Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery
Abstract
:1. Introduction
2. Scorpion Species from Iran
3. Previous Studies on Drug Discovery of Scorpion Venoms
4. Venomic Studies in Iranian Scorpions and Their Potential in Therapeutic
5. Scorpion Venom and Cancer Therapy
6. Scorpion Toxin and Ion Channels
6.1. Nav or Gated Sodium Channel Specific Toxins
6.2. K+ Channel Specific Scorpion Toxins
6.3. Ca2+ Release-Channel Specific Peptides (Calcins)
6.4. Cl− Channels (CLCs)
7. Antimicrobial Peptides
8. Metalloproteinases
9. Phospholipase A2 (PLA2)
10. Protease and Serine Protease Inhibitors
10.1. Kunitz-Type Inhibitors
10.2. Primary Sequence of Kunitz-Type Inhibitors
10.3. Ascaris-Type Inhibitors
10.4. Primary Sequence of Ascaris-Type Inhibitors
10.5. Functional Diversity of Protease Inhibitors
11. Scorpionism in Iran, a Major Public Health Problem
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dunlop, J.A.; Selden, P.A. Scorpion fragments from the Silurian of Powys, Wales. Arachnology 2013, 16, 27–32. [Google Scholar] [CrossRef]
- Waddington, J.; Rudkin, D.M.; Dunlop, J.A. A new mid-Silurian aquatic scorpion—One step closer to land? Biol. Lett. 2015, 11, 20140815. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A. Ecology. In The Biology of Scorpions; Polis, G.A., Ed.; Stanford University Press: Palo Alto, CA, USA, 1990; p. 587. [Google Scholar]
- Santibáñez-López, C.E.; Francke, O.F.; Ureta, C.; Possani, L.D. Scorpions from Mexico: From species diversity to venom complexity. Toxins 2016, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Shultz, J.W. A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 2007, 150, 221–265. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.P.; Kaluziak, S.T.; Pérez-Porro, A.R.; González, V.L.; Hormiga, G.; Wheeler, W.C.; Giribet, G. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 2014, 31, 2963–2984. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.P.; Fernández, R.; Esposito, L.; González-Santillán, E.; Monod, L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc. R. Soc. B 2015, 282, 20142953. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.P.; Goyffon, M. Epidemiology of scorpionism: A global appraisal. Acta Trop. 2008, 107, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, W.R. Scorpion diversity and distribution; past and present patterns. In Scorpion Venoms, Toxinology; Gopalakrishnakone, P., Possani, L.D., Schwartz, E.F., Rodríguez de la Vega, R.C., Eds.; Springer + Business Media: Dordrecht, The Netherlands, 2015; pp. 3–23. [Google Scholar]
- Smith, J.J.; Vetter, I.; Lewis, R.J.; Peigneur, S.; Tytgat, J.; Lam, A.; Gallant, E.M.; Beard, N.A.; Alewood, P.F.; Dulhunty, A.F. Multiple actions of phi-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proc. Natl. Acad. Sci. USA 2013, 110, 8906–8911. [Google Scholar] [CrossRef]
- King, G.F. Venoms to Drugs: Translating Venom Peptides into Therapeutics. Aust. Biochem. 2013, 44, 13–15. [Google Scholar]
- Rodríguez de la Vega, R.C.; Schwartz, E.F.; Possani, L.D. Mining on scorpion venom biodiversity. Toxicon 2010, 56, 1155–1161. [Google Scholar] [CrossRef]
- Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015, 93, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Safaei-Mahroo, B.; Ghaffari, H.; Fahimi, H.; Broomand, S.; Yazdanian, M.; Najafi-Majd, E.; Hosseinian Yousefkhani, S.S.; Rezazadeh, E.; Hosseinzadeh, M.S.; Nasrabadi, R.; et al. The herpetofauna of Iran: Checklist of taxonomy, distribution and conservation status. Asian Herpetol. Res. 2015, 6, 257–290. [Google Scholar]
- Olivier, G.A. Voyage dans l’Empire Ottoman, l’Egypte et la Perse, fait par Ordre du Gouvernement, Pendant les Six Premières Années de la République; Agasse, C.H., Ed.; Imprimeur-Libraire: Paris, France, 1807; Volume 3, pp. 96–98. [Google Scholar]
- Birula, A.A. Beiträge zur Kenntniss der Scorpionenfauna Ost-Persiens (1. Beitrag). Bull. Acad. Imp. Sci. St.-Pétersbg. Sér. 1900, 12, 355–375. [Google Scholar]
- Birula, A.A. Beitrage zur Kenntniss der Scorpionenfauna Ost-Persiens (2. Beitrag). Bull. Acad. Imp. Sci. St.-Pétersbg. Sér. 1903, 19, 67–80. [Google Scholar]
- Birula, A.A. Beiträge zur Kenntriss der Skorpionenfauna Persien (3. Beiträge). Bull. Imp. Acad. Sci. St.-Pétersbg. Sér. 1905, 23, 119–148. [Google Scholar]
- Birula, A.A. Fauna of Russia and Adjacent Countries. Arachnoidea, Scorpions. Fauna Rossii St. Petersbg. Acad. Sci. Mus. Zool. 1917, 1, 1–224, English translation by Israel Program for Scientific Translations, Jerusalem 1965, 154p. [Google Scholar]
- Fet, V. New for the USSR genus and species of scorpions from Badkhyz, Kraepelinia palpator (Birula, 1903) (Scorpiones, Buthidea). Proc. Acad. Sci. Turkm. 1984, 4, 37–43. (In Russian) [Google Scholar]
- Fet, V. Neohemibuthus zarudnyi (Birula, 1903) from Iran, a senior synonym of N. kinzelbachi Lourenço, 1996 (Scorpiones, Buthidae). Rev. Arachnol. 1997, 12, 65–68. [Google Scholar]
- Fet, V.; Capes, E.M.; Sissom, W.D. A new genus and species of psammophilic scorpion from eastern Iran (Scorpiones: Buthidae). In Scorpions 2001; Gary, M., Polis, A., Fet, V., Selden, P.A., Eds.; British Arachnological Society: Bucks, UK, 2001; pp. 183–189. [Google Scholar]
- Kovařík, F. Results of the Czech Biological Expedition to Iran. Part 2. Arachnida: Scorpiones, with descriptions of Iranobuthus krali gen. n. et sp. n. and Hottentotta zagrosensis sp. n. (Buthidae). Acta Soc. Zool. Bohem. 1997, 61, 39–52. [Google Scholar]
- Kovařík, F.; Navidpour, S.; Soleglad, M.E. Hemiscorpius shahii sp. n. from Iran (Scorpiones: Hemiscorpiidae). Euscorpius 2017, 249, 1–9. [Google Scholar] [CrossRef]
- Kovařík, F.; Yağmur, E.A.; Fet, V.; Hussen, F.S. A review of Orthochirus from Turkey, Iraq, and Iran (Khoozestan, Ilam, and Lorestan Provinces), with descriptions of three new species (Scorpiones: Buthidae). Euscorpius 2019, 278, 1–31. [Google Scholar] [CrossRef]
- Kovařík, F.; Yağmur, E.A.; Moradi, M. Two new Hottentotta species from Iran, with a review of Hottentotta saulcyi (Scorpiones: Buthidae). Euscorpius 2018, 265, 1–14. [Google Scholar] [CrossRef]
- Pocock, R.I. Arachnida. In Fauna of British India Including Ceylon and Burma; Blanford, W.T., Ed.; Taylor and Francis: London, UK, 1900; p. 279. [Google Scholar]
- Werner, F. Reptilien und Gliedertiere aus Persien. Festsch Embrik Strand Riga 1936, 2, 193–204. [Google Scholar]
- Vachon, M. Liste des scorpions connus en Egypte, Arabie, Israël, Liban, Syrie, Jordanie, Turquie, Irak, Iran. Toxicon 1966, 4, 209–218. [Google Scholar] [CrossRef]
- Habibi, T. Liste de scorpions de l’Iran. Bull. Fac. Sci. Teheran Univ. 1971, 2, 42–47, (In French and Farsi). [Google Scholar]
- Farzanpay, R. Knowing Scorpions; Central University Publications: Tehran, Iran, No. 312, Biology, 4, in Farsi, with Latin Index; 1987; p. 231. [Google Scholar]
- Farzanpay, R. A catalogue of the scorpions occurring in Iran, up to January 1986. Rev. Arachnol. 1988, 8, 33–44. [Google Scholar]
- Navidpour, S.; Kovařík, F.; Soleglad, M.E.; Fet, V. Scorpions of Iran (Arachnida, Scorpiones). Part I. Khuzestan Province. Euscorpius 2008, 65, 1–41. [Google Scholar]
- Navidpour, S.; Kovařík, F.; Soleglad, M.E.; Fet, V. Scorpions of Iran (Arachnida, Scorpiones). Part X. Alborz, Markazi and Tehran Provinces with a description of Orthochirus carinatus sp. n. (Buthidae). Euscorpius 2019, 276, 1–20. [Google Scholar] [CrossRef]
- Navidpour, S.; Nayebzadeh, H.H.; Soleglad, M.E.; Fet, V.; Kovařík, F.; Kayedi, M.H. Scorpions of Iran (Arachnida, Scorpiones). Part VI. Lorestan Province. Euscorpius 2010, 99, 1–23. [Google Scholar] [CrossRef]
- Navidpour, S.; Soleglad, M.E.; Fet, V.; Kovařík, F. Scorpions of Iran (Arachnida, Scorpiones). Part II. Bushehr Province. Euscorpius 2008, 67, 1–33. [Google Scholar] [CrossRef]
- Navidpour, S.; Soleglad, M.E.; Fet, V.; Kovařík, F. Scorpions of Iran (Arachnida, Scorpiones). Part IX. Hormozgan Province, with a description of Odontobuthus tavighiae sp. n. (Buthidae). Euscorpius 2013, 170, 1–29. [Google Scholar] [CrossRef]
- Mirshamsi, O.; Sari, A.; Hosseinie, S. History of study and checklist of the scorpion fauna (Arachnida: Scorpiones) of Iran. Prog. Biol. Sci. 2011, 1, 16–28. [Google Scholar]
- Yağmur, E.A.; Moradi, M.; Larti, M.; Lashkari, S. First record of Androctonus robustus Kovařík & Ahmed, 2013 (Scorpiones: Buthidae) for Iran. Zool. Middle East. 2016, 62, 370–372. [Google Scholar]
- Kovařík, F.; Ojanguren Affilastro, A.A. Illustrated catalog of scorpions Part II. Bothriuridae; Chaerilidae; Buthidae I., genera Compsobuthus, Hottentotta, Isometrus, Lychas, and Sassanidotus; Clairon Production: Prague, Czech Republic, 2013; 400p. [Google Scholar]
- Mirshamsi, O. A Biosystematic Approach to Mesobuthus eupeus in Iran. Ph.D. Thesis, University of Tehran, Tehran, Iran, 2010; 200p. [Google Scholar]
- Nejati, J.; Mozafari, E.; Saghafipour, A.; Kiyani, M. Scorpion fauna and epidemiological aspects of scorpionism in southeastern Iran. Asian Pac. J. Trop. Biomed. 2014, 4, S217–S221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, G. A New Species of Odontobuthus (Scorpiones: Buthidae) from Northern Oman. Euscorpius 2010, 96, 1–22. [Google Scholar] [CrossRef]
- Kovařík, F.; Yağmur, E.A.; Fet, V. Review of Hottentotta described by A. A. Birula, with descriptions of two new species and comments on Birula’s collection (Scorpiones: Buthidae). Euscorpius 2019, 282, 1–30. [Google Scholar]
- Fet, V.; Kovařík, F.; Gantenbein, B.; Kaiser, R.C.; Stewart, A.K.; Graham, M.R. Revision of the Mesobuthus caucasicus complex from Central Asia, with descriptions of six new species (Scorpiones: Buthidae). Euscorpius 2018, 255, 1–77. [Google Scholar] [CrossRef]
- Karataş¸, A.; Mouradi-Gharkheloo, M. A new Hemiscorpius Peters, 1861 (Scorpiones: Hemiscorpiidae) from southwestern Iran. Turk. J. Zool. 2013, 37, 15–23. [Google Scholar]
- Mirshamsi, O.; Azghadi, S.; Navidpour, S.; Aliabadian, M.; Kovařík, F. Odontobuthus tirgari sp. nov. (Scorpiones, Buthidae) from the eastern region of the Iranian Plateau. Zootaxa 2013, 3731, 153–170. [Google Scholar] [CrossRef]
- Mirshamsi, O.; Sari, A.; Elahi, E.; Hosseinie, S. Mesobuthus eupeus (Scorpiones: Buthidae) from Iran: A polytypic species complex. Zootaxa 2011, 2929, 1–21. [Google Scholar]
- Teruel, R.; Kovařík, F.; Navidpour, S.; Fet, V. The first record of the genus Anomalobuthus Kraepelin, 1900 from Iran, with description of a new species (Scorpiones: Buthidae). Euscorpius 2014, 192, 1–10. [Google Scholar] [CrossRef]
- Catterall, W.A. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 1995, 64, 493–531. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- Almaaytah, A.; Albalas, Q. Scorpion venom peptides with no disulfide bridges: A review. Peptides 2014, 51, 35–45. [Google Scholar] [CrossRef]
- Bhavya, J.; Francois, N.N.; More, V.S.; More, S.S. Scorpion toxin polyptides as therapeutic agents: An overview. Protein Pept. Lett. 2016, 23, 848–859. [Google Scholar] [CrossRef]
- He, Y.W.; Zhao, R.M.; di, Z.Y.; Li, Z.J.; Xu, X.B.; Hong, W.; Wu, Y.L.; Zhao, H.B.; Li, W.X.; Cao, Z.J. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J. Proteom. 2013, 89, 1–14. [Google Scholar] [CrossRef]
- Schwartz, E.F.; Diego-Garcia, E.; Rodríguez de la Vega, R.C.; Possani, L.D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi(Arachnida: Scorpiones). BMC Genom. 2007, 8, 119. [Google Scholar] [CrossRef]
- Xiao, M.; Ding, L.; Yang, W.; Chai, L.; Sun, Y.; Yang, X.; Li, D.; Zhang, H.; Li, W.; Cao, Z.; et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon 2017, 127, 37–43. [Google Scholar] [CrossRef]
- Veiseh, M.; Gabikian, P.; Bahrami, S.B.; Veiseh, O.; Zhang, M.; Hackman, R.C.; Ravanpay, A.C.; Stroud, M.R.; Kusuma, Y.; Hansen, S.J.; et al. Tumor paint: A chlorotoxin: cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 2007, 67, 6882–6888. [Google Scholar] [CrossRef]
- Sarfo-Poku, C.; Eshun, O.; Lee, K.H. Medical application of scorpion venom to breast cancer: A mini-review. Toxicon 2016, 122, 109–112. [Google Scholar] [CrossRef]
- De Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front. Pharmacol. 2018, 9, 145. [Google Scholar] [CrossRef]
- Shen, B.; Cao, Z.; Li, W.; Sabatier, J.M.; Wu, Y. Treating autoimmune disorders with venom-derived peptides. Expert Opin. Biol. Ther. 2017, 17, 1065–1075. [Google Scholar] [CrossRef]
- Chan, Y.S.; Cheung, R.C.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake venom toxins: Toxicity and medicinal applications. Appl. Microbiol. Biotechnol. 2016, 100, 6165–6181. [Google Scholar] [CrossRef]
- Estève, E.; Smida-Rezgui, S.; Sarkozi, S.; Szegedi, C.; Regaya, I.; Chen, L.; Altafaj, X.; Rochat, H.; Allen, P.; Pessah, I.N.; et al. Critical amino acid residues determine the binding affinity and the Ca2+ release efficacy of maurocalcine in skeletal muscle cells. J. Biol. Chem. 2003, 278, 37822–37831. [Google Scholar] [CrossRef]
- Gurrola, G.B.; Capes, E.M.; Zamudio, F.Z.; Possani, L.D.; Valdivia, H.H. Imperatoxin A, a Cell-Penetrating Peptide from Scorpion Venom, as a Probe of Ca2+Release Channels/Ryanodine Receptors. Pharmaceuticals 2010, 3, 1093–1107. [Google Scholar] [CrossRef]
- Possani, L.D.; Becerril, B.; Delepierre, M.; Tytgat, J. Scorpion toxins specific for Na+channels. Eur. J. Biochem. 1999, 264, 287–300. [Google Scholar] [CrossRef]
- Goudet, C.; Chi, C.W.; Tytgat, J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 2002, 40, 1239–1258. [Google Scholar] [CrossRef]
- Possani, L.D.; Merino, E.; Corona, M.; Bolivar, F.; Becerril, B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 2000, 82, 861–868. [Google Scholar] [CrossRef]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
- Wickenden, A.; Priest, B.; Erdemli, G. Ion channel drug discovery: Challenges and future directions. Future Med. Chem. 2012, 4, 661–679. [Google Scholar] [CrossRef]
- Rodríguez de la Vega, R.C.; Possani, L.D. Overview of scorpion toxins specific for Na+ channels and related peptides: Biodiversity, structure function relationships and evolution. Toxicon 2005, 46, 831–844. [Google Scholar] [CrossRef]
- Martin-Eauclaire, M.F.; Couraud, F. Scorpion neurotoxins: Effects and mechanisms. In Handbook of Neurotoxicity; Chang, L.W., Dyer, R.S., Eds.; Marcel Drekker: New York, NY, USA, 1995; pp. 683–716. [Google Scholar]
- Abdel-Rahman, M.A.; Quintero-Hernández, V.; Possani, L.D. Scorpion venom gland transcriptomics and proteomics: An overview. In Venom Genomics Proteomics; Springer Science+Business Media Dordrecht: Berlin/Heidelberg, Germany, 2016; pp. 105–124. [Google Scholar]
- Morey, S.S.; Kiran, K.M.; Gadag, J.R. Purification and properties of hyaluronidase from Palamneus gravimanus (Indian black scorpion) venom. Toxicon 2006, 47, 188–195. [Google Scholar] [CrossRef]
- Pessini, A.C.; Takao, T.T.; Cavalheiro, E.C.; Vichnewski, W.; Sampaio, S.V.; Giglio, J.R.; Arantes, E.C. A hyaluronidase from Tityus serrulatus scorpion venom: Isolation, characterization and inhibition by flavonoids. Toxicon 2001, 39, 1495–1504. [Google Scholar] [CrossRef]
- Dardevet, L.; Rani, D.; Aziz, T.A.; Bazin, I.; Sabatier, J.M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 2015, 7, 1079–1101. [Google Scholar] [CrossRef]
- Kastin, A. Handbook of Biologically Active Peptides, 2nd ed.; Academic Press: San Diego, CA, USA, 2013; p. 408. [Google Scholar]
- Fu, Y.J.; Yin, L.T.; Liang, A.H.; Zhang, C.F.; Wang, W.; Chai, B.F.; Fan, X.J. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci. Lett. 2007, 412, 62–67. [Google Scholar] [CrossRef]
- Mamelak, A.N.; Jacoby, D.B. Targeted Delivery of Antitumoral Therapy to Glioma and Other Malignancies with Synthetic Chlorotoxin (TM 601). Expert Opin. Drug Deliv. 2007, 4, 175–186. [Google Scholar] [CrossRef]
- Mishal, R.; Tahir, H.M.; Zafar, K.; Arshad, M. Anti-cancerous applications of scorpion venom. Int. J. Biol. Pharm. Res. 2013, 4, 356–360. [Google Scholar]
- Zargan, J.; Sajad, M.; Umar, S.; Naime, M.; Ali, S.; Khan, H.A. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp. Mol. Pathol. 2011, 91, 447–454. [Google Scholar] [CrossRef]
- Zargan, J.; Sajad, M.; Umar, S.; Naime, M.; Ali, S.; Khan, H.A. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol. Cell. Biochem. 2011, 348, 173–181. [Google Scholar] [CrossRef]
- Zargan, J.; Umar, S.; Sajad, M.; Naime, M.; Ali, S.; Khan, H.A. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol. In Vitro 2011, 25, 1748–1756. [Google Scholar] [CrossRef]
- Catterall, W.A.; Cestèle, S.; Yarov-Yarovoy, V.; Yu, F.H.; Konoki, K.; Scheuer, T. Voltage-gated ion channels and gating modifier toxins. Toxicon 2007, 49, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Beneski, D.A.; Catterall, W.A. Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl. Acad. Sci. USA 1980, 77, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.T.; Yarov-Yarovoy, V.; Kahn, R.; Gordon, D.; Gurevitz, M.; Scheuer, T.; Catterall, W.A. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 2011, 108, 15426–15431. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Waxman, S.G. Noncanonical roles of voltage-gated sodium channels. Neuron 2013, 80, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, H.; Zhang, F.; Zhang, C.; Zou, X.; Cao, Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem. Neurosci. 2018, 9, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Cestele, S.; Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000, 82, 883–892. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, X.; Li, T.; Liu, Z. Shellfish toxins targeting voltage-gated sodium channels. Mar. Drugs 2013, 11, 4698–4723. [Google Scholar] [CrossRef]
- Catterall, W.A. Structure and regulation of voltage-gated calcium channels. Annu. Rev. Cell Dev. Biol. 2000, 16, 521–555. [Google Scholar] [CrossRef] [PubMed]
- Patino, G.A.; Isom, L.L. Electrophysiology and beyond: Multiple roles of Na+ channel beta subunits in development and disease. Neurosci. Lett. 2010, 486, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Savio-Galimberti, E.; Gollob, M.H.; Darbar, D. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front. Pharmacol. 2012, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Durek, T.; Vetter, I.; Wang, C.I.; Motin, L.; Knapp, O.; Adams, D.J.; Lewis, R.J.; Alewood, P.F. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1. ACS Chem. Biol. 2013, 8, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Bosmans, F.; Amininasab, M.; Clynen, E.; Cuypers, E.; Zaremirakabadi, A.; Sarbolouki, M.N.; Schoofs, L.; Vatanpour, H.; Tytgat, J. OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltage-gated Na+ channels. FEBS Lett. 2005, 579, 4181–4186. [Google Scholar] [CrossRef] [PubMed]
- Maertens, C.; Cuypers, E.; Amininasab, M.; Jalali, A.; Vatanpour, H.; Tytgat, J. Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae. Mol. Pharmacol. 2006, 70, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, F.; Maertens, C.; Verdonck, F.; Tytgat, J. The poison dart frog’s batrachotoxin modulates Nav1.8. FEBS Lett. 2004, 577, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.S.; Reichling, D.B.; Shuster, M.J.; Levine, J.D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA 1996, 93, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Aboutorabi, A.; Naderi, N.; Gholami Pourbadie, H.; Zolfagharian, H.; Vatanpour, H. Voltage-gated sodium channel modulation by Bothutous Schach venom scorpion. Iran. J. Pharm. Sci. 2016, 12, 55–64. [Google Scholar]
- Vatanpour, H.; Ahmadi, F.; Zare Mirakabadi, A.; Jalali, A. Two Biological Active Fractions Isolated from Buthotus schach (BS) Scorpion Venom Examined on Striated Muscle Preparation, In-vitro. Iran. J. Pharm. Res. 2012, 11, 905–911. [Google Scholar]
- González, C.; Baez-Nieto, D.; Valencia, I.; Oyarzún, I.; Rojas, P.; Naranjo, D.; Latorre, R. K (+) channels: Function-structural overview. Compr. Physiol. 2012, 2, 2087–2149. [Google Scholar]
- Doyle, D.A.; Morais Cabral, J.; Pfuetzner, R.A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, S.H.; Rettig, J.; Graack, H.R.; Pongs, O. Functional characterization of Kv channel beta-subunits from rat brain. J. Physiol. 1996, 493, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Adelman, J.P.; Clapham, D.E.; Jan, L.Y.; Karschin, A.; Kurachi, Y.; Lazdunski, M.; Nichols, C.G.; Seino, S.; Vandenberg, C.A. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol. Rev. 2005, 57, 509–526. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.A.N.; Bayliss, D.A.; Kim, D.; Lesage, F.; Plant, L.D.; Rajan, S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev. 2005, 57, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Gutman, G.A.; Chandy, K.G.; Grissmer, S.; Lazdunski, M.; MacKinnon, L.; Pardo, L.A.; Robertson, G.A.; Rudy, B.; Sanguinetti, M.C.; Stühmer, W.; et al. International union of pharmacology. Liii. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 2005, 57, 473–508. [Google Scholar] [CrossRef]
- Wei, A.D.; Gutman, G.A.; Aldrich, R.; Chandy, K.G.; Grissmer, S.; Wulff, H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev. 2005, 57, 463–472. [Google Scholar] [CrossRef]
- Wulff, H.; Zhorov, B.S. K + channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev. 2008, 108, 1744–1773. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenkov, A.I.; Krylov, N.A.; Chugunov, A.O.; Grishin, E.V.; Vassilevski, A.A. Kalium: A Database of Potassium Channel Toxins from Scorpion Venom. Database 2016. [Google Scholar] [CrossRef]
- Mouhat, S.; Andreotti, N.; Jouirou, B.; Sabatier, J.M. Animal toxins acting on voltage-gated potassium channels. Curr. Pharm. Des. 2008, 14, 2503–2518. [Google Scholar] [CrossRef]
- Bergeron, Z.L.; Bingham, J.P. Scorpion toxins specific for potassium (K) channels: A historical overview of peptide bioengineering. Toxins 2012, 4, 1082–1119. [Google Scholar] [CrossRef]
- Rodríguez de la Vega, R.C.; Possani, L.D. Current views on scorpion toxins specific for K+-channels. Toxicon 2004, 43, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de la Vega, R.C.; Vidal, N.; Possani, L.D. Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A., Ed.; Academic Press: San Diego, CA, USA, 2013; p. 423. [Google Scholar]
- Zhao, Y.; Huang, J.; Yuan, X.; Peng, B.; Liu, W.; Han, S.; He, X. Toxins Targeting the Kv1.3 Channel: Potential Immunomodulators for Autoimmune Diseases. Toxins 2015, 7, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, Y.; Clynen, E.; Jalali, A.; Bosmans, F.; Vatanpour, H.; Schoofs, L.; Tytgat, J. The first potassium channel toxin from the venom of the Iranian scorpion Odonthobuthus doriae. FEBS Lett. 2006, 580, 6254–6258. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, Y.; Vandendriessche, T.; Clynen, E.; Landuyt, B.; Jalali, A.; Vatanpour, H.; Tytgat, J. OdK2, a Kv1.3 channel-selective toxin from the venom of the Iranian scorpion Odonthobuthus doriae. Toxicon 2008, 51, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Srairi-Abid, N.; Shahbazzadeh, D.; Chatti, I.; Mlayah-Bellalouna, S.; Mejdoub, H.; Borchani, L.; Benkhalifa, R.; Akbari, A.; El Ayeb, M. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus. FEBS J. 2008, 275, 4641–4650. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 2011, 3, a003947. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Han, J. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Front. Pharmacol. 2019, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Franzini-Armstrong, C.; Protasi, F. Ryanodine receptors of striated muscles: A complex channel capable of multiple interactions. Physiol. Rev. 1997, 77, 699–729. [Google Scholar] [CrossRef] [PubMed]
- Van Petegem, F. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287, 31624–31632. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.F.; Capes, E.M.; Diego-García, E.; Zamudio, F.Z.; Fuentes, O.; Possani, L.D.; Valdivia, H.H. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 2009, 157, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Naderi Soorki, M.; Galehdari, H.; Baradaran, M.; Jalali, A. First venom gland transcriptomic analysis of Iranian yellow scorpion “Odonthobuthus doriae” with some new findings. Toxicon 2016, 120, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, D.; Rohde, B.H.; King, G.F.; Tal, T.; Sher, D.; Zlotkin, E. The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon 2011, 57, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Shahbazzadeh, D.; Srairi-Abid, N.; Feng, W.; Ram, N.; Borchani, L.; Ronjat, M.; Akbari, A.; Pessah, I.N.; De Waard, M.; El Ayeb, M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem. J. 2007, 404, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Estévez, R.; Jentsch, T.J. CLC chloride channels: Correlating structure with function. Curr. Opin. Struct. Biol. 2002, 12, 531–539. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Stein, V.; Weinreich, F.; Zdebik, A.A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 2002, 82, 503–568. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.; Kelly, E.; Marrion, N.; Peters, J.A.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A.; et al. The concise guide to pharmacology 2015/16: Other ion channels. Br. J. Pharmacol. 2015, 172, 5942–5955. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.H.; Olivetti, P.R.; Fuller, M.D.; Freeman, C.S.; McMaster, D.; French, R.J.; Pohl, J.; Kubanek, J.; McCarty, N.A. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J. Biol. Chem. 2009, 284, 26051–26062. [Google Scholar] [CrossRef] [PubMed]
- Lippens, G.; Najib, J.; Tartar, A.; Lippens, G.; Wodak, S.J. NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels. Biochemistry 1995, 34, 13–21. [Google Scholar] [CrossRef]
- Adjadj, E.; Naudat, V.; Quiniou, E.; Wouters, D.; Sautiére, P.; Craescu, C.T. Solution structure of Lqh-8:6, a toxin-like peptide from scorpion venom. Eur. J. Biochem. 1997, 246, 218–227. [Google Scholar] [CrossRef]
- Ali, S.A.; Stoeva, S.; Schütz, J.; Kayed, R.; Abbasi, A.; Zaidi, Z.H.; Voelter, W. Purification and primary structure of low molecular mass peptides from scorpion (Buthus sindicus) venom. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 121, 323–332. [Google Scholar] [CrossRef]
- Harrison, P.L.; Abdel-Rahman, M.A.; Miller, K.; Strong, P.N. Antimicrobial peptides from scorpion venoms. Toxicon 2014, 88, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.G. Innate immunity and the normal microflora. Immunol. Rev. 2000, 173, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Walker, B.; Zhou, M.; Shaw, C. Molecular cloning of a novel putative potassium channel-blocking neurotoxin from the venom of the North African scorpion, Androctonus amoreuxi. Peptides 2005, 26, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Folan, R.; Kwok, H.; O’Kane, E.J.; Bjourson, A.J.; Shaw, C. Isolation of scorpion (Androctonus amoreuxi) putative alpha neurotoxins and parallel cloning of their respective cDNAs from a single sample of venom. Regul. Pept. 2003, 115, 115–121. [Google Scholar] [CrossRef]
- Anonymous. United Nations Programme on HIV/AIDS. UNAIDS. 20: UNAIDS Report on the Global AIDS Epidemic 2016. 2016. Available online: http://www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016 (accessed on 31 May 2016).
- Huyart, N.; Calvayrac, R.; Briand, J.; Goyffon, M.; Vuillaume, M. Catalatic properties of hemocyanin in helping to account for the scorpion’s radioresistance. Comp. Biochem. Physiol. 1983, 76, 153–159. [Google Scholar] [CrossRef]
- Quéinnec, E.; Gardes-Albert, M.; Goyffon, M.; Ferradini, C.; Vuillaume, M. Antioxidant activity of hemocyanin; a pulse radiolysis study. Biochim. Biophys. Acta 1990, 1041, 153–159. [Google Scholar] [CrossRef]
- Vuillaume, M.; Ducancel, F.; Calvayrac, R.; Rabilloud, T.; Hubert, M.; Goyffon, M. Correlations between the catalase-like activity and the H2O2-ATP production of hæmocyanin and its subunits; implications with the radioresistance of the scorpion Androctonus australis. Comp. Biochem. Physiol. 1989, 92, 17–23. [Google Scholar] [CrossRef]
- Goyffon, M. Hemocyanin. Venoms. Defensins. In Scorpions of the World; Stockmann, R., Ythier, E., Eds.; NAP: Verrières-le-Buisson, France, 2010; pp. 91–111. [Google Scholar]
- Zabihollahi, R.; Bagheri, K.P.; Keshavarz, Z.; Motevalli, F.; Bahramali, G.; Siadat, S.D.; Momen, S.B.; Shahbazzadeh, D.; Aghasadeghi, M.R. Venom Components of Iranian Scorpion Hemiscorpius lepturus Inhibit the Growth and Replication of Human Immunodeficiency Virus 1 (HIV-1). Iran. Biomed. J. 2016, 20, 259–265. [Google Scholar] [PubMed]
- Farajzadeh-Sheikh, A.; Jolodar, A.; Ghaemmaghami, S. Sequence Characterization of cDNA Sequence of Encoding of an Antimicrobial Peptide With No Disulfide Bridge from the Iranian Mesobuthus Eupeus Venomous Glands. Iran. Red Crescent Med. J. 2013, 15, 36–41. [Google Scholar] [CrossRef]
- Imai, K.; Hiramatsu, A.; Fukushima, D.; Pierschbacher, M.D.; Okada, Y. Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem. J. 1997, 322, 809–814. [Google Scholar] [CrossRef]
- Buckley, A. Potential Therapeutic Efficacy of a Novel Metalloproteinase Inhibitor, Extracellular Matrix Protection Factor 1, in Human Osteoarthritic Chondrocyte Primary Cultures. Master’s Thesis, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA, 2016. [Google Scholar]
- Kim, B.J.; Hur, J.W.; Park, J.S.; Kim, J.H.; Kwon, T.H.; Park, Y.K.; Moon, H.J. Expression of matrix metalloproteinase− 2 and− 9 in human ligamentum fl avum cells treated with tumor necrosis factor—α and interleukin-1β. JNS 2016, 24, 428–435. [Google Scholar]
- Giannelli, G.; Falk-Marzillier, J.; Schiraldi, O.; Stetler-Stevenson, W.G.; Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 1997, 277, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Rudolph-Owen, L.A.; Chan, R.; Muller, W.J.; Matrisian, L.M. The matrix metalloproteinase matrilysin influences early stage mammary tumorigenesis. Cancer Res. 1998, 58, 5500–5506. [Google Scholar] [PubMed]
- Xia, X.; Ma, Y.; Xue, S.; Wang, A.; Tao, J.; Zhao, Y.; Zhang, Q.; Liu, R.; Lu, S. Cloning and molecular characterization of BumaMPs1, a novel metalloproteinases from the venom of scorpion Buthus martensi Karsch. Toxicon 2013, 76, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Jahdasani, R.; Rahimi Jamnani, F.; Behdani, M.; Habibi-Anbouhi, M.; Yardehnavi, N.; Shahbazzadeh, D.; Kazemi-Lomedasht, F. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library. Toxicon 2016, 124, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Lomedasht, F.; Khalaj, V.; Bagheri, K.P.; Behdani, M.; Shahbazzadeh, D. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017, 125, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Lomedasht, F.; Shahbazzadeh, D.; Behdani, M. Phylogenetic analysis of metalloprotease from transcriptome of venom gland of Hemiscorpius lepturus. Arch. Biotechnol. Biomed. 2019, 3, 006–0010. [Google Scholar]
- Schaloske, R.H.; Dennis, E.A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 2006, 1761, 1246–1259. [Google Scholar] [CrossRef]
- Shimizu, T.; Ohto, T.; Kita, Y. Cytosolic phospholipase A2: Biochemical properties and physiological roles. IUBMB Life 2006, 58, 328–333. [Google Scholar] [CrossRef]
- De Maria, L.; Vind, J.; Oxenboll, K.M.; Svendsen, A.; Patkar, S. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 2007, 74, 290–300. [Google Scholar] [CrossRef]
- Rouault, M.; Bollinger, J.G.; Lazdunski, M.; Gelb, M.H.; Lambeau, G. Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity. Biochemistry 2003, 42, 11494–11503. [Google Scholar] [CrossRef] [PubMed]
- Six, D.A.; Dennis, E.A. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim. Biophys. Acta 2000, 1488, 1–19. [Google Scholar] [CrossRef]
- Burke, J.E.; Dennis, E.A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid Res. 2009, 50, S237–S242. [Google Scholar] [CrossRef] [PubMed]
- Hariprasad, G.; Kumar, M.; Srinivasan, A.; Kaur, P.; Singh, T.P.; Jithesh, O. Group III phospholipase A2 from the scorpion, Mesobuthus tamulus: Targeting and reversible inhibition by native peptides. Int. J. Biol. Macromol. 2011, 48, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ramanaiah, M.; Parthasarathy, P.R.; Venkaiah, B. Purification and properties of phospholipase A2 from the venom of scorpion, (Heterometrus fulvipes). Biochem Int. 1990, 20, 931–940. [Google Scholar] [PubMed]
- Hariprasad, G.; Singh, B.; Das, U.; Ethayathulla, A.S.; Kaur, P.; Singh, T.P.; Srinivasan, A. Cloning, sequence analysis and homology modeling of a novel phospholipase A2 from Heterometrus fulvipes (Indian black scorpion). DNA Seq. 2007, 18, 242–246. [Google Scholar] [CrossRef]
- Zamudio, F.Z.; Conde, R.; Arévalo, C.; Becerril, B.; Martin, B.M.; Valdivia, H.H.; Possani, L.D. The mechanism of inhibition of ryanodine receptor channels by imperatoxin I, a heterodimeric protein from the scorpion Pandinus imperator. J. Biol. Chem. 1997, 272, 11886–11894. [Google Scholar] [CrossRef]
- Conde, R.; Zamudio, F.Z.; Becerril, B.; Possani, L.D. Phospholipin, a novel heterodimeric phospholipase A2 from Pandinus imperator scp6pion venom. FEBS Lett. 1999, 460, 447–450. [Google Scholar] [CrossRef]
- Valdez-Cruz, N.A.; Batista, C.V.; Possani, L.D. Phaiodactylipin, a glycosylated heterodimeric phospholipase A from the venom of the scorpion Anuroctonus phaiodactylus. Eur. J. Biochem. 2004, 271, 1453–1464. [Google Scholar] [CrossRef]
- Incamnoi, P.; Patramanon, R.; Thammasirirak, S.; Chaveerach, A.; Uawonggul, N.; Sukprasert, S.; Rungsa, P.; Daduang, J.; Daduang, S. Heteromtoxin (HmTx), a novel heterodimeric phospholipase A(2) from Heterometrus laoticus scorpion venom. Toxicon 2013, 61, 62–71. [Google Scholar] [CrossRef]
- Jridi, I.; Catacchio, I.; Majdoub, H.; Shahbazeddah, D.; El Ayeb, M.; Frassanito, M.A.; Ribatti, D.; Vacca, A.; Borchani, L. Hemilipin, a novel Hemiscorpius lepturus venom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo. Toxicon 2015, 105, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Louati, H.; Krayem, N.; Fendri, A.; Aissa, I.; Sellami, M.; Bezzine, S.; Gargouri, Y. A thermoactive secreted phospholipase A(2) purified from the venom glands of Scorpio maurus: Relation between the kinetic properties and the hemolytic activity. Toxicon 2013, 72, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Borchani, L.; Sassi, A.; Shahbazzadeh, D.; Strub, J.; Tounsi-Guetteti, H.; Boubaker, M.; Akbari, A.; Dorsselaer, A.; El Ayeb, M. Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. Toxicon 2011, 58, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Jridi, I.; Catacchio, I.; Majdoub, H.; Shahbazeddah, D.; El Ayeb, M.; Frassanito, M.A.; Solimando, A.; Ribatti, D.; Vacca, A.; Borchani, L. The small subunit of Hemilipin2, a new heterodimeric phospholipase A2 from Hemiscorpius lepturus scorpion venom, mediates the antiangiogenic effect of the whole protein. Toxicon 2017, 126, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Craik, C.S.; Page, M.J.; Madison, E.L. Proteases as therapeutics. Biochem. J. 2011, 435, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.J.; Di, Z.Y.; Wu, Y.L.; Li, W.X. Overview of Scorpion Species from China and Their Toxins. Toxins 2014, 6, 796–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, M.J.; McGowan, P.M.; Gallagher, W.M. Cancer invasion and metastasis: Changing views. J. Pathol. 2008, 214, 283–293. [Google Scholar] [CrossRef]
- Hakim, M.A.; Yang, S. Discoveries of Serine Protease Inhibitors from Scorpions. J. Proteom. Bioinform. 2016, 9, 101–106. [Google Scholar] [CrossRef]
- Laskowski, M., Jr.; Kato, I. Protein inhibitors of proteinases. Annu. Rev. Biochem. 1980, 49, 593–626. [Google Scholar] [CrossRef]
- Ranasinghe, S.; McManus, D.P. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev. Comp. Immunol. 2013, 39, 219–227. [Google Scholar] [CrossRef]
- Wan, H.; Lee, K.S.; Kim, B.Y.; Zou, F.M.; Yoon, H.J.; Je, Y.H.; Li, J.; Jin, B.R. A Spider-derived Kunitz-Type Serine Protease Inhibitor that acts as a Plasmin Inhibitor and an Elastase Inhibitor. PLoS ONE 2013, 8, e53343. [Google Scholar] [CrossRef] [PubMed]
- Gronenborn, A.M.; Nilges, M.; Peanasky, R.J.; Clore, G.M. Sequential resonance assignment and secondary structure determination of the ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors. Biochemistry 1990, 29, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Hu, Y.T.; Yang, W.S.; He, Y.W.; Feng, J.; Wang, B.; Zhao, R.M.; Ding, J.P.; Cao, Z.J.; Li, W.X.; et al. Hg1, novel peptide inhibitor specific for kv1.3 channels from first scorpion kunitz-type potassium channel toxin family. J. Biol. Chem. 2012, 287, 13813–13821. [Google Scholar] [CrossRef] [PubMed]
- Van Gent, D.; Sharp, P.; Morgan, K.; Kalsheker, N. Serpins: Structure, function and molecular evolution. Int. J. Biochem. Cell Biol. 2003, 35, 1536–1547. [Google Scholar] [CrossRef]
- Mourão, C.B.; Schwartz, E.F. Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar. Drugs. 2013, 11, 2069–2112. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Hu, J.; Yang, W.; Cao, Z.; Zhuo, R.; Li, W.; Wu, Y. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms. PLoS ONE 2013, 8, e57529. [Google Scholar] [CrossRef]
- Celis, A.; Gaxiola-Robles, R.; Sevilla-Godinez, E.; de Orozco Valerio, M.J.; Armas, J. Tendencia de la mortalidad por picaduras de alacran en Mexico, 1979–2003. Rev. Panam. Salud Publ. 2007, 6, 373–380. [Google Scholar] [CrossRef]
- Mion, G.; Larreche, S.; Goyffon, M. Aspects Cliniques et Thérapeutiques des Envenimations Graves; Urgence Pratique: Ganges, France, 2010; Volume 1, p. 255. (In French) [Google Scholar]
- Chowell, G.; Hyman, J.M.; Diaz-Duenas, P.; Hengartner, N.W. Predicting scorpion sting incidence in an endemic region using climatological variables. Int. J. Environ. Health Res. 2005, 15, 425–435. [Google Scholar] [CrossRef]
- Mirdehghan, M.M.; Motlagh, M.I. Scorpion stings survey (including: Residence, sex and age) and treatment strategy in Abuzar hospital- Ahvaz, Khuzestan during 1994–1999, Iran. J. Trop. Med. Hyg. 2001, 14, 62–64. (In Persian) [Google Scholar]
- Ward, M.J.; Ellsworth, S.A.; Nystrom, G.S. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018, 151, 137–155. [Google Scholar] [CrossRef]
- Dehghani, R.; Fathi, B. Scorpion sting in Iran: A review. Toxicon 2012, 60, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Rahim, F. Epidemiological review of scorpion envenomation in Iran. Iran. J. Pharm. Res. 2014, 13, 743–756. [Google Scholar] [PubMed]
- Shahbazzadeh, D.; Amirkhani, A.; Dinparast Djadid, N.; Bigdeli, S.; Akbari, A.; Ahari, H.; Amini, H.; Dehghani, R. Epidemiological and clinical survey of scorpionism in Khuzestan province, Iran (2003). Toxicon 2009, 53, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, M.; Jalali, A.; Naderi-Soorki, M.; Jokar, M.; Galehdari, H. First Transcriptome Analysis of Iranian Scorpion, Mesobuthus Eupeus Venom Gland. Iran. J. Pharm. Res. 2018, 17, 1488–1502. [Google Scholar] [PubMed]
- Lourenço, W.R. A new species of Apistobuthus Finnegan, 1932 (Scorpiones, Buthidae) from Iran. Ent. Mitt. Zool. Mus. Hamburg. 1998, 12, 237–244. [Google Scholar]
- Navidpour, S.; Lowe, G. Revised diagnosis and redescription of Apistobuthus susanae (Scorpiones, Buthidae). J. Arachnol. 2009, 37, 45–59. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi, S.M.; Sabatier, J.-M. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019, 24, 2670. https://doi.org/10.3390/molecules24142670
Kazemi SM, Sabatier J-M. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules. 2019; 24(14):2670. https://doi.org/10.3390/molecules24142670
Chicago/Turabian StyleKazemi, Seyed Mahdi, and Jean-Marc Sabatier. 2019. "Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery" Molecules 24, no. 14: 2670. https://doi.org/10.3390/molecules24142670
APA StyleKazemi, S. M., & Sabatier, J. -M. (2019). Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules, 24(14), 2670. https://doi.org/10.3390/molecules24142670