Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Lactobacillus plantarum Counts, pH, and Glucose and Fructose Content during Apple Juice Fermentation with L. plantarum ATCC14917
2.2. Changes in Total Antioxidant Capacity of Apple Juice Before and after L. plantarum ATCC14917 Fermentation
2.3. Changes in Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) During Apple Juice Fermentation
2.4. Changes in Apple Phenolic Profile Before and After L. plantarum Fermentation
2.5. Influence of L. plantarum Fermentation on Cellular Antioxidant Activity of Apple Juice Extract in RAW264.7 Cells
3. Materials and Methods
3.1. Microorganisms and Culture Conditions
3.2. Preparation of Apple Juice
3.3. Fermentation of Apple Juice Using Lactobacillus plantarum ATCC14917
3.4. Determination of Viable Cells
3.5. Determination of Glucose and Fructose Content and pH Values
3.6. Preparation of Crude Methanol Extract of Fermented Apple Juice
3.7. Antioxidant Activity of Fermented Apple Juice
3.7.1. DPPH Radical Scavenging Activity
3.7.2. ABTS Radical Scavenging Activity
3.8. Phytochemical Content Analysis
3.8.1. Total Phenolic Content
3.8.2. Total Flavonoid Content
3.9. Chromatographic Profiling of Polyphenols in Apple Juice
3.10. Cell Culture and Cell Viability Test
3.11. Cellular Antioxidant Activity (CAA) Assay
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Liaudanskas, M.; Viškelis, P.; Jakštas, V.; Raudonis, R.; Kviklys, D.; Milašius, A.; Janulis, V. Application of an Optimized HPLC Method for the Detection of Various Phenolic Compounds in Apples from Lithuanian Cultivars. J. Chem. 2014, 2014. [Google Scholar] [CrossRef]
- Kelly, W.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar]
- Wojdyo, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
- Fevrier, H.; Le Quere, J.; Le Bail, G.; Guyot, S. Polyphenol profile, PPO activity and pH variation in relation to colour changes in a series of red-fleshed apple juices. LWT-Food Sci. Technol. 2017, 85, 353–362. [Google Scholar] [CrossRef]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. NATURE 2000, 405, 903–904. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V.; Needs, P.W. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem. 2013, 138, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Shen, J.; Jia, Y.; Li, F.; Ma, W.; Shen, H.; Shen, L.; Lin, X.; Zhang, L.; Dong, X. Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 2013, 29, 235–243. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538. [Google Scholar] [CrossRef]
- DuPont, M.S.; Bennett, R.N.; Mellon, F.A.; Williamson, G. Polyphenols from Alcoholic Apple Cider Are Absorbed, Metabolized and Excreted by Humans. Nutrition 2002, 132, 172–175. [Google Scholar] [CrossRef]
- Borges, G.; Lean, M.E.J.; Roberts, S.A.; Crozier, A. Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food and Funct. 2013, 2013, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Pittman, H.E.; Prior, R.L. Fate of anthocyanins and antioxidant capacity in contents of the gastrointestinal tract of weanling pigs following black raspberry consumption. J. Agric. Food Chem. 2006, 54. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Diaz-Rubio, M.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Hervert-Hernandez, D.; Goni, I. Dietary Polyphenols and Human Gut Microbiota: A Review. Food Rev. Int. 2011, 27, 154–169. [Google Scholar] [CrossRef]
- Ávila, M.; Hidalgo, M.; Sánchez-Moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S. De Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 2009, 42, 1453–1461. [Google Scholar] [CrossRef]
- Fritsch, C.; Jänsch, A.; Ehrmann, M.A.; Toelstede, S.; Vogel, R.F. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr. Microbiol. 2017, 74, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Torres, M.; Reverón, I.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. Characterization of a Feruloyl Esterase from Lactobacillus plantarum. Appl. Environ. Microb. 2013, 79, 5130–5136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Patán, F.; Tabasco, R.; Monagas, M.; Requena, T.; Peláez, C.; Moreno-Arribas, M.V.; Bartolomé, B. Capability of Lactobacillus plantarum IFPL935 To Catabolize Flavan-3-ol Compounds and Complex Phenolic Extracts. J. Agric. Food Chem. 2012, 60, 7142–7151. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; López de Felipe, F.; Gomez-Cordoves, C.; Mancheno, J.M.; Munoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbio. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Amaretti, A.; Leonardi, A.; Raimondi, S.; Simone, M.; Quartieri, A. Potential Impact of Probiotic Consumption on the Bioactivity of Dietary Phytochemicals. J. Agric. Food Chem. 2013, 61, 9551–9558. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Oliver, C.M.; Weerakkody, R.; Singh, T.; Conlon, M.; Borges, G.; Sanguansri, L.; Lockett, T.; Roberts, S.A.; Crozier, A. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radical Biol. Med. 2015, 84, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Chiou, Y.; Wu, J.; Huang, Q.; Shahidi, F.; Wang, Y.; Ho, C.; Pan, M. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J. Funct. Foods 2014, 7, 3–25. [Google Scholar] [CrossRef]
- Zhao, D.; Shah, N. Antiradical and tea polyphenol-stabilizing ability of functional fermented soymilk–tea beverage. Food Chem. 2014, 158, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shah, N. Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion. J. Func. Foods 2016, 20, 182–194. [Google Scholar] [CrossRef]
- Mukerji, P.; Roper, J.M.; Stahl, B.; Smith, A.B.; Burns, F.; Rae, J.C.; Yeung, N.; Lyra, A.; Svärd, L.; Saarinen, M.T.; et al. Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 2016, 92, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Valero-Cases, E.; Nuncio-Jáuregui, N.; Frutos, M.J. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. J. Agric. Food Chem. 2017, 65, 6488–6496. [Google Scholar] [CrossRef]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas. Microorganisms 2017, 5, 23. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Y.; Park, H.; Lee, J.; Park, S.; Yeo, S.; Shin, H.; Holzapfel, W.H. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). Int. J. Food Microbiol. 2014, 191, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Cavoski, I.; Thlien, N.; Vincentini, O.; De Angelis, M.; Silano, M.; Gobbetti, M.; Di Cagno, R. Lactic acid fermentation of cactus cladodes (Opuntia ficus-indica L.) generates flavonoid derivatives with antioxidant and anti-inflammatory properties. PLoS ONE 2016, 11. [Google Scholar]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2010, 27, 123–128. [Google Scholar] [CrossRef]
- Kandler, O.; Weiss, N. Genus lactobacillus. In Bergey’s Manual of Systematic Bacteriology; Holt, J.G., Ed.; Williams and Wilkins: Baltimore, MD, USA, 1986; Volume 2, p. 1219. [Google Scholar]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D.; Shetty, K. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochem. 2017, 59, 141–149. [Google Scholar] [CrossRef]
- Espirito-Santo, A.P.; Carlin, F.; Renard, C.M.G.C. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth?—A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Res. Int. 2015, 78, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Gan, R.; Shah, N.; Wang, M.; Lui, W.; Corke, H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int. J. Food Sci. Technol. 2016, 51, 875–884. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Mahmoodi, M. Fermentation of Barberry Juice to Produce Probiotic Beverage. Curr. Nutr. Food Sci. 2017, 13, 204–211. [Google Scholar]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Mousavia, Z.E.; Mousavia, S.M.; Razavia, S.H.; Hadinejada, M.; Emam-Djomeha, Z.; Mirzapoura, M. Effect of Fermentation of Pomegranate Juice by Lactobacillus plantarum and Lactobacillus acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Rainha, N.; Koci, K.; Coelho, A.V.; Lima, E.; Baptista, J.; Fernandes-Ferreira, M. HPLC–UV–ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants. Phytochemistry 2013, 86, 83–91. [Google Scholar] [CrossRef]
- Dueñas, M.; Fernández, D.; Hernández, T.; Estrella, I.; Muñoz, R. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agr. 2005, 85, 297–304. [Google Scholar] [CrossRef]
- Muñoz, R.; de las Rivas, B.; de Felipe, F.L.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In Fermented Foods in Health and Disease Prevention; Frías, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 4, pp. 63–68. ISBN 978-0-12-802309-9. [Google Scholar]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Hurst, W.J.; Martin, R.A., Jr.; Zoumas, B.L. Application of HPLC to characterization of individual carbohydrates in foods. J. Food Sci. 1979, 44, 892–895. [Google Scholar] [CrossRef]
- Morales-de La Peña, M.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT-Food Sci. Technol. 2010, 43, 872–881. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Xiao, L.; Li, X.; Hu, M. Effect of fermentation parameters and their optimization on the phytochemical properties of lactic-acid-fermented mulberry juice. J. Food Meas. Charact. 2017, 11, 1462–1473. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.; Brighenti, F.; Crozier, A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 2004, 52, 2807–2815. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Lee, V.S.; Tzen, J.T.; Lee, M.R. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J. Agric. Food Chem. 2007, 55, 7462–7468. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Li, Y.; Yu, W.; Zhao, Y.; Hu, X.; Tao, N.-P.; Wang, M. Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells. Food Chem. 2018, 269, 35–42. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | pH | Lactobacillus Counts (log CFU/mL) | Fructose (mg/mL) | Glucose (mg/mL) | DPPH RSA (%) | ABTS RSA (%) | TPC (μg GAE/mL) | TFC (μg RE/mL) |
---|---|---|---|---|---|---|---|---|
0 h-NFAJ | 6.2 ± 0 d | 6.48 ± 0.04 a | 23.89 ± 0.2 0 b | 11.66 ± 0.76 c | 24.95 ± 0.86 a | 41.99 ± 16.41 a | 115.61 ± 1.82 b | 119.21 ± 2.07 d |
24 h-NFAJ | 6.2 ± 0.03 d | 23.31 ± 0.78 b | 11.06 ± 1.18 bc | 25.45 ± 0.16 a | 39.07 ± 4.22 a | 115.62 ± 1.91 b | 119.21 ± 1.59 d | |
24 h-FAJ | 4.36 ± 0.01 c | 7.8 ± 0.14 b | 20.41 ± 1.52 ab | 10.85 ± 1.13 bc | 48.18 ± 1.94 d | 70.4 ± 8.01 c | 111.29 ± 3.21 b | 104.03 ± 5.53 c |
48 h-NFAJ | 6.2 ± 0.01 d | 23.27 ± 0.58 b | 11.46 ± 1.04 bc | 25.95 ± 0.86 a | 42.65 ± 0.93 a | 115.58 ± 1.85 b | 115.87 ± 7.84 d | |
48 h-FAJ | 3.93 ± 0 b | 8.37 ± 0.34 c | 17.63 ± 2.21 a | 9.43 ± 0.13 b | 37.89 ± 0.63 b | 57.02 ± 7.79 b | 90.21 ± 1.77 a | 92.93 ± 4.42 b |
72 h-NFAJ | 6.2 ± 0.01 d | 22.39 ± 0.91 b | 11.36 ± 0.47 bc | 25.64 ± 0.11 a | 41.19 ± 0.56 a | 115.28 ± 1.43 b | 118.54 ± 1.8 d | |
72 h-FAJ | 3.68 ± 0.01 a | 7.85 ± 0.22 b | 16.09 ± 3.76 a | 6.22 ± 0.43 a | 43.95 ± 0.95 c | 70.0 ± 0.47 c | 89.33 ± 4.39 a | 77.7 ± 2.74 a |
Rt (min) | [M − H]− (m/z) | MS/MS (m/z) | Compound | NFAJ (μg/mL) | FAJ (μg/mL) | Changes (%) |
---|---|---|---|---|---|---|
3.38 and 4.01 | 191 | 173, 127 | Quinic acid | N.A. | N.D. | Decrease |
14.38 | 179 | 135 | Caffeic acid | 1.02 | 0.67 | Decrease 34.3% |
14.98 | 289 | 245 | (+)-Catechin | 7.3 | 5.3 | Decrease 27.4% |
15.0 | 289 | 245, 205 | Epicatechin | N.A. | N.A. | Decrease 33.3% |
17.35 | 301 | 185 | Ellagic acid | 0.78 | 0.39 | Decrease 49.7% |
18.01 | 463 | 300, 301 | Quercetin-3-O-galactoside | 4.19 | 2.39 | Decrease 43.0% |
18.32 | 463 | 300, 301 | Quercetin-3-O-glucoside | N.A. | N.D. | Decrease |
21.76 | 435 | 273, 125 | Phlorizin | 2.69 | 0.97 | Decrease 63.9% |
4.61 | 169 | 125 | Gallic acid | 0.70 | 1.42 | Increase 102.9% |
13.18 | 353 | 191, 179, 135 | 3-O-caffeoylquinic acid | N.A. | N.A. | Increase 121.4% |
13.68 | 353 | 191, 179 | 5-O-caffeoylquinic acid | 2.98 | 21.2 | Increase 611.4% |
18.64 | 353 | 173, 179 | Quinic acid conjugate | N.D. | N.A. | Increase |
24.54 | 301 | 179, 151 | Quercetin | 0.76 | 0.93 | Increase 22.4% |
28.61 | 273 | 167 | Phloretin | N.D. | 0.84 | Increase |
19.73 | 433.1 | 301 | Quercetin-3-O-xyloside | N.A. | N.A. | No change |
Sample | CAA Unit (%) |
---|---|
0 h-NFAJ | 21.63 ± 5.28 a |
24 h-NFAJ | 22.29 ± 6.39 a |
24 h-FAJ | 52.28 ± 9.90 b |
48 h-NFAJ | 20.30 ± 5.63 a |
48 h-FAJ | 54.35 ± 8.87 b |
72 h-NFAJ | 20.96 ± 5.87 a |
72 h-FAJ | 58.55 ± 7.19 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. https://doi.org/10.3390/molecules24010051
Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules. 2019; 24(1):51. https://doi.org/10.3390/molecules24010051
Chicago/Turabian StyleLi, Zhongxi, Jing Teng, Yilu Lyu, Xiaoqian Hu, Yueliang Zhao, and Mingfu Wang. 2019. "Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917" Molecules 24, no. 1: 51. https://doi.org/10.3390/molecules24010051
APA StyleLi, Z., Teng, J., Lyu, Y., Hu, X., Zhao, Y., & Wang, M. (2019). Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules, 24(1), 51. https://doi.org/10.3390/molecules24010051