Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines
Abstract
:1. Introduction
2. Results
2.1. Species Identification of Fungal Materials and Analysis of the nrDNA-ITS Sequences
2.2. Development of the SCAR Markers and the Real-Time PCR Assays
2.3. Verification of the SCAR Markers and the Real-Time PCR Assay Using Commercial Products
3. Discussion
4. Materials and Methods
4.1. Fungal Material, DNA Extraction, and Sequencing
4.2. Phylogenetic Analysis
4.3. PCR Amplification of nrDNA-ITS and Species Identification
4.4. Analysis of the nrDNA-ITS Sequences and Development of SCAR Markers
4.5. Establishment of a SYBR Green Real-Time PCR Assay
4.6. Verification of the SCAR Markers and Real-Time PCR Assay Using Commercial Products
4.7. Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuo, H.C.; Su, T.L.; Yang, H.L.; Chen, T.Y. Identification of chinese medicinal fungus Cordyceps sinensis by PCR single stranded confromation polymorphism and phylogenetic relationship. J. Agric. Food Chem. 2005, 53, 3963–3968. [Google Scholar] [CrossRef] [PubMed]
- Korea Institute of Oriental Medicine. Defining Dictionary for Medicinal Herbs. Available online: http://boncho.kiom.re.kr/codex/ (accessed on 6 June 2018). (In Korean).
- Liu, Y.; Wang, X.Y.; Gao, Z.T.; Han, J.P.; Xiang, L. Detection of Ophiocordyceps sinensis and Its Common Adulterates Using Species-Specific Primers. Front. Microbiol. 2017, 8, 1179. [Google Scholar] [CrossRef] [PubMed]
- Korea Food & Drug Administration. Korean Food Standards Codex (Food Material). Available online: https://www.foodsafetykorea.go.kr/portal/safefoodlife/foodMeterial/foodMeterialDB.do?menu_grp=MENU_NEW04&menu_no=2968 (accessed on 6 June 2018). (In Korean)
- Zhou, X.; Gong, Z.; Su, Y.; Lin, J.; Tang, K. Cordyceps fungi: Natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 2009, 61, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.Y.; Chan, G.K.; Xin, G.Z.; Xu, H.; Ku, C.F.; Chen, J.P.; Yao, P.; Lin, H.Q.; Dong, T.T.; Tsim, K.W. Authentication of Cordyceps sinensis by DNA Analyses: Comparison of ITS Sequence Analysis and RAPD-Derived Molecular Markers. Molecules 2015, 20, 22454–22462. [Google Scholar] [CrossRef] [PubMed]
- Inglis, P.W.; Myrian, S.T. Identification and taxonomy of some entomopathogenic Paecilomyces spp.(Ascomycota) isolates using rDNA-ITS sequences. Genet. Mol. Biol. 2006, 29, 132–136. [Google Scholar] [CrossRef]
- Li, S.P.; Yang, F.Q.; Tsim, K.W. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharm. Biomed. Anal. 2006, 41, 1571–1584. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern Analytical Methods for the Detection of Food Fraud and Adulteration by Food Category. J. Sci. Food Agric. 2017, 97, 3877–3896. [Google Scholar] [CrossRef] [PubMed]
- Daria, S.; Rosa, R. DNA Markers for Food Products Authentication. Diversity 2014, 6, 579–596. [Google Scholar]
- Xiang, L.; Song, J.; Xin, T.; Zhu, Y.; Shi, L.; Xu, X.; Pang, X.; Yao, H.; Li, W.; Chen, S. DNA barcoding the commercial Chinese caterpillar fungus. FEMS Microbiol. Lett. 2013, 347, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Pang, X.; Song, J.; Shi, L.; Yao, H.; Han, J.; Leon, C. A renaissance in herbal medicine identification: From morphology to DNA. Biotechnol. Adv. 2014, 32, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Sheorey, R.R.; Tiwati, A. Random amplified polymorphic DNA (RAPD) for identification of herbal materials and medicine—A review. J. Sci. Ind. Res. 2011, 70, 319–326. [Google Scholar]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Moon, B.C.; Yang, S.; Han, K.S.; Choi, G.; Lee, A.Y. Rapid Authentication of the Herbal Medicine Plant Species Aralia continentalis Kitag. and Angelica biserrata CQ Yuan and RH Shan Using ITS2 Sequences and Multiplex-SCAR Markers. Molecules 2016, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Ji, Y.; Kang, Y.M.; Kim, W.J.; Choi, G.; Moon, B.C. Molecular authentication of Pinelliae Tuber and its common adulterants using RAPD-derived multiplex sequence characterized amplified region (multiplex-SCAR) markers. Int. J. Clin. Exp. Med. 2016, 9, 40–50. [Google Scholar]
- Moon, B.C.; Kim, W.J.; Han, K.S.; Yang, S.; Kang, Y.M.; Park, I.; Piao, R. Differentiating Authentic Adenophorae Radix from Its Adulterants in Commercially-Processed Samples Using Multiplexed ITS Sequence-Based SCAR Markers. Appl. Sci. 2017, 7, 660. [Google Scholar] [CrossRef]
- Heubl, G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 2010, 76, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Bhagyawant, S.S. RAPD-SCAR Markers: An Interface Tool for Authentication of Traits. J. Biosci. Med. 2016, 4, 1–9. [Google Scholar] [CrossRef]
- Choi, Y.E.; Ahn, C.H.; Kim, B.B.; Yoon, E.S. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. MEYER. Biol. Pharm. Bull. 2008, 31, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Torelli, A.; Marieschi, M.; Bruni, R. Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control 2014, 36, 126–131. [Google Scholar] [CrossRef]
- Wolff, K.; Schoen, E.D.; Rijn, J.P. Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum. Theor. Appl. Genet. 1993, 86, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Babaei, S.; Talebi, M.; Bahar, M. Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control 2014, 35, 323–328. [Google Scholar] [CrossRef]
- Al-Kahtani, H.A.; Ismail, E.A.; Ahmed, M.A. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques. Food Chem. 2017, 219, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yu, H.X.; Kang, X.H.; Shen, H.M.; Li, C.; Liu, T.G.; Liu, B.; Chen, W.Q. Development of SCAR Markers and an SYBR Green Assay to Detect Puccinia striiformis f. sp. tritici in Infected Wheat Leaves. Plant Dis. 2016, 100, 1840–1847. [Google Scholar]
- Taboada, L.; Sanchez, A.; Sotelo, C.G. A new real-time PCR method for rapid and specific detection of ling (Molva molva). Food Chem. 2017, 228, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Cammà, C.; Di Domenico, M.; Monaco, F. Development and validation of fast Real-Time PCR assays for species identification in raw and cooked meat mixtures. Food Control 2012, 23, 400–404. [Google Scholar] [CrossRef]
- Mano, J.; Nishitsuji, Y.; Kikuchi, Y.; Fukudome, S.I.; Hayashida, T.; Kawakami, H.; Kurimoto, Y.; Noguchi, A.; Kondo, K.; Teshima, R.; et al. Quantification of DNA fragmentation in processed foods using real-time PCR. Food Chem. 2017, 226, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, K.H.; Yang, K.; Bang, K.H.; Yang, T.J. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J. Ginseng Res. 2014, 38, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.S.; Wang, X.L.; Li, Y.; Wang, W.J.; Yang, R.H.; Ren, S.Y.; Yao, Y.J. Development of conventional and nested PCR assays for the detection of Ophiocordyceps sinensis. J. Basic Microbiol. 2013, 53, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zhong, X.; Lei, W.; Zhang, G.; Liu, X. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR. Can. J. Microbiol. 2013, 59, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Li, S.; Peng, Q.; Zhang, G.; Liu, X. A real-time qPCR assay to quantify Ophiocordyceps sinensis biomass in Thitarodes larvae. J. Microbiol. 2013, 51, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; Volume 41, pp. 95–98. Available online: http://brownlab.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf (accessed on 1 August 2018).
- Ganie, S.H.; Upadhyay, P.; Das, S.; Sharma, M.P. Authentication of medicinal plants by DNA markers. Plant Gene 2015, 4, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Bjørnstad, Å.; Ndjiondjop, M. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 2006, 5, 2540–2568. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. PCR Protocols: A Guide to Methods and Applications; Academic Press: New York, NY, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
Sample Availability: Samples of the fungal strains are available from KACC and KCTC and commercial products are available from the authors and the herbarium of KIOM. |
Source | Name | Species Identification | Location | GenBank Number | Gel Lane | |
---|---|---|---|---|---|---|
Registered No. | Registered Name | Current Name | ||||
KACC 43316 | C. militaris | C. militaris | C. militaris | Jeju, Korea | MG833296 | 1 |
KACC 43319 | Youngju, Korea | MG833296 | 2 | |||
KACC 44463 | Cheongyang, Korea | MG833296 | 3 | |||
KCTC 6064 | Unknown, Korea | MG833296 | 4 | |||
KACC 43329 | C. pruinosa | C. pruinosa | C. pruinosa | Cheongyang, Korea | MG833296 | 5 |
KACC 43333 | Hoengseong, Korea | MG833296 | 6 | |||
KACC 43331 | Jecheon, Korea | MG833296 | 7 | |||
KACC 43335 | P. tenuipes | I. tenuipes | I. cicadae | Yanju, Korea | MG833296 | 8 |
KACC 44107 | P. cicadae | I. cicadae | Jeju, Korea | MG833296 | 9 | |
KACC 43336 | P. tenuipes | I. tenuipes | I. tenuipes | Hoengseong, Korea | MG833296 | 10 |
KACC 51995 | Suwon, Korea | MG833296 | 11 | |||
KACC 52194 | Jeju, Korea | MG833296 | 12 | |||
KACC 44476 | P. cicadae | I. cicadae | Inje, Korea | MG833296 | 13 | |
2-2016-F027 | C. sinensis | O. sinensis | O. sinensis | Paro, Bhutan | MG833296 | 14 |
2-2016-F028 | Thimphu, Bhutan | MG833296 | 15 | |||
2-2016-F029 | Unknown, China | MG833296 | 16 | |||
KACC 43338 | P. tenuipes | I. tenuipes | B. bassiana | Pyeongchang, Korea | MG833296 | 17 |
KACC 43334 | P. cicadae | I. cicadae | Jangseong, Korea | MG833296 | 18 |
Species | Constant Length (bp) | Aligned Length (bp) | Intraspecific Variability | Interspecific Variability | GC Content (%) |
---|---|---|---|---|---|
C. militaris | 567 | 611 | 0.0021 ± 0.0013 | 0.1136 ± 0.0534 | 56.57 |
C. pruinosa | 583 | 611 | 0.0000 ± 0.0000 | 0.1062 ± 0.0462 | 57.98 |
I. cicadae | 587 | 611 | 0.0000 ± 0.0000 | 0.0931 ± 0.0691 | 59.11 |
I. tenuipes | 587 | 611 | 0.0000 ± 0.0000 | 0.1093 ± 0.0629 | 59.97 |
O. sinensis | 580 | 611 | 0.0023 ± 0.0020 | 0.2136 ± 0.0095 | 62.24 |
B. bassiana | 569 | 611 | 0.0000 ± 0.0000 | 0.1028 ± 0.0579 | 56.06 |
Primer Name | Primer Sequence (5′→3′) | Amplicon Size (bp) | Species Specificity |
---|---|---|---|
CM F2 | GGCCCCAAACAGTGTATCTAC | 339 | C. militaris |
CM R2 | CCGGTGCGAGTTGGCGTACTA | ||
CM F3 * | CAACCCTTTGTGAACATACCT | 102 | |
CM R3 * | GTAGATACACTGTTTGGGGCC | ||
CP F2 | GACCCCAAACTCTGTTTCTAG | 244 | C. pruinosa |
CP R2 | CCCCGCGAGGAGGGGTCGAGT | ||
CP F1 * | ACTCGACCCCTCCTCGCGGGG | 116 | |
CP R1 * | GTCCCGGTGCGACTGGTGTG | ||
IC F1 | ACGCAACCCTGTATCCATCAG T | 337 | I. cicadae |
IC R1 | TTCCCGGTGCGACTGGTTGT | ||
IC F3 * | ACCCTTCTGTGAACCTACGCATC | 137 | |
IC R3 * | GATTCAGCGAGACTGATGGAT | ||
IT F4 * | CCTTCTGTGAACCTACCCATA | 132 | I. tenuipes |
IT R3 * | GAGCGGCTCACAGATACAGG | ||
IT F3 | CCATACTTGCTTCGGCGGACC | 107 | |
IT R2 | GCTCACAGATACAGGGTTGC | ||
OS F1 * | AGCGTCATCTCAACCCTCGAG | 200 | O. sinensis |
OS R2 * | TGATCCGAGGTCAACTGGAGG | ||
OS F3 | GAACACCACAGCAGTTGCCT | 117 | |
OS R3 | GCTTCTTGACTGAGAGATGCC |
Sample | Ct Value | Efficiency | R2 | Slope | ||||
---|---|---|---|---|---|---|---|---|
15 ng | 1.5 ng | 150 pg | 15 pg | 1.5 pg | ||||
C. militaris | 7.55 | 10.30 | 13.65 | 17.27 | 20.75 | 99 | 0.99759 | −3.337 |
C. pruinosa | 11.27 | 14.02 | 17.60 | 21.28 | 24.46 | 98 | 0.99783 | −3.364 |
I. cicadae | 14.72 | 17.97 | 21.47 | 24.76 | 28.19 | 98 | 0.99990 | −3.372 |
I. tenuipes | 13.89 | 14.62 | 17.50 | 20.88 | 24.55 | 131 | 0.95865 | −2.757 |
O. sinensis | 8.31 | 11.66 | 15.06 | 18.68 | 21.98 | 96 | 0.99981 | −3.434 |
No. | Voucher No. | Product Name (Species) | Product Form | Identification | Quantity (ng/μL) | Country |
---|---|---|---|---|---|---|
1 | 2-2016-F013 | DCHC (not specified) ** | Dried food ingredient | I. tenuipes | 29.8 | Korea |
2 | 2-2016-F014 | Yellow DCHC (not specified) ** | Dried food ingredient | I. tenuipes | 10.8 | Korea |
3 | 2-2016-F015 | Red DCHC (not specified) ** | Dried herbal medicine | C. militaris | 11.4 | Korea |
4 | 2-2016-F016 | DCHC (not specified) ** | Dried herbal medicine | C. militaris | 2.2 | Korea |
5 | 2-2016-F017 | DCHC Cho (not specified) ** | Fresh fruiting body | C. militaris | 6.3 | Korea |
6 | 2-2016-F018 | DCHC (not specified) ** | Fresh fruiting body | C. militaris | 4.7 | Korea |
7 | 2-2016-F019 | DCHC (C. militaris) * | Dried herbal medicine | C. militaris | 1.9 | Korea |
8 | 2-2016-F020 | DCHC (P. japonica) * | Dried food ingredient | I. tenuipes | 7.2 | Korea |
9 | 2-2016-F021 | DCHC (I. tenuipes) * | Dried herbal medicine | I. tenuipes | 11.2 | Korea |
10 | 2-2016-F022 | DCHC (not specified) ** | Dietary supplement (dried powder) | C. militaris | 0.2 | Korea |
11 | 2-2016-F023 | DCHC (C. militaris) * | Dietary supplement (dried powder) | C. militaris | 2.1 | Korea |
12 | 2-2016-F024 | DCHC (I. tenuipes) * | Dietary supplement (mixed pill) | I. tenuipes | 8.2 | Korea |
13 | 2-2016-F025 | DCHC (C. militaris) * | Dietary supplement (mixed pill) | C. militaris | 0.9 | Korea |
14 | 2-2016-F026 | DCHC (not specified) ** | Dried herbal medicine | O. sinensis | 3.4 | Bhutan |
15 | 2-2016-F032 | DCHC (not specified) ** | Dried herbal medicine | O. sinensis | 6.7 | China |
16 | 2-2016-F033 | DCHC (not specified) ** | Dried herbal medicine | O. sinensis | 1.6 | China |
17 | 2-2016-F034 | DCHC (not specified) ** | Dried herbal medicine | O. sinensis | 4.5 | China |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, B.C.; Kim, W.J.; Park, I.; Sung, G.-H.; Noh, P. Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines. Molecules 2018, 23, 1932. https://doi.org/10.3390/molecules23081932
Moon BC, Kim WJ, Park I, Sung G-H, Noh P. Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines. Molecules. 2018; 23(8):1932. https://doi.org/10.3390/molecules23081932
Chicago/Turabian StyleMoon, Byeong Cheol, Wook Jin Kim, Inkyu Park, Gi-Ho Sung, and Pureum Noh. 2018. "Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines" Molecules 23, no. 8: 1932. https://doi.org/10.3390/molecules23081932