Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal
Abstract
:1. Introduction
2. Results and Discussion
2.1. UHPLC-MS/MS
2.2. Optimization of Sample Pretreatment Procedure
2.3. Method Performance
2.4. Quantification of CAR and ANS in Meat and Bone Meal
3. Materials and Methods
3.1. Chemicals
3.2. Sample Preparation
3.3. Sample Pretreatment
3.4. UHPLC-MS/MS Analysis
3.5. Quantitative Determination of CAR and ANS
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Commission decision of 16 January 2013 amending Regulation No 152/2009 as regards the methods of analysis for the determination of constituents of animal origin for the official control of feed, 51/2013/EC. Off. J. Eur. Union. 2013, 50, 33–43. [Google Scholar]
- European Commission. Regulation (EU) No 999/2001 of the European Parliament and of the Council of 22 May 2001, laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union. 2001, L147, 1–40. [Google Scholar]
- European Commission. Regulation (EU) No 1069/2009 of the European Parliament and of the Council of 21 October 2009, laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). Off. J. Eur. Union. 2009, L300, 1–33. [Google Scholar]
- Marbaix, H.; Budinger, D.; Dieu, M.; Fumière, O.; Gillard, N.; Delahaut, P.; Mauro, S.; Raes, M. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry. J. Agr. Food Chem. 2016, 64, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Mandrile, L.; Amato, G.; Marchis, D.; Martra, G.; Rossi, A.M. Species-specific detection of processed animal proteins in feed by Raman spectroscopy. Food Chem. 2017, 229, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Lecrenier, M.; Ledoux, Q.; Berben, G.; Fumière, O.; Saegerman, C.; Baeten, V.; Veys, P. Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH). Sci. Rep.-UK 2014, 4, 5730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Garcia, R.A.; Piazza, G.J. Solubilization of meat & bone meal protein by dilute acid hydrolysis for the production of bio-based flocculant. Food Bioprod. Process. 2017, 102, 362–366. [Google Scholar]
- Chang, M.; Xiao, J.; Liu, R.; Lu, L.; Jin, Q.; Wang, X. Effect of defatting on quality of meat and bone meal. Anim. Sci. J. 2015, 86, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, Z.; Chen, L.; Han, L. Visualization of amino acid composition differences between processed protein from different animal species by self-organizing feature maps. Front. Agr. Sci. Eng. 2016, 3, 171–179. [Google Scholar] [CrossRef]
- Chen, P.J.; Tseng, J.K.; Lin, Y.L.; Wu, Y.S.; Hsiao, Y.T.; Chen, J.W.; Chen, Y.C. Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Anti-fibrosis. J. Agr. Food Chem. 2017, 65, 4961. [Google Scholar] [CrossRef]
- Schönherr, J. Analysis of products of animal origin in feeds by determination of carnosine and related dipeptides by high-performance liquid chromatography. J. Agr. Food Chem. 2002, 50, 1945–1950. [Google Scholar] [CrossRef]
- Aristoy, M.; Soler, C.; Toldrá, F. A simple, fast and reliable methodology for the analysis of histidine dipeptides as markers of the presence of animal origin proteins in feeds for ruminants. Food Chem. 2004, 84, 485–491. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 2011, 126, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Medana, C.; Visentin, S.; Dal Bello, F.; Meineri, G. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chem. 2012, 132, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasena, D.D.; Jung, S.; Bae, Y.S.; Park, H.B.; Lee, J.H.; Jo, C. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. J. Food Compos. Anal. 2015, 37, 20–24. [Google Scholar] [CrossRef]
- Ihara, H.; Kakihana, Y.; Yamakage, A.; Shibata, T.; Uchida, K. 14-Detection and quantification of 2-oxo-histidine-containing dipeptides. Free Radical Bio. Med. 2017, 112, 26–27. [Google Scholar] [CrossRef]
- Tomonaga, S.; Hayakawa, T.; Yamane, H.; Maemura, H.; Sato, M.; Takahata, Y.; Morimatsu, F.; Furuse, M. Oral administration of chicken breast extract increases brain carnosine and anserine concentrations in rats. Nutr. Neurosci. 2013, 10, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Sentandreu, M.A.; Toldrá, F. Hydrophilic Chromatographic Determination of Carnosine, Anserine, Balenine, Creatine, and Creatinine. J. Agr. Food Chem. 2007, 55, 4664–4669. [Google Scholar] [CrossRef] [PubMed]
- Gilagustí, M.; Esteveromero, J.; Cardabroch, S. Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J. Chromatogr. A 2008, 1189, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jung, S.; Bae, Y.S.; Kim, S.H.; Lee, S.K.; Lee, J.H.; Jo, C. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poultry Sci. 2014, 93, 1842–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopeć, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Hikawczuk, T.; Skiba, T.; Pudło, A.; Orda, J. Antioxidation status and histidine dipeptides content in broiler blood and muscles depending on protein sources in feed. J. Anim. Physiol. An. N. 2013, 97, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Aristoy, M.C.; Toldrá, F. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Sci. 2004, 67, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Macià, A.; Motilva, M.; Romero, M.; Labrador, A.; Domínguez, A.; Peiro, L. Improved liquid-chromatography tandem mass spectrometry method for the determination of the bioactive dipeptides, carnosine and anserine: Application to analysis in chicken broth. Talanta 2012, 93, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Yeum, K.J.; Orioli, M.; Regazzoni, L.; Carini, M.; Rasmussen, H.; Russell, R.M.; Aldini, G. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids 2010, 38, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Sci. 2013, 92, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kord, A. Theoretical and experimental comparison of mobile phase consumption between ultra-high-performance liquid chromatography and high performance liquid chromatography. J. Chromatogr. A 2009, 1216, 6204–6209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Zhang, G.; Jia, W.; Ren, Y.; Wu, Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018, 178, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, S.; Caretti, F.; Mainero Rocca, L.; Pérez-Fernández, V.; Tomai, P.; Dal Bosco, C.; Curini, R.; Gentili, A. Subcritical water extraction of thyreostats from bovine muscle followed by liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2018, 35, 1472–1483. [Google Scholar]
- Shi, Y.; Peng, D.; Shi, C.; Zhang, X.; Xie, Y.; Lu, B. Selective determination of trace 17β-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and HPLC. Food Chem. 2011, 126, 1916–1925. [Google Scholar] [CrossRef]
- The International Organization for Standardization. ISO 5725-1: 1994: Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 1: General Principles and Definitions; International Organization for Standardization: Geneva, Switzerland, 1994. [Google Scholar]
- European Commission. Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal byproducts and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive Text with EEA relevance. Off. J. Eur. Union. 2011, L54, 1–254. [Google Scholar]
- Fumière, O.; Dubois, M.; Baeten, V.; von Holst, C.; Berben, G. Effective PCR detection of animal species in highly processed animal byproducts and compound feeds. Anal. Bioanal. Chem. 2006, 385, 1045. [Google Scholar] [CrossRef] [PubMed]
- Taverniers, I.; Loose, M.D.; Bockstaele, E.V. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trend Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | tR (min) | Fragmentor (V) | Quantitative Ion Channel | Qualitative Ion Channel | ||
---|---|---|---|---|---|---|
Transition [M + H]+ | Collision (V) | Transition [M + H]+ | Collision (V) | |||
Carnosine | 15.0 | 110 | 109.8 | 20 | 156.0 | 20 |
Anserine | 13.5 | 110 | 109.0 | 20 | 170.1 | 20 |
Carnosine | Anserine | |||||||
---|---|---|---|---|---|---|---|---|
Calibration Curve | SD of Slope | SD of Intercept | R2 | Calibration Curve | SD of Slope | SD of Intercept | R2 | |
Simulated matrix standard additional curve | y = 10.84x + 2864.84 | 0.38 | 350.54 | 0.995 | y = 6.51x + 236.73 | 0.06 | 55.40 | 0.999 |
Solution standard curve | y = 702.74x − 22578.20 | 11.96 | 2016.25 | 0.999 | y = 215.28x − 1140.49 | 7.39 | 429.42 | 0.996 |
Bovine matrix standard addition curve | y = 3.88x + 12678.24 | 0.42 | 393.05 | 0.955 | y = 1.23x + 734.82 | 0.09 | 83.09 | 0.979 |
Ovine matrix standard addition curve | y = 18.8x + 12243.38 | 0.874 | 801.98 | 0.991 | y = 4.25x + 4295.11 | 0.16 | 150.86 | 0.994 |
Porcine matrix standard addition curve | -- | -- | -- | -- | y = 1.22x + 3774.81 | 0.17 | 87.68 | 0.944 |
Poultry matrix standard addition curve | -- | -- | -- | -- | -- | -- | -- | -- |
MBM Samples | LOD & LOQ (ng/g) | Spiking (μg/g) | CAR | ANS | ||||
---|---|---|---|---|---|---|---|---|
Intra-Day Precision (n = 6%) | Inter-Day Precision (n = 18%) | Recovery (n = 18%) | Intra-Day Precision (n = 6%) | Inter-Day Precision (n = 18%) | Recovery (n = 18%) | |||
Porcine MBM | LOD:0.91 | 1 | 1.34 | 3.06 | 92.89 ± 0.09 | 5.42 | 6.26 | 94.68 ± 0.28 |
LOQ:2.73 | 5 | 2.81 | 4.08 | 93.35 ± 0.19 | 1.59 | 2.40 | 95.15 ± 0.07 | |
10 | 4.39 | 3.66 | 92.88 ± 0.35 | 7.16 | 6.54 | 95.22 ± 0.36 | ||
Poultry MBM | LOD:0.41 | 1 | 1.79 | 2.72 | 98.82 ± 0.02 | 1.31 | 3.55 | 98.93 ± 0.01 |
LOQ:0.83 | 5 | 2.56 | 2.82 | 98.86 ± 0.03 | 1.57 | 3.04 | 98.94 ± 0.02 | |
10 | 3.29 | 3.91 | 98.85 ± 0.04 | 1.49 | 3.31 | 98.92 ± 0.02 | ||
Bovine MBM | LOD:1.43 | 1 | 3.91 | 6.99 | 78.24 ± 0.48 | 5.42 | 5.69 | 72.39 ± 1.66 |
LOQ:4.78 | 5 | 2.21 | 7.47 | 81.21 ± 0.42 | 10.17 | 5.88 | 84.54 ± 1.44 | |
10 | 5.72 | 8.44 | 89.35 ± 0.62 | 4.86 | 8.74 | 91.48 ± 0.42 | ||
Ovine MBM | LOD:3.07 | 1 | 4.72 | 10.5 | 53.65 ± 2.10 | 3.6 | 12.63 | 48.53 ± 1.91 |
LOQ:5.71 | 5 | 8.39 | 8.31 | 66.41 ± 2.68 | 7.96 | 8.68 | 60.12 ± 3.03 | |
10 | 1.25 | 11.82 | 75.05 ± 0.32 | 3.14 | 9.16 | 67.90 ± 1.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Gao, B.; Zhao, S.; Wang, M.; Jian, L.; Han, L.; Liu, X. Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal. Molecules 2019, 24, 217. https://doi.org/10.3390/molecules24020217
Han Y, Gao B, Zhao S, Wang M, Jian L, Han L, Liu X. Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal. Molecules. 2019; 24(2):217. https://doi.org/10.3390/molecules24020217
Chicago/Turabian StyleHan, Yahong, Bing Gao, Shengnan Zhao, Mengyan Wang, Lin Jian, Lujia Han, and Xian Liu. 2019. "Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal" Molecules 24, no. 2: 217. https://doi.org/10.3390/molecules24020217
APA StyleHan, Y., Gao, B., Zhao, S., Wang, M., Jian, L., Han, L., & Liu, X. (2019). Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal. Molecules, 24(2), 217. https://doi.org/10.3390/molecules24020217