Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Plant Material
2.3. Equipment
2.4. Experimental Methods
2.4.1. Enzyme and Ultrasound-Assisted Coupled Extraction (EUCE) Single-Factor Experiment
2.4.2. Enzyme and Ultrasound-Assisted Coupled Extraction (EUCE) Response–Surface Optimization
2.4.3. Total Polysaccharide Yield Calculation
2.4.4. Pretreatment of Raw Materials by Preparation of Polysaccharides
2.4.5. Extraction of the Polysaccharides
2.4.6. Separation and Purification of Polysaccharides from the Polysaccharide Extract
2.4.7. Analysis of Monosaccharide Composition of Polysaccharides from TCBL
2.4.8. α-Glucosidase Inhibitory Activity of Polysaccharides from TCBL
2.4.9. Antitumor Activity Study of Polysaccharides from TCBL
2.4.10. Statistical Analyses
3. Results and Discussion
3.1. Comparison of Extraction Methods of Polysaccharides from Taxus cuspidata Branches and Leaves (TCBL)
3.2. The Results of Single-Factor Experiments of Extraction Technology of Polysaccharide from TCBL
3.2.1. Effect of Extraction Temperature on Polysaccharide Yield from TCBL
3.2.2. Effect of Extraction Time on Polysaccharide Yield from TCBL
3.2.3. Effect of Different Material to Liquid Ratios on the TCBL Polysaccharide Yield
3.2.4. Effect of Enzyme Concentration on TCBL Polysaccharide Yield
3.3. Response–Surface Methodology of TCBL Polysaccharide Extraction Technology by Enzymes and Ultrasound-Assisted Coupled Extraction (EUCE)
3.3.1. Response–Surface Methodology Experimental Design and Results
3.3.2. Response–Surface Methodology Experimental Results
3.3.3. Determination of Total Polysaccharide Content in TCBL
3.4. Analysis Results of Monosaccharide Composition of Polysaccharides from TCBL
3.5. α-Glucosidase Inhibitory Activity
3.6. Antitumor Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Spjut, R.W. Taxonomy and nomenclature of Taxus (Taxaceae). J. Bot. Res. Inst. Texas 2007, 1, 203–289. [Google Scholar]
- Van Rozendaal, E.L.; Lelyveld, G.P.; Van Beek, T.A. Screening of the needles of different yew species and cultivars for paclitaxel and related taxoids. Phytochem. 2000, 53, 383–389. [Google Scholar] [CrossRef]
- Hao, D.C.; Ge, G.; Xiao, P.; Zhang, Y.; Yang, L. The First Insight into the Tissue Specific Taxus Transcriptome via Illumina Second Generation Sequencing. PLoS ONE 2011, 6, e21220. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhang, F.-S.; Li, X.; Chen, J.-W.; Yao, X. Supercritical CO2 fluid extraction and component analysis of leaves oil from Taxus chinensis var. mairei. J. Chin. Med. Mater. 2013, 36, 2023–2027. [Google Scholar]
- Grobosch, T.; Schwarze, B.; Felgenhauer, N.; Riesselmann, B.; Roscher, S.; Binscheck, T. Eight cases of fatal and non-fatal poisoning with Taxus baccata. Forensic Sci. Int. 2013, 227, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, Y.; Morikawa, K.; Li, F.; Auw, L.; Awale, S.; Nobukawa, T.; Kadota, S. Cytochrome P450 3A4 Inhibitory Constituents of the Wood of Taxus yunnanensis. J. Nat. Prod. 2011, 74, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yin, Y.; Zhang, D.; Yang, W.; Yu, R. Structural characterization and in vitro antitumor activity of a novel polysaccharide from Taxus yunnanensis. Carbohydr. Polym. 2013, 96, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q.; Shen, M.; Wang, B.; Cui, Q.; Zhou, X.; Zhu, L. Aqueous extract of Taxus chinensis (Pilger) Rehd inhibits lung carcinoma A549 cells through the epidermal growth factor receptor/mitogen-activated protein kinase pathway in vitro and in vivo. J. Tradit. Chin. Med. 2014, 34, 293–301. [Google Scholar] [CrossRef]
- Cui, Q.-L.; Shao, M.; Shu, Q.-J. Study on inhibitory effect of aqueous extract of Taxus chinensis var. mairei on growth of A549 lung cancer xenografts in nude mice and its mechanism. China J. Chin. Mater. Medica 2013, 38, 3549–3553. [Google Scholar]
- Shang, W.; Qiao, J.; Gu, C.; Yin, W.; Du, J.; Wang, W.; Zhu, M.; Han, M.; Lu, W. Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil. BMC Complement. Altern. Med. 2011, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Chen, Z. Antitumor Effect of Water Decoctions of Taxus Cuspidate on Pancreatic Cancer. Evid.-Based Complement. Altern. Med. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Durak, Z.E.; Buber, S.; Devrim, E.; Kocaoglu, H.; Durak, I. Aqueous extract from Taxus baccata inhibits adenosine deaminase activity significantly in cancerous and noncancerous human gastric and colon tissues. Pharmacogn. Mag. 2014, 10, S214–S216. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Mariappan, G.; Sarkar, D.; Sarkar, P. Assessment of Anti-inflammatory Activity of Taxus baccata Linn. Bark Extract. Anc. Sci. Life 2010, 29, 19–21. [Google Scholar] [PubMed]
- Patel, P.; Patel, K.; Gandhi, T. Evaluation of Effect of Taxus baccata Leaves Extract on Bronchoconstriction and Bronchial Hyperreactivity in Experimental Animals. J. Young-Pharm. 2011, 3, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yun-Choi, H.S. A comparative optical aggregometry study of antiplatelet activity of taxanes from Taxus cuspidata. Thromb. Res. 2010, 125, e281–e284. [Google Scholar] [CrossRef] [PubMed]
- Küçükboyacı, N.; Orhan, I.; Şener, B.; Nawaz, S.A.; Choudhary, M.I. Assessment of Enzyme Inhibitory and Antioxidant Activities of Lignans from Taxus baccata L. Zeitschrift für Naturforschung C 2010, 65, 187–194. [Google Scholar] [CrossRef]
- Zhang, D.; Meng, H.; Yang, H.-S. Antidiabetic activity of Taxus cuspidata polysaccharides in streptozotocin-induced diabetic mice. Int. J. Boil. Macromol. 2012, 50, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-Q.; Fu, Y.-Y.; Li, B.-H.; Zhang, M.-L.; Yang, X.-L.; Xin, C.-W.; Shi, J.-N.; Ying, Y.; Huang, P. PSY-1, a Taxus chinensis var. mairei extract, inhibits cancer cell metastasis by interfering with MMPs. Nat. Prod. Commun. 2014, 9, 241–245. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Z.; Li, C.; Yang, L.; Yao, L.; Fu, Y.; He, X.; Shi, K.; Lu, Z. Optimized extraction of polysaccharides from Taxus chinensis var. mairei fruits and its antitumor activity. Int. J. Biol. Macromol. 2015, 75, 192–198. [Google Scholar]
- Yin, Y.; Yu, R.; Yang, W.; Yuan, F.; Yan, C.; Song, L. Structural characterization and anti-tumor activity of a novel heteropolysaccharide isolated from Taxus yunnanensis. Carbohyd. Polym. 2010, 82, 543–548. [Google Scholar] [CrossRef]
- Ebringerova, A.; Hromadkova, Z. An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Cent. Eur. J. Chem. 2010, 8, 243–257. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Dong, H.; Liu, Z.; Li, S.; Yang, S.; Li, X. Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrason. Sonochem. 2012, 19, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandham, K.; Sivakumar, V.; Maran, J.P. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int. J. Biol. Macromol. 2015, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwaveassisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohyd. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Cai, M.; Luo, Y.; Chen, J.; Liang, H.; Sun, P. Optimization and comparison of ultrasound-assisted extraction and microwave-assisted extraction of shikimic acid from Chinese star anise. Sep. Purif. Technol. 2014, 133, 375–379. [Google Scholar] [CrossRef]
- Arruda, S.C.C.; Rodriguez, A.P.M.; Arruda, M.A.Z. Ultrasound-assisted extraction of Ca, K and Mg from in vitro citrus culture. J. Brazil Chem. Soc. 2003, 14, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Liu, H.; Peng, H.; Li, H.; Ding, F.; Peng, Y. Determination of Polysaccharide Content in Different Varieties of Rose Flowers. Food Drug 2011, 13, 432–434. [Google Scholar]
- Boue, S.M.; Daigle, K.W.; Chen, M.H.; Cao, H.; Heiman, M.L. Antidiabetic Potential of Purple and Red Rice (Oryza sativa L.) Bran Extracts. J. Agric. Food Chem. 2016, 64, 5345–5353. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, J.; He, Q.; Wang, F. Characterization and Potential Antidiabetic Activity of Proanthocyanidins from the Barks of Acacia mangium and Larix gmelinii. J. Chem. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Jiang, P.; Xiong, J.; Wang, F.; Grace, M.H.; Lila, M.A.; Xu, R. α-Amylase and α-Glucosidase Inhibitory Activities of Phenolic Extracts from Eucalyptus grandis × E. urophylla Bark. J. Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Xiong, J.; Grace, M.H.; Esposito, D.; Komarnytsky, S.; Wang, F.; Lila, M.A. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Chin. J. Nat. Med. 2017, 15, 816–824. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compound 80% alcohol-precipitated polysaccharide (Pe4) is available from the authors. |
Extraction Methods | Polysaccharide yield (w/w dry material %) mean ± SD |
---|---|
hot water reflux extraction (HWRE) | 3.71 ± 0.05 |
ultrasonic-assisted extraction (UAE) | 3.89 ± 0.07 |
enzyme extraction (EE) | 4.27 ± 0.01 |
enzyme and ultrasound-assisted coupled extraction (EUCE) | 4.47 ± 0.02 |
Run | X1 (Extraction Temperature, °C) | X2 (Extraction Time, min) | X3 (Ratio of Raw Material to Liquid, g:mL) | X4 (Enzyme Concentration, mg·mL−1) | TCBL Polysaccharide Yield (%) |
---|---|---|---|---|---|
1 | 50 | 40 | 1:16 | 0.100 | 4.00 |
2 | 60 | 30 | 1:20 | 0.100 | 4.34 |
3 | 50 | 20 | 1:16 | 0.100 | 4.54 |
4 | 50 | 30 | 1:20 | 0.075 | 4.51 |
5 | 50 | 30 | 1:20 | 0.125 | 4.52 |
6 | 50 | 40 | 1:20 | 0.100 | 4.47 |
7 | 40 | 30 | 1:18 | 0.075 | 4.07 |
8 | 60 | 20 | 1:18 | 0.100 | 4.38 |
9 | 50 | 30 | 1:18 | 0.100 | 4.77 |
10 | 50 | 30 | 1:18 | 0.100 | 4.79 |
11 | 50 | 30 | 1:18 | 0.100 | 4.68 |
12 | 50 | 20 | 1:18 | 0.075 | 4.23 |
13 | 50 | 20 | 1:18 | 0.125 | 4.16 |
14 | 50 | 40 | 1:18 | 0.125 | 4.32 |
15 | 50 | 40 | 1:18 | 0.075 | 4.51 |
16 | 60 | 30 | 1:18 | 0.075 | 4.44 |
17 | 50 | 30 | 1:18 | 0.100 | 4.68 |
18 | 50 | 30 | 1:18 | 0.100 | 4.64 |
19 | 50 | 30 | 1:16 | 0.125 | 4.30 |
20 | 40 | 30 | 1:16 | 0.100 | 3.97 |
21 | 60 | 40 | 1:18 | 0.100 | 4.38 |
22 | 60 | 30 | 1:18 | 0.125 | 4.30 |
23 | 40 | 30 | 1:18 | 0.125 | 4.20 |
24 | 50 | 20 | 1:20 | 0.100 | 4.44 |
25 | 40 | 30 | 1:20 | 0.100 | 4.27 |
26 | 40 | 40 | 1:18 | 0.100 | 4.28 |
27 | 50 | 30 | 1:16 | 0.075 | 4.31 |
28 | 40 | 20 | 1:18 | 0.100 | 4.04 |
29 | 60 | 30 | 1:16 | 0.100 | 4.41 |
Source a | Sun of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Significance b |
---|---|---|---|---|---|---|
model | 1.16 | 14 | 0.083 | 6.64 | <0.0001 | ** |
X1 | 0.17 | 1 | 0.17 | 13.47 | 0.0025 | * |
X2 | 2.41 × 10−3 | 1 | 2.41 × 10−3 | 0.19 | 0.6671 | |
X3 | 0.087 | 1 | 0.087 | 6.95 | 0.0196 | * |
X4 | 6.08 × 10−3 | 1 | 6.08 × 10−3 | 0.49 | 0.4967 | |
X1X2 | 0.014 | 1 | 0.014 | 1.15 | <0.0001 | ** |
X1X3 | 0.034 | 1 | 0.034 | 2.74 | <0.0001 | ** |
X1X4 | 0.018 | 1 | 0.018 | 1.46 | 0.2468 | |
X2X3 | 0.081 | 1 | 0.081 | 6.51 | 0.023 | * |
X2X4 | 3.60 × 10−3 | 1 | 3.60 × 10−3 | 0.29 | 0.5996 | |
X3X4 | 1.00 × 10−4 | 1 | 1.00 × 10−4 | 8.0 × 10−3 | 0.9299 | |
X12 | 0.5 | 1 | 0.5 | 40.44 | <0.0001 | ** |
X22 | 0.25 | 1 | 0.25 | 19.8 | 0.0005 | * |
X32 | 0.15 | 1 | 0.15 | 12.32 | 0.0035 | * |
X42 | 0.21 | 1 | 0.21 | 16.88 | 0.0011 | * |
Residual | 0.17 | 14 | 0.012 | |||
Lack of fit | 0.16 | 10 | 0.016 | 3.79 | 0.1055 | |
Pure error | 0.017 | 4 | 4.17 × 10−3 | |||
Total | 1.34 | 28 |
4 Purified Polysaccharides | Percentage of Monosaccharide (%) | ||||
---|---|---|---|---|---|
Arabinose | Galactose | Glucose | Xylose | Mannose | |
Pe1 | 37.07 | 45.11 | 17.82 | — | — |
Pe2 | 36.93 | 50.87 | 10.88 | 0.46 | 0.86 |
Pe3 | 42.33 | 37.41 | 10.95 | 1.26 | 8.05 |
Pe4 | 45.50 | 21.39 | 23.35 | 1.83 | 7.93 |
4 Purified Polysaccharides | IC50 µg·mL−1 | ||
---|---|---|---|
MCF7 | Hela | HepG2 | |
Pe1 | 169.0 | 364.9 | 132.0 |
Pe2 | 465.9 | >500 | 347.7 |
Pe3 | 252.8 | >500 | 343.9 |
Pe4 | 376.2 | 89.9 | >500 |
etoposide | 2.8 | 21.2 | 25.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Zhang, Q.; Zhao, Y.; Xiong, J.; Wang, F.; Zhang, T.; Zhang, C. Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z. Molecules 2019, 24, 2926. https://doi.org/10.3390/molecules24162926
Jiang P, Zhang Q, Zhao Y, Xiong J, Wang F, Zhang T, Zhang C. Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z. Molecules. 2019; 24(16):2926. https://doi.org/10.3390/molecules24162926
Chicago/Turabian StyleJiang, Ping, Qian Zhang, Yajie Zhao, Jia Xiong, Fei Wang, Ting Zhang, and Chenmeng Zhang. 2019. "Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z." Molecules 24, no. 16: 2926. https://doi.org/10.3390/molecules24162926
APA StyleJiang, P., Zhang, Q., Zhao, Y., Xiong, J., Wang, F., Zhang, T., & Zhang, C. (2019). Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z. Molecules, 24(16), 2926. https://doi.org/10.3390/molecules24162926