Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Initial Samples Characterization
2.2. Electrochemical Experiments
3. Materials and Methods
3.1. Sample Characterization
3.2. Electrochemical Experiments
3.2.1. Electro-Fenton Experiments
3.2.2. Anodic Oxidation Experiments
3.2.3. Electrocoagulation Experiments
3.3. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 2005, 51, 191–199. [Google Scholar] [CrossRef]
- Sirés, I.; Garrido, J.A.; Rodríguez, R.M.; Brillas, E.; Oturan, N.; Oturan, M.A. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B 2007, 72, 382–394. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef]
- Oturan, N.; Brillas, E.; Oturan, M.A. Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ. Chem. Lett. 2012, 10, 165–170. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Ammar, S.; Oturan, M.A.; Labiadh, L.; Guersalli, A.; Abdelhedi, R.; Oturan, N.; Brillas, E. Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res. 2015, 74, 77–87. [Google Scholar] [CrossRef]
- Fernandes, A.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B 2015, 176-177, 183–200. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Labiadh, L.; Fernandes, A.; Ciríaco, L.; Pacheco, M.J.; Gadri, A.; Ammar, S.; Lopes, A. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. J. Environ. Manag. 2016, 181, 515–521. [Google Scholar] [CrossRef]
- Fernandes, A.; Labiadh, L.; Ciríaco, L.; Pacheco, M.J.; Gadri, A.; Ammar, S.; Lopes, A. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. Chemosphere 2017, 184, 1223–1229. [Google Scholar] [CrossRef]
- Cabeza, A.; Urtiaga, A.M.; Ortiz, I. Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Ind. Eng. Chem. Res. 2007, 46, 1439–1446. [Google Scholar] [CrossRef]
- Ilhan, F.; Kurt, U.; Apaydin, O.; Gonullu, M.T. Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J. Hazard. Mater. 2008, 154, 381–389. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.M.; Ortiz, I. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J. Hazard. Mater. 2010, 181, 729–735. [Google Scholar] [CrossRef]
- Bouhezila, F.; Hariti, M.; Lounici, H.; Mameri, N. Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination 2011, 280, 347–353. [Google Scholar] [CrossRef]
- Trabelsi, S.; Oturan, N.; Bellakhal, N.; Oturan, M.A. Application of Doehlert matrix to determine the optimal conditions for landfill leachate treatment by electro-Fenton process. J. Mater. Environ. Sci. 2012, 3, 426–433. [Google Scholar]
- Fernandes, A.; Santos, D.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl. Catal. B 2014, 148-149, 288–294. [Google Scholar] [CrossRef]
- Zailani, L.W.M.; Zin, N.S.M. Application of electrocoagulation in various wastewater and leachate treatment—A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 140. [Google Scholar] [CrossRef]
- Mohajeri, S.; Hamidi, A.; Isa, M.; Zahed, M. Landfill leachate treatment through electro-Fenton oxidation. Pollution 2019, 5, 199–209. [Google Scholar] [CrossRef]
- Vlyssides, A.G.; Karlis, P.K.; Mahnken, G. Influence of various parameters on the electrochemical treatment of landfill leachates. J. Appl. Electrochem. 2003, 33, 155–159. [Google Scholar] [CrossRef]
- Donneys-Victoria, D.; Marriaga-Cabrales, N.; Machuca-Martinez, F. Electrocoagulation for landfill leachate treatment: A review of patents and research articles. In Evaluation of Electrochemical Reactors as a New Way to Environmental Protection; Peralta-Hernández, J.M., Rodrigo-Rodrigo, M.A., Martínez-Huitle, C.A., Eds.; Research Signpost: Kerala, India, 2014; pp. 17–39. ISBN 978-81-308-0549-8. [Google Scholar]
- Sivakumar, D.; Rajaganapathy, J.; Anand, R.; Mariavensa, S.; Preethi, S. TOC and COD removal from municipal solid waste leachate using electrocoagulation method. J. Chem. Pharm. Sci. 2015, 8, 745–749. [Google Scholar]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Qu, J. Electrocoagulation in water treatment. In Electrochemistry for the Environment; Comninellis, C., Chen, G., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2010; pp. 245–262. [Google Scholar]
- Fernandes, A.; Spranger, P.; Fonseca, A.D.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl. Catal. B 2014, 144, 514–520. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y.; Savaş Koparal, A.; Oturan, M.A. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J. Electroanal. Chem. 2008, 616, 71–78. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 2009, 43, 339–344. [Google Scholar] [CrossRef]
- Moreira, F.C.; Soler, J.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: Evaluation of operational variables. Appl. Catal. B 2016, 182, 161–171. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 2012, 299, 1–15. [Google Scholar] [CrossRef]
- do Vale-Júnior, E.; da Silva, D.R.; Fajardo, A.S.; Martínez-Huitle, C.A. Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere 2018, 204, 548–555. [Google Scholar] [CrossRef]
- dos Santos, A.J.; Martínez-Huitle, C.A.; Sirés, I.; Brillas, E. Use of Pt and boron-doped diamond anodes in the electrochemical advanced oxidation of Ponceau SS diazo dye in acidic sulfate medium. ChemElectroChem 2018, 5, 685–693. [Google Scholar] [CrossRef]
- Cossu, R.; Polcaro, A.M.; Lavagnolo, M.C.; Mascia, M.; Palmas, S.; Renoldi, F. Electrochemical treatment of landfill leachate: Oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environ. Sci. Technol. 1998, 32, 3570–3573. [Google Scholar] [CrossRef]
- Pérez, G.; Saiz, J.; Ibañez, R.; Urtiaga, A.M.; Ortiz, I. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Res. 2012, 46, 2579–2590. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.; Ortiz, I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. J. Chem. Technol. Biotechnol. 2009, 84, 1747–1755. [Google Scholar] [CrossRef]
- Eaton, A.; Clesceri, L.; Rice, E.; Greenberg, A.; Franson, M.A. Standard methods for examination of water and wastewater, 21st ed.; American Public Health Association: Washington DC, USA, 2005. [Google Scholar]
- ISO 6332:1988. Water Quality—Determination of Iron—Spectrometric Method Using 1,10-Phenanthroline; ISO: Geneva, Switzerland, 1988. [Google Scholar]
- Nogueira, R.F.P.; Oliveira, M.C.; Paterlini, W.C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 2005, 66, 86–91. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Parameter 1 | Natural pH | pH = 3 | pH = 7 | pH = 3 Fe Addition 2 |
---|---|---|---|---|
COD/g L−1 | 9.7 ± 0.3 | 9.5 ± 0.4 | 9.4 ± 0.5 | 9.4 ± 0.4 |
DOC/g·L−1 | 3.7 ± 0.3 | 3.3 ± 0.2 | 3.4 ± 0.3 | 3.3 ± 0.2 |
DIC/g·L−1 | 2.1 ± 0.1 | 0.10 ± 0.04 | 1.85 ± 0.09 | 0.09 ± 0.03 |
TDN/g·L−1 | 3.02 ± 0.07 | 2.91 ± 0.07 | 3.01 ± 0.03 | 2.95 ± 0.07 |
Ammonium/g·L−1 | 3.58 ± 0.03 | 3.48 ± 0.01 | 3.49 ± 0.02 | 3.58 ± 0.01 |
Sulfate/g·L−1 | 2.657 ± 0.006 | 15.12 ± 0.02 | 6.06 ± 0.02 | 14.64 ± 0.02 |
Chloride/g·L−1 | 3.53 ± 0.02 | 3.467 ± 0.006 | 3.46 ± 0.01 | 3.53 ± 0.01 |
Total dissolved iron/mg·L−1 | 9 ± 5 | 8 ± 3 | 11 ± 3 | 84 ± 14 |
Dissolved iron (II)/mg·L−1 | 9 ± 4 | 8 ± 2 | 11 ± 3 | 83 ± 10 |
pH | 8.2 ± 0.1 | 2.98 ± 0.08 | 7.1 ± 0.2 | 2.9 ± 0.2 |
Conductivity/mS·cm−1 | 31.3 ± 0.4 | 35.2 ± 0.4 | 32.0 ± 0.4 | 35.5 ± 0.7 |
Process | Applied Current Intensity/A | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
EF_BDD | 0 | 0 | 284 | 668 | 674 |
EF_BDD_Fe | 40 | 313 | 324 | 554 | 531 |
EF_Pt | 0 | 0 | 0 | 0 | 67 |
EF_Pt_Fe | 0 | 70 | 0 | 59 | 295 |
EF_SS | 0 | 91 | 88 | 368 | 349 |
EC | 6 | 434 | 1011 | 1017 | 624 |
AO_pHnat | 84 | 432 | 680 | 725 | 1254 |
AO_pH3 | 16 | 221 | 627 | 442 | 770 |
Process | Applied Current Intensity/A | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
EF_BDD | 62 | 52 | 12 | 36 | 70 |
EF_BDD_Fe | 189 | 180 | 113 | 105 | 77 |
EF_Pt | 8 | 10 | 13 | 15 | 12 |
EF_Pt_Fe | 54 | 55 | 48 | 66 | 41 |
EF_SS | 1403 | 408 | 2 | 2 | 1 |
EC | 52 | 10 | 58 | 5 | 1 |
AO_pHnat | 4 | 4 | 5 | 1 | 1 |
AO_pH3 | 15 | 8 | 11 | 4 | 4 |
I/a | COD Removal | DOC Removal | TN Removal | Fe Final Content | E |
---|---|---|---|---|---|
0.1 | EF_SS | EF_SS | AO_pHnat | AO_pHnat | EF_SS |
0.3 | EC | EC | EC | AO_pHnat | EC |
0.5 | EC | EC | EC | EF_SS | EC |
0.7 | AO_pH3 | EC | EC | AO_pHnat | EC |
1.0 | AO_pH3 | EF_BDD = AO_pH3 | AO_pHnat | EF_SS = EC = AO_pHnat | EF_SS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.; Chamem, O.; Pacheco, M.J.; Ciríaco, L.; Zairi, M.; Lopes, A. Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate. Molecules 2019, 24, 2905. https://doi.org/10.3390/molecules24162905
Fernandes A, Chamem O, Pacheco MJ, Ciríaco L, Zairi M, Lopes A. Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate. Molecules. 2019; 24(16):2905. https://doi.org/10.3390/molecules24162905
Chicago/Turabian StyleFernandes, Annabel, Oumaima Chamem, Maria José Pacheco, Lurdes Ciríaco, Moncef Zairi, and Ana Lopes. 2019. "Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate" Molecules 24, no. 16: 2905. https://doi.org/10.3390/molecules24162905
APA StyleFernandes, A., Chamem, O., Pacheco, M. J., Ciríaco, L., Zairi, M., & Lopes, A. (2019). Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate. Molecules, 24(16), 2905. https://doi.org/10.3390/molecules24162905