Applications: A Review. Molecules 2012, 17, 12276–12286. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sonksen, C.P.; Ludvigsen, S.; Raventos, D.; Buskov, S.; Christensen, B.; De Maria, L.; et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Van’t Hof, W.; Veerman, E.C.; Helmerhorst, E.J.; Amerongen, A.V. Antimicrobial peptides: Properties and applicability. Biol. Chem. 2001, 382, 597–619. [Google Scholar] [CrossRef]
- Kimmerlin, T.; Seebach, D. 100 years of peptide syntheses: Ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. J. Pept. Res. 2005, 65, 229–260. [Google Scholar] [CrossRef] [PubMed]
- Monbaliu, J.M.; Katritzky, A.R. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem. Commun. 2012, 48, 11601–11622. [Google Scholar] [CrossRef] [PubMed]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Disc. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Castanho, M.; Santos, N.C. Peptide Drug Discovery and Development Translational Research in Academia and Industry, 1st ed.; Wiley-VCH: Weinheim, Germany, 2011; p. 390. [Google Scholar]
- Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. Peptide Folding Induces High and Selective Affinity of a Linear and Small β-Peptide to the Human Somatostatin Receptor 4. J. Med. Chem. 2001, 44, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Naglah, A.M.; Moustafa, G.O.; Al-Omar, M.A.; Al-Salem, H.S.A.; Hozzein, W.N. Synthesis, Characterization andInVitroAntimicrobial Investigation of Novel Amino Acids and Dipeptides Based on Dibenzofuran-2-Sulfonyl-Chloride. J. Comput. Theor. Nanosci. 2017, 14, 3183–3190. [Google Scholar] [CrossRef]
- Al-Salem, H.S.A.; Naglah, A.M.; Moustafa, G.O.; Mahmoud, A.Z.; Al-Omar, M.A. Synthesis of Novel Tripeptides Based on Dibenzofuran-2-Sulfonyl-[Aromatic and Hydroxy Aromatic Residues]: Towards Antimicrobial and Antifungal Agents. J. Comput. Theor. Nanosci. 2017, 14, 3958–3966. [Google Scholar] [CrossRef]
- Naglah, A.M.; Awad, H.M.; Bhat, M.A.; Al-Omar, M.A.; Amr, A.E. Microwave-Assisted Synthesis and Antimicrobial Activity of Some Novel Isatin Schiff Bases Linked to Nicotinic Acid via Certain Amino Acid Bridge. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Abd El Rahman, S.E.; Eissa, A.M.F.; Naglah, A.M. Synthesis, Physicochemical Properties and Biological Evaluation of Some Peptide Candidates by Use of Liquid Phase Method as Potential Antimicrobial and Surface Active Agents. J. Pharmacol. 2015, 11, 726–731. [Google Scholar] [CrossRef]
- Naglah, A.M.; Khalifa, N.M.; Al-Omar, M.A.; Awad, H.M.; Amr, A.E. In vitro Antimicrobial Activity of Some Newly Synthesized Polypeptide Candidates. Dig. J. Nanomater. Biostruct. 2014, 9, 433–442. [Google Scholar]
- Abo-Ghalia, M.H.; Moustafa, G.O.; Alwasidi, A.S.; Naglah, A.M. Cytotoxic Investigation of Isophthaloyl Cyclopentapeptides. Lat. Am. J. Pharm. 2017, 36, 1957–1962. [Google Scholar]
- Moustafa, G.O.; El-Sawy, A.A.; Abo-Ghalia, M.H. Synthesis of novel cyclopeptide candidates: I-cyclo-[Nα-isophthaloyl-bis-(Glycine-amino acid)-L-lysine] derivatives with expected anticancer activity. Egypt. J. Chem. 2013, 5, 473–494. [Google Scholar]
- Naglah, A.M.; Shinwari, Z.; Bhat, M.A.; Al-tahhan, M.; Al-omar, M.A.; Al-dhfyan, A. Targeting leukemic side population cells by isatin derivatives of nicotinic acid amide. J. Biol. Regul. Homeost. Agents 2016, 30, 353–363. [Google Scholar] [PubMed]
- Bhat, M.A.; Al-dhfyan, A.; Naglah, A.M.; Khan, A.A.; Al-Omar, M.A. Targeting leukemic side population cells by isatin derivatives of nicotinic acid amide. Molecules 2015, 20, 18246–18263. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.S.; Moustafa, G.O.; Awad, H.M. Synthesis and in vitro anticancer activity of pyrazolo[1,5-a]pyrimidines and pyrazolo [3,4-d] [1, 2, 3] triazines. Synth. Commun. 2017, 47, 1963–1972. [Google Scholar] [CrossRef]
- Takhi, M.; Sreenivas, K.; Reddy, C.K.; Munikumar, M.; Praveena, K.; Sudheer, P.; Rao, B.N.; Ramakanth, G.; Sivaranjani, J.; Mulik, S.; et al. Discovery of azetidine based ene-amides as potent bacterial enoyl ACP reductase (FabI) inhibitors. Eur. J. Med. Chem. 2014, 84, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Panicker, C.Y.; Varghese, H.T.; Manjula, P.S.; Sarojini, B.K.; Narayana, B.; War, J.A.; Srivastava, S.K.; Van Alsenoy, C.; Al-Saadi, A.A. FT-IR, HOMO–LUMO, NBO, MEP analysis and molecular docking study of 3-Methyl-4-{(E)-[4-(methylsulfanyl)-benzylidene] amino} 1H-1, 2, 4-triazole-5 (4H)-thione. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Kini, S.G.; Bhat, A.R.; Bryant, B.; Williamson, J.S.; Dayan, F.E. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. Eur. J. Med. Chem. 2009, 44, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Hirschbeck, M.W.; Kuper, J.; Lu, H.; Liu, N.; Neckles, C.; Shah, S.; Wagner, S.; Sotriffer, C.A.; Tonge, P.J.; Kisker, C. Structure of the Yersinia pestisFabVenoyl-ACP reductase and its interaction with two 2-pyridone inhibitors. Structure 2012, 20, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Pathan, N.B.; Rahatgaonkar, A.M. Solid supported microwave induced synthesis of imidazole–pyrimidine hybrids: Antimicrobial evaluation and docking study as 14DM-CPY51 inhibitors. Arab. J. Chem. 2016, 9, S100–S108. [Google Scholar] [CrossRef]
- Cao, X.; Chen, C.; Lu, W.; Ke, S. Chiral β-arylalkyl-1H-1, 2, 4-triazoles as demethylase inhibitors: Biological evaluation and its stereoselective interaction with sterol 14α-demethylase from Penicilliumdigitatum. Pestic. Biochem. Physiol. 2011, 99, 189–193. [Google Scholar] [CrossRef]
- Pishawikar, S.A.; More, H.N. Synthesis, docking and in-vitro screening of mannich bases of thiosemicarbazide for anti-fungal activity. Arab. J. Chem. 2017, 10, S2714–S2722. [Google Scholar] [CrossRef]
- Saha, S.; Priyadharshini, A.; Dhanasekaran, D.; Thajuddin, N.; Chandraleka, S.; Chandramohan, G.; Panneerselvam, A. Preclinical evaluation and molecular docking of 4-phenyl-1-Napthyl phenyl acetamide (4P1NPA) from Streptomyces sp. DPTB16 as a potent antifungal compound. Comput. Boil. Med. 2012, 42, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L.; Cui, S.; Liang, Y.; Zhang, X. Synthesis and Anti-hypertensive Effects of the Twin Drug of Nicotinic Acid and Quercetin Tetramethyl Ether. Molecules 2014, 19, 4791–4801. [Google Scholar] [CrossRef] [PubMed]
- Dalton, N.; Gordon, C.P.; Boyle, T.P.; Vandegraaf, N.; Deadman, J.; Rhodes, D.I.; Coates, J.A.; Pyne, S.G.; Keller, P.A.; Bremner, J.B. The discovery of allyl tyrosine based tripeptides as selective inhibitors of the HIV-1 integrase strand-transfer reaction. Org. Biomol. Chem. 2016, 14, 6010–6023. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Lohb, H.S.; Wiartc, C.; Khooa, T.J.; Lima, K.H.; Ting, K.N. Optimal methods for evaluating antimicrobial activities from plant extracts. J. Microbiol. Methods 2011, 84, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Valgas, C.; De Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef]
- Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M.A.C.; Stoeckli-Evans, H.; Hostettmann, K. Antibacterial phloroglucinols and flavonoids from Hypericum brasiliense. Phytochemistry 1995, 40, 1447–1452. [Google Scholar] [CrossRef]
- Mac Lowry, D.J.; Jaqua, M.J.; Selepak, S.T. Detailed Methodology and Implementation of a Semiautomated Serial Dilution Microtechnique for Antimicrobial Susceptibility Testing. Appl. Microbiol. 1970, 20, 46–53. [Google Scholar]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnOnanoparticle suspensions on a broad spectrum of microorganisms. FEMS Fems Microbiol Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Molegro Virtual Docker (MVD 2013.6.0.0), Molegro Bioinformatics Solutions. 2013. Available online: http://www.molegro.com (accessed on 15 October 2013). (In Danish).
- Kerwin, S.M. Computer Software Review: Chem Bio Office ultra 2010 suite. J. Am. Chem. Soc. 2010, 132, 2466–2467. [Google Scholar] [CrossRef] [PubMed]
- Marvinsketch, “Version 6.1.0, Chemaxon Company Cheminformatics Technology Products Services”. 2013. Available online: http://www.chemaxon.com/ (accessed on 10 October 2013).
- Banfi, E.; Scialino, G.; Zampieri, D.; Mamolo, M.G.; Vio, L.; Ferrone, M.; Fermeglia, M.; Paneni, M.S.; Pricl, S. Antifungal and antimycobacterial activity of new imidazole and triazole derivatives. A combined experimental and computational approach. J. Antimicrob. Chemother. 2006, 58, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Stana, A.; Enache, A.; Vodnar, D.C.; Nastasă, C.; Benedec, D.; Ionuț, I.; Login, C.; Marc, G.; Oniga, O.; Tiperciuc, B. New thiazolyl-triazoleschiff bases: Synthesis and evaluation of the anti-candida potential. Molecules 2016, 21, 1595. [Google Scholar] [CrossRef] [PubMed]
- Nastasa, C.; Vodnar, D.C.; Ionuţ, I.; Stana, A.; Benedec, D.; Tamaian, R.; Oniga, O.; Tiperciuc, B. Antibacterial Evaluation and Virtual Screening of New Thiazolyl-Triazole Schiff Bases as Potential DNA-Gyrase Inhibitors. Int. J. Mol. Sci. 2018, 19, 222. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compounds | Test Organisms | |||
---|---|---|---|---|
Bacteria | Fungi | |||
Gram-Positive | Gram-Negative | Unicellular | Filamentous | |
B. subtilis | E. Coli | C. albicans | A. niger | |
Inhibition zone (mm) | ||||
4 | 29 | 30 | 28 | 16 |
5 | 20 | 19 | 25 | 20 |
6 | 16 | 15 | 17 | 00 |
7 | 20 | 20 | 18 | 00 |
8 | 18 | 17 | 18 | 00 |
9 | 30 | 15 | 30 | 00 |
10 | 20 | 20 | 18 | 00 |
Standard Antimicrobial Antibiotics | ||||
NA = 30 µg | 20 | 16 | 00 | 00 |
S = 10 µg | 14 | 00 | 12 | 00 |
NV = 30 µg | 29 | 30 | 00 | 00 |
T = 30 µg | 30 | 27 | 00 | 00 |
CDZ = 30 µg | 00 | 20 | 00 | 00 |
VA = 30 µg | 21 | 23 | 00 | 00 |
Ny = 100 µg | 00 | 00 | 14 | 15 |
CLT = 50 µg | 00 | 00 | 12 | 10 |
FLC = 25 µg | 00 | 00 | 13 | 11 |
Compounds | Moldock Score with Enoyl Reductase from E. coli (PDB 1C14) | Moldock Score with Cytochrome P450 14-α-Sterol Demethylase (Cyp51) from Candida (PDB 5TZ1) |
---|---|---|
4 | −117 | 107 |
5 | −147 | 147 |
6 | −156 | 151 |
7 | −139 | 140 |
8 | −153 | 161 |
9 | −142 | 151 |
10 | −171 | 179 |
Reference | −127 (triclosan) | 133 (fluconazole) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, G.; Khalaf, H.; Naglah, A.; Al-Wasidi, A.; Al-Jafshar, N.; Awad, H. Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide. Molecules 2018, 23, 761. https://doi.org/10.3390/molecules23040761
Moustafa G, Khalaf H, Naglah A, Al-Wasidi A, Al-Jafshar N, Awad H. Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide. Molecules. 2018; 23(4):761. https://doi.org/10.3390/molecules23040761
Chicago/Turabian StyleMoustafa, Gaber, Hemat Khalaf, Ahmed Naglah, Asma Al-Wasidi, Nawal Al-Jafshar, and Hassan Awad. 2018. "Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide" Molecules 23, no. 4: 761. https://doi.org/10.3390/molecules23040761
APA StyleMoustafa, G., Khalaf, H., Naglah, A., Al-Wasidi, A., Al-Jafshar, N., & Awad, H. (2018). Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide. Molecules, 23(4), 761. https://doi.org/10.3390/molecules23040761