Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats
Abstract
:1. Introduction
2. Results
2.1. Preparation and Characterization of BA-LP
2.2. In Vitro Release of BA from BA-LP
2.3. Pharmacokinetics Study
2.3.1. HPLC Analyses
Selectivity
Linearity
Precision and Accuracy
Stability
2.3.2. In Vivo Pharmacokinetic Evaluation
2.3.3. Tissue Distribution
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of BA-LP Liposomes
4.3. Physicochemical Characterization of BA-LP
4.4. Entrapment Efficiency Study
4.5. In Vitro Release Study
4.6. Pharmacokinetics and Tissue Distribution Studies
4.6.1. HPLC Analyses
Chromatographic Conditions
Calibration Curve
4.6.2. Animals
4.6.3. The MCAO Model
4.6.4. Animal Experiment
4.6.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hwang, Y.S.; Shin, C.Y.; Huh, Y.; Ryu, J.H. Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sci. 2002, 71, 2105–2117. [Google Scholar] [CrossRef]
- Xu, J.; Murakami, Y.; Matsumoto, K.; Tohda, M.; Watanabe, H.; Zhang, S.; Yu, Q.; Shen, J. Protective effect of Oren-gedoku-to (Huang-Lian-Jie-Du-Tang) against impairment of learning and memory induced by transient cerebral ischemia in mice. J. Ethnopharmacol. 2000, 73, 405–413. [Google Scholar] [CrossRef]
- Xiao, P.-G.; Liu, C.-X. Pharmacology, pharmacokinetics and toxicology of Chinese traditional medicine for stroke therapy. Asian J. Drug Metab. Pharmacokinet. 2005, 2, 83–124. [Google Scholar]
- Yu, Y.; Yang, Y.-J.; Tao, Y.-G. Effect of baicalin and dexamethasone on cytokines in brain tissue of infectious brain edema. Bull. Hum. Med. Univ. 2000, 25, 519–521. [Google Scholar]
- Yang, Y.; Zhu, C.-Y.; Chen, X. The protective effects of baicalin on pertussis bacilli-induced brain edema in rats. Natl. Med. J. China 1998, 78, 630–632. [Google Scholar]
- Wang, R.-T.; Shen, X.-B.; Yu, Q. Protective effects of scutellarria baicalensis stem-leaf total flavonid on the growth of human cervical carcinoma cell in vitro. Shandong Med. 2005, 45, 15–16. [Google Scholar]
- Chang, W.-T.; Shao, Z.-H.; Yin, J.-J.; Mehendale, S.; Wang, C.Z.; Qin, Y.; Li, J.; Chen, W.J.; Chien, C.T.; Becker, L.B.; et al. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. Eur. J. Pharmacol. 2007, 566, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Zhang, X.-M.; Wang, J.-Y.; Li, Q.; Wang, Z.-Y.; Xu, F.-Y.; Ma, J.; Liu, Z. Protective effect of Baicalin on focal cerebral ischemia-reperfusion injury in rats. Chin. Pharm. J. 2007, 42, 743–748. [Google Scholar]
- Li, W.-H.; Zhu, L.-Q.; Wang, S.-R.; Niu, F.-L.; Cui, W.; Li, P.-T. Effects of Baicalin and gardenoside on oxygen-glucose deprivation and reperfusion injury in neurocytes. Chin. Pharm. J. 2004, 39, 344–346. [Google Scholar]
- Jung, S.-H.; Kang, K.D.; Ji, D.; Fawcett, R.J.; Safa, R.; Kamalden, T.A.; Osborne, N.N. The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cell and lipid peroxidation to brain membranes. Neurochem. Int. 2008, 53, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-J.; Li, P.; Wang, Z.; Li, P.-T.; Zhang, W.-S.; Sun, Z.-H.; Zhang, X.-J.; Wang, Y.-Y. A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury. Brain Res. 2006, 1123, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Je, Y.-J.; Yang, M.; Jiang, X.-H.; Ma, J.-H. Pharmacokinetics of baicalin-phospholipid complex in rat plasma and brain tissues after intranasal and intravenous administration. Pharmazie 2011, 66, 374–377. [Google Scholar] [PubMed]
- Aithal, B.K.; Sunil Kumar, M.R.; Rao, B.-N.; Upadhya, R.; Prabhu, V. Evaluation of pharmacokinetic, biodistribution, pharmacodynamic, and toxicity profile of free juglone and its sterically stabilized liposomes. J. Pharm. Sci. 2011, 100, 3517–3528. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Bi, Y.; Sun, Y.-T.; Hao, F.; Lu, J.-H.; Meng, Q.-F.; Lee, R.-J.; Tian, Y.-P.; Xie, J. Pharmacokinetics of a liposomal formulation of doxorubicin in rats. Saudi Pharm. J. 2017, 25, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.-F.; Pan, L.-M.; Zhu, H.-X.; Zhang, Q.-C.; Guo, L.-W. Comparative pharmacokinetics of baicalin in plasma after oral administration of Huang-Lian-Jie-Du-Tang or pure baicalin in MCAO and sham-operated rats. Fitoterapia 2010, 81, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Knowland, D.; Arac, A.; Sekiguchi, K.J.; Hsu, M.; Lutz, S.E.; Perrino, J.; Steinberg, G.K.; Barres, B.A.; Nimmerjahn, A.; Agalliu, D. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier break down in stroke. Neuron 2014, 82, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, K.E.; Witt, K.A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 2008, 32, 200–219. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, H.; Lei, J.; Tan, W.; Hu, X.; Zou, G. Antitumor activity of chloroform fraction of Scutellaria barbata and its active constituents. Phytother. Res. 2007, 21, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-B.; Guan, Q.-G.; Chen, W.; Hu, X.-M.; Li, L. Novel nanoliposomal delivery system for polydatin: Preparation, characterization, and in vivo evaluation. Drug Des. Dev. Ther. 2015, 9, 1805–1813. [Google Scholar]
- Wang, X.-H.; Deng, L.-Y.; Cai, L.-L.; Zhang, X.-Y.; Zheng, H.; Deng, C.-Y.; Duan, X.-M.; Zhao, X.; Wei, Y.-Q.; Chen, L.-J. Preparation, Characterization, Pharmacokinetics, and Bioactivity of Honokiol-in-Hydroxypropyl-β-Cyclodextrin-in-Liposome. J. Pharm. Sci. 2011, 100, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-S.; Hu, P.-Y.; Li, D.-X.; He, M.-Z.; Rao, X.-Y.; Luo, X.-J.; Wang, Y.-S.; Wang, Y.-R. Formulations, Hemolytic and Pharmacokinetic Studies on Saikosaponin A and Saikosaponin D Compound Liposomes. Molecules 2015, 20, 5889–5907. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Jiang, W.; Tan, M.; Xing, J.-G.; He, C.-H. Improved oral bioavailability of total flavonoids of Dracocephalum moldavica via composite phospholipid liposomes: Preparation, in-vitro drug release and pharmacokinetics in rats. Pharmacogn. Mag. 2016, 12, 313–318. [Google Scholar] [PubMed]
- Li, J.-X.; Han, L.-L.; Chao, J.-B. Preparation and characterization of the inclusion complex of baicalein with γ-cyclodextrin: An antioxidant ability study. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 247–254. [Google Scholar] [CrossRef]
- Li, B.; Wen, M.; Li, W.; He, M.; Yang, X.; Li, S. Preparation and characterization of baicalin-poly-vinylpyrrolidone coprecipitate. Int. J. Pharm. 2011, 408, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Wang, F.; Wang, X.; Zhang, D.; Bi, Y.; Gao, Y.; Zhao, X.; Zhang, Q. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur. J. Pharm. Sci. 2012, 47, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-M.; Guo, J.-M.; Zheng, X.-L.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.-K.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomed. 2014, 9, 3623–3630. [Google Scholar] [Green Version]
- Zhao, L.; Wei, Y.; Huang, Y.; He, B.; Zhou, Y.; Fu, J. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation. Int. J. Nanomed. 2013, 8, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- He, X.-H.; Xing, D.-M.; Ding, Y.; Li, Y.-P.; Xu, L.-Z.; Du, L.-J. Effects of cerebral ischemia-reperfusion on pharmacokinetic fate of paeoniflorin after intravenous administration of Paeoniae Radix extract in rats. J. Ethnopharmacol. 2004, 94, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Lu, Y.; Hu, J.-C.; Gong, Z.-P.; Yang, W.; Wang, A.-M.; Zheng, J.; Liu, T.; Chen, T.-T.; Hu, J.; et al. Pharmacokinetic Comparison of Scutellarin and Paeoniflorin in Sham-Operated and Middle Cerebral Artery Occlusion Ischemia and Reperfusion Injury Rats after Intravenous Administration of Xin-Shao Formula. Molecules 2016, 21, 1191. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.-W.; Zhao, M.; Liu, H.-X.; Wang, L.-Y.; Zhang, X.-T. Pharmacokinetic Effects of Baicalin on Cerebral Ischemiareperfusion after i.v. Administration in Rats. Chin. Herb. Med. 2012, 4, 53–57. [Google Scholar]
- Pan, L.-M.; Qiu, B.-H.; Li, H.; Zeng, M.-F.; Zhu, H.-X.; Zhang, Q.-C.; Guo, L.-W.; Qian, Z.-L. In-vivo studies on the pharmacokinetics of berberine on middle cerebral artery occlusion rat and sham-operated rat. Afr. J. Pharm. Pharmacol. 2011, 5, 1824–1831. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Samples | Regression Equation | r | Range (μg/mL) |
---|---|---|---|
Plasma | Y = 0.2115X − 0.1743 | 0.999 | 0.11–54.58 |
Heart | Y = 0.0443X + 0.0052 | 0.999 | 0.054–13.64 |
Liver | Y = 0.0315X + 0.0017 | 0.999 | 0.054–13.64 |
Spleen | Y = 0.0824X + 0.006 | 0.999 | 0.011–54.58 |
Lung | Y = 0.0973X − 0.0016 | 0.999 | 0.054–5.46 |
Kidney | Y = 0.05X − 0.0114 | 0.999 | 0.054–27.29 |
Brain | Y = 0.1117X − 0.0388 | 0.999 | 0.054–27.29 |
Samples | Concentration (μg/mL) | Intra-Day (n = 5) | Inter-Day (n = 3) | ||
---|---|---|---|---|---|
RSD (%) | Accuracy (%) | RSD (%) | Accuracy (%) | ||
Plasma | 40.94 | 5.31 | 89.76 ± 5.31 | 7.30 | 91.56 ± 8.22 |
27.29 | 6.98 | 89.57 ± 6.97 | 7.69 | 91.56 ± 8.22 | |
0.22 | 7.06 | 89.72 ± 7.06 | 6.47 | 88.67 ± 6.43 | |
Heart | 21.83 | 7.50 | 92.08 ± 7.51 | 6.76 | 96.89 ± 11.23 |
13.64 | 7.41 | 92.12 ± 7.41 | 6.73 | 95.02 ± 11.06 | |
0.11 | 7.19 | 89.44 ± 7.19 | 7.77 | 91.56 ± 8.22 | |
Liver | 10.92 | 6.99 | 92.18 ± 6.99 | 6.50 | 87.99 ± 6.75 |
5.46 | 6.49 | 91.42 ± 6.48 | 6.80 | 94.04 ± 11.03 | |
0.11 | 7.21 | 90.27 ± 7.21 | 7.84 | 90.59 ± 8.79 | |
Spleen | 40.94 | 8.27 | 89.26 ± 7.21 | 5.52 | 93.63 ± 8.77 |
27.29 | 4.47 | 89.17 ± 7.21 | 3.51 | 91.35 ± 3.78 | |
0.02 | 8.71 | 91.19 ± 5.72 | 9.17 | 92.01 ± 8.20 | |
Lung | 4.09 | 5.83 | 91.13 ± 5.83 | 5.52 | 93.63 ± 8.77 |
2.73 | 4.72 | 91.09 ± 4.72 | 3.51 | 91.35 ± 3.78 | |
0.11 | 6.69 | 89.91 ± 6.69 | 8.05 | 89.99 ± 9.12 | |
Kidney | 21.83 | 7.73 | 91.74 ± 7.72 | 8.19 | 89.98 ± 9.07 |
13.64 | 7.85 | 89.96 ± 7.85 | 8.32 | 89.98 ± 9.07 | |
0.11 | 9.98 | 89.54 ± 9.98 | 9.62 | 93.92 ± 9.01 | |
Brain | 21.83 | 5.55 | 90.24 ± 5.55 | 6.42 | 94.60 ± 11.30 |
13.64 | 8.29 | 91.23 ± 8.29 | 7.47 | 86.79 ± 7.43 | |
0.11 | 7.25 | 90.09 ± 7.25 | 6.75 | 87.74 ± 6.96 |
BA | BA-LP | |||
---|---|---|---|---|
Normal Rats | MCAO Rats | Normal Rats | MCAO Rats | |
t1/2z, min | 146.01 (16.99) | 66.02 (20.87) | 239.92 (116.18) | 189.98 (20.00) |
Cmax, µg/mL | 17.56 (2.84) | 24.28 (3.92) | 37.21 (6.72) | 52.48 (8.18) |
AUC0–t, min·g/mL | 428.10 (55.04) | 652.45 (79.77) | 2266.38 (383.88) | 5295.98 (338.67) |
AUC0–∞, min·µg/mL | 607.50 (93.26) | 769.55 (62.83) | 2676.03 (556.03) | 6216.73 (507.66) |
Vz, mL/kg | 6311.81 (794.22) | 2260.37 (814.52) | 2286.06 (698.53) | 796.09 (88.72) |
Cl, mL/(min·kg) | 30.26 (5.11) | 23.51 (1.88) | 6.96 (1.39) | 2.91 (0.25) |
MRT0–t, min | 68.82 (4.87) | 65.15 (5.77) | 102.32 (2.88) | 139.75 (9.28) |
MRT0–∞, min | 180.78 (26.28) | 107.71 (24.22) | 216.25 (75.92) | 230.39 (26.98) |
Time (min) | Concentration in Tissues (μg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Heart | Liver | Spleen | Lung | Kidney | ||||||
BA | BA-LP | BA | BA-LP | BA | BA-LP | BA | BA-LP | BA | BA-LP | |
15 | 0.34 (0.14) | 0.74 (0.39) | 1.06 (0.16) | 1.76 (0.18) | 0.36 (0.04) | 2.52 (1.90) | 1.09 (0.20) | 2.36 (0.47) | 15.01 (1.44) | 6.51 (1.29) |
30 | 1.29 (0.78) | 1.95 (0.32) | 3.18 (0.34) | 8.75 (2.18) | 0.32 (0.04) | 3.71 (1.04) | 0.96 (0.20) | 1.50 (0.54) | 6.72 (1.71) | 7.10 (2.18) |
60 | 0.36 (0.10) | 4.07 (0.45) | 0.48 (0.16) | 7.53 (1.93) | 0.15 (0.02) | 8.84 (2.59) | 0.41 (0.09) | 2.92 (0.54) | 2.52 (0.44) | 6.77 (1.62) |
90 | 0.20 (0.08) | 4.44 (0.81) | 0.27 (0.18) | 2.21 (0.86) | 0.06 (0.01) | 1.44 (0.78) | 0.23 (0.03) | 0.76 (0.18) | 1.84 (0.32) | 6.49 (0.65) |
120 | 0.10 (0.02) | 0.68 (0.34) | 0.06 (0.01) | 0.99 (0.31) | 0.02 (0.004) | 0.93 (0.33) | 0.12 (0.02) | 0.36 (0.17) | 1.25 (0.20) | 2.21 (0.50) |
240 | ND | 0.43 (0.06) | ND | 1.05 (0.30) | ND | 0.20 (0.06) | ND | 0.18 (0.05) | ND | 0.94 (0.12) |
360 | ND | 0.11 (0.04) | ND | 0.35 (0.18) | ND | 0.11 (0.16) | ND | 0.16 (0.10) | ND | 0.74 (0.15) |
Time (min) | Concentration in Tissues (μg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Heart | Liver | Spleen | Lung | Kidney | ||||||
BA | BA-LP | BA | BA-LP | BA | BA-LP | BA | BA-LP | BA | BA-LP | |
15 | 1.15 (0.12) | 1.92 (0.28) | 2.74 (0.64) | 5.49 (0.72) | 0.29 (0.05) | 3.49 (0.34) | 2.92 (0.21) | 4.37 (0.36) | 11.20 (1.09) | 8.45 (1.20) |
30 | 0.57 (0.07) | 1.22 (0.28) | 1.82 (0.16) | 4.26 (0.26) | 0.13 (0.01) | 2.43 (0.18) | 2.24 (0.21) | 3.04 (0.24) | 6.02 (0.29) | 4.91 (0.43) |
60 | 0.32 (0.03) | 1.81 (0.30) | 1.08 (0.14) | 3.78 (0.62) | 0.06 (0.02) | 6.03 (0.38) | 0.59 (0.12) | 2.03 (0.35) | 2.71 (0.40) | 4.33 (0.53) |
90 | 0.14 (0.03) | 1.54 (0.09) | 0.22 (0.05) | 3.25 (0.43) | 0.05 (0.02) | 3.26 (0.15) | 0.33 (0.03) | 1.56 (0.11) | 0.97 (0.26) | 5.04 (0.59) |
120 | 0.08 (0.03) | 0.96 (0.26) | 0.10 (0.01) | 2.64 (0.25) | 0.01 (0.01) | 1.54 (0.12) | 0.09 (0.01) | 1.21 (0.22) | 0.27 (0.05) | 1.93 (0.17) |
240 | ND | 1.21 (0.32) | ND | 1.56 (0.28) | ND | 1.28 (0.13) | ND | 1.18 (0.10) | ND | 2.46 (0.41) |
360 | ND | 0.76 (0.14) | ND | 1.27 (0.20) | ND | 0.86 (0.23) | ND | 0.69 (0.09) | ND | 1.17 (0.14) |
480 | ND | 0.40 (0.14) | ND | 0.79 (0.21) | ND | 0.66 (0.17) | ND | 0.50 (0.15) | ND | 0.90 (0.28) |
Tissue | Te(BA) (%) | Te(BA-LP) (%) | TI | Ce | RTE (%) |
---|---|---|---|---|---|
Heart | 2.4 | 4.6 | 13.8 | 1.8 | 90.0 |
Liver | 5.7 | 6.4 | 8.2 | 2.0 | 12.8 |
Spleen | 0.6 | 5.7 | 64.7 | 20.9 | 793.1 |
Lung | 5.5 | 4.2 | 5.5 | 1.5 | −23.9 |
Kidney | 21.0 | 9.2 | 3.2 | 0.8 | −55.9 |
Olfactory bulb | 15.7 | 15.2 | 7.0 | 1.2 | −3.2 |
Hippocampus | 14.2 | 12.4 | 6.3 | 1.0 | −13.1 |
Striatum | 17.8 | 26.6 | 10.8 | 1.3 | 49.2 |
Cerebellum | 5.6 | 7.2 | 9.2 | 1.7 | 27.6 |
Cortex | 11.4 | 8.6 | 5.5 | 1.4 | −24.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Feng, L.; Tan, Y.; Xiang, Y.; Zhang, R.; Yang, M. Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats. Molecules 2018, 23, 1747. https://doi.org/10.3390/molecules23071747
Li N, Feng L, Tan Y, Xiang Y, Zhang R, Yang M. Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats. Molecules. 2018; 23(7):1747. https://doi.org/10.3390/molecules23071747
Chicago/Turabian StyleLi, Nan, Lingling Feng, Yujun Tan, Yan Xiang, Ruoqi Zhang, and Ming Yang. 2018. "Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats" Molecules 23, no. 7: 1747. https://doi.org/10.3390/molecules23071747
APA StyleLi, N., Feng, L., Tan, Y., Xiang, Y., Zhang, R., & Yang, M. (2018). Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats. Molecules, 23(7), 1747. https://doi.org/10.3390/molecules23071747