Trends in the Use of Botanicals in Anti-Aging Cosmetics
Abstract
:1. Introduction
Chronologically Aged Skin | Photoaged Skin | |
---|---|---|
Leading Factors and Mechanisms | Reactive oxygen species (ROS) Generated during oxidative cell metabolism, mostly at mitochondria [14,15]; DNA damage Telomer shortening, gene loss, decreased DNA methylation and phosphorylation reaction, decreased DNA repair, oncogene and tumor suppressor gene deregulation [16,17]. Hormonal changes Estrogen decline during menopause, testosterone decline both in men and women [18,19]. | UVB (short wavelength) light UVA (long wavelength) light Their energy is transferred to generate ROS, causing transcription factor activation, lipid peroxidation, (MMP-1 expression, and DNA-strand breaks [15,20] Visible light (especially blue light) That induces ROS, MMP-1 and IL-1 and deploys skin carotenoids [11] Infrared light Produces heat and increases MMP-1 production [11]. |
Histological Findings | Epidermis [15] thinning; Flattening from dermal–epidermal junction. Dermis [15,20] General atrophy of the extracellular matrix; Reduced collagen production. | Epidermis [15] Stratum corneum compaction; Increased thickness of the granular layer; Epidermal thickness may be either reduced or increased; Dermal–epidermal junction atrophy; Increased number of hypertrophic melanocytes; Dermis [15,20,21] Mature collagen fibrils are degenerated and replaced by disorganized and fragmented collagen (basophilic degeneration); Elastin increase, occupying areas previously inhabited by collagen fibers (solar elastosis). |
Clinical Findings | Fine wrinkles; Laxity; Xerosis; Loss of firmness; Benign neoplasms such as seborrheic keratosis and cherry angioma [14,15]. | Coarse wrinkling; Roughness; Hyperpigmentation; Inelasticity; Superficial vascular abnormalities; Pre-malignant actinic keratosis. [14,15] |
2. Results and Discussion
2.1. Botanical Preparations Prevalence and Variety
2.2. Top Botanical Species
2.2.1. Vitis vinifera
2.2.2. Butyrospermum parkii
2.2.3. Glycine soja
2.2.4. Simmondsia chinensis
2.2.5. Helianthus annuus
2.2.6. Theobroma cacao
2.2.7. Calendula officinalis
2.2.8. Limnanthes alba
2.2.9. Glycyrrhiza glabra
2.2.10. Acacia decurrens
Botanical Ingredient | Polyphenol Composition | Benefits for Skin Health | References |
---|---|---|---|
Vitis vinifera | |||
Vitis vinifera (grape) seed oil | Unknown | - | - |
Vitis vinifera (grape) fruit extract | Anthocyanins | Antioxidant, UV-induced skin damage prevention | [96] |
Flavonols (quercetin) | Antioxidant, cell longevity increase | [97] | |
Flavan-3-ols (epicatechins and catechins) | Antioxidant, UV-induced skin damage prevention, collagen synthesis activation, MMP inhibition | [98] | |
Tannins | Antioxidant, astringent, wound-healing promotion | [99] | |
Hydroxycinnamic acid derivatives | Antioxidant, UV-induced skin damage prevention, MMP inhibition, anti-inflammatory, anti-tyrosinase | [100] | |
Stilbenes (resveratrol) | Antioxidant, UV-induced skin damage prevention, MMP inhibition | [24] | |
Palmitoyl grape seed oil | Unknown | - | - |
Palmitoyl grapevine shoot extract | Unknown | - | - |
Palmitoyl grape seed extract | Unknown | - | - |
Vitis vinifera extract | Unknown | - | - |
Vitis vinifera seed extract | Flavan-3-ols (epicatechins and catechins) | Antioxidant, UV-induced skin damage prevention, collagen synthesis activation, MMP inhibition | [98] |
Proanthocyanidins (procyanidin B1) | Antioxidant, UV-induced skin damage prevention, MMP inhibition, anti-inflammatory | [101] | |
Stilbenes (resveratrol) | Antioxidant, UV-induced skin damage prevention, MMP inhibition | [24] | |
Hyrdoxybenzoic acid derivatives (gallic acid) | Antioxidant, UV-induced skin damage prevention MMP inhibition, anti-inflammatory, anti-tyrosinase | [100] | |
Butyrospermum parkii | |||
Butyrospermum parkii (shea) butter extract | Unknown | ||
Butyrospermum parkii (shea) butter | Flavan-3-ols (catechin) | Antioxidant, UV-induced skin damage prevention, collagen synthesis activation, MMP inhibition | [98] |
Glycine soja | |||
Glycine soja (soybean) oil | Unknown | - | - |
Glycine soja (soybean) germ extract | Unknown | - | - |
Hydrolyzed soy protein | Not applicable | - | - |
Soy isoflavones | Isoflavones | Antioxidant, UV-induced skin damage prevention, anti-inflammatory, and estrogenic effects | [15,51] |
Simmondsia chinensis | |||
Simmondsia chinensis (jojoba) seed oil | Tannins | Antioxidant, astringent, wound-healing promotion | [99] |
Simmondsia chinensis oil | Tannins | Antioxidant, astringent, wound-healing promotion | [99] |
Jojoba esters | Not applicable | - | - |
Helianthus annuus | |||
Helianthus annuus seed oil | Hydroxycinnamic acid derivatives (chlorogenic, acid, caffeic acid, ferulic acid) | Antioxidant, UV-induced skin damage prevention, MMP inhibition, anti-inflammatory, anti-tyrosinase | [100] |
Helianthus annuus seed wax | Unknown | - | - |
Theobroma cacao | |||
Theobroma cacao seed butter | Flavan-3-ols (epicatechins and catechins) | Antioxidant, UV-induced skin damage prevention, collagen synthesis activation, MMP inhibition | [98] |
Proanthocyanidins | Antioxidant, UV-induced skin damage prevention, MMP inhibition, anti-inflammatory | [101] | |
Theobroma cacao (cocoa) seed extract | Unknown | - | - |
Calendula officinalis | |||
Calendula officinalis flower extract | Flavonols (quercetin, rutin, narcissin, isorhamnetin, kaempferol) | Antioxidant, cell longevity increase | [97] |
Limnanthes alba | |||
Limnanthes alba (meadowfoam) seed oil | Unknown | - | - |
Limnathes alba (meadowfoam) | Unknown | - | - |
Glycyrrhiza glabra | |||
Glycyrrhiza glabra (licorice) leaf extract | Dihydrostilbenes | Antioxidant | [101] |
Dihydroxyflavanones (glabranin, licoflavanone) | Antioxidant, anti-cancer | [102] | |
Flavanones (pinocembrin) | Antioxidant, | [103] | |
Isoflavones (wighteone) | Antioxidant, UV-induced skin damage prevention, anti-inflammatory, and estrogenic effects | [15,51] | |
Glycyrrhiza glabra root extract | Unknown | - | - |
Acacia decurrens | |||
Acacia decurrens flower wax | Unknown | - | - |
2.3. Botanicals’ Anti-Aging Mechanisms
3. Materials and Methods
3.1. Data Collection
3.2. Botanical Preparations Prevalence and Variety
3.3. Top Botanical Species
3.4. Evidence for Botanicals Anti-Aging Efficacy
4. Conclusions
5. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sahota, A. Sustainability: How the Cosmetics Industry Is Greening Up; Wiley: Chichester, UK, 2013; pp. 1–15. [Google Scholar]
- Berardesca, E.; Farage, M.; Maibach, H. Sensitive skin: An overview. Int. J. Cosmet. Sci. 2013, 35, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Which Trends Offer Opportunities on the European Market for Natural Ingredients for Cosmetics? Available online: https://www.cbi.eu/market-information/natural-ingredients-cosmetics/trends (accessed on 1 August 2019).
- Fonseca-Santos, B.; Corrêa, M.; Chorilli, M. Sustainability, natural and organic cosmetics: Consumer, products, efficacy, toxicological and regulatory considerations. Braz. J. Pharm. Sci. 2015, 51, 17–26. [Google Scholar] [CrossRef]
- Antignac, E.; Nohynek, G.J.; Re, T.; Clouzeau, J.; Toutain, H. Safety of botanical ingredients in personal care products/cosmetics. Food Chem. Toxicol. 2011, 49, 324–341. [Google Scholar] [CrossRef]
- Schmidt, B.M. Responsible Use of Medicinal Plants for Cosmetics. HortScience 2012, 47, 985–991. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Farina, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Mandalari, G.; Calderaro, A.; Smeriglio, A.; Trombetta, D.; Felice, M.R.; Gattuso, G. Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. Plants 2020, 9, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, M.E.; Agarwal, S.; Horne, R.; Davies, M.; Slevin, M.; Coates, V. Exploring organizational support for the provision of structured self-management education for people with Type 2 diabetes: Findings from a qualitative study. Diabet. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Weihermann, A.C.; Lorencini, M.; Brohem, C.A.; de Carvalho, C.M. Elastin structure and its involvement in skin photoageing. Int. J. Cosmet. Sci. 2017, 39, 241–247. [Google Scholar] [CrossRef]
- Cronin, H.; Draelos, Z.D. Top 10 botanical ingredients in 2010 anti-aging creams. J. Dermatol. Sci. 2010, 9, 218–225. [Google Scholar] [CrossRef]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin Ageing: Natural Weapons and Strategies. Evid.-Based Complement. Altern. Med. 2013, 2013, 827248. [Google Scholar] [CrossRef] [Green Version]
- Draelos, Z. Cosmetic Dermatology Products and Procedures, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Buckingham, E.M.; Klingelhutz, A.J. The role of telomeres in the ageing of human skin. Exp. Dermatol. 2011, 20, 297–302. [Google Scholar] [CrossRef]
- Li, X. Anti-aging cosmetics and its efficacy assessment methods. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87. [Google Scholar] [CrossRef] [Green Version]
- Verdier-Sevrain, S.; Bonte, F.; Gilchrest, B. Biology of estrogens in skin: Implications for skin aging. Exp. Dermatol. 2006, 15, 83–94. [Google Scholar] [CrossRef]
- Bernard, P.; Scior, T.; Do, Q.T. Modulating testosterone pathway: A new strategy to tackle male skin aging? Clin. Interv. Aging 2012, 7, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Marshall, D.R. The Clinical and Pathological Effects of Prolonged Solar Exposure. I. The Association with Ageing of the Skin. Aust. N. Z. J. Surg. 1965, 34, 161–172. [Google Scholar] [CrossRef]
- Pineiro, Z.; Marrufo-Curtido, A.; Serrano, M.J.; Palma, M. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes. Molecules 2016, 21, 784. [Google Scholar] [CrossRef] [Green Version]
- BalÍK, J.; KyselÁKovÁ, M.; Triska, J.; Kumšta, M.; Veverka, J.; HÍC, P. Relations between Polyphenols Content and Antioxidant Activity in Vine Grapes and Leaves. Czech J. Food Sci. 2008, 26. [Google Scholar] [CrossRef] [Green Version]
- Subedi, L.; Lee, T.H.; Wahedi, H.M.; Baek, S.H.; Kim, S.Y. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades. Oxid. Med. Cell. Longev. 2017, 2017, 8379539. [Google Scholar] [CrossRef] [PubMed]
- Soto, L.; Falqué, M.; Domínguez, H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Raposo, R.; Chinnici, F.; Ruiz-Moreno, M.J.; Puertas, B.; Cuevas, F.J.; Carbu, M.; Guerrero, R.F.; Ortiz-Somovilla, V.; Moreno-Rojas, J.M.; Cantos-Villar, E. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality. Food Chem. 2018, 243, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Morel-Salmi, C.; Julia, A.; Vigor, C.; Vercauteren, J. A Huge PVDF Adsorption Difference Between Resveratrol and epsilon-Viniferin Allows to Quantitatively Purify Them and to Assess Their Anti-Tyrosinase Property. Chromatographia 2014, 77, 957–961. [Google Scholar] [CrossRef]
- Soleymani, S.; Iranpanah, A.; Najafi, F.; Belwal, T.; Ramola, S.; Abbasabadi, Z.; Momtaz, S.; Farzaei, M.H. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch. Dermatol. Res. 2019, 311, 577–588. [Google Scholar] [CrossRef]
- Cornacchione, S.; Sadick, N.S.; Neveu, M.; Talbourdet, S.; Lazou, K.; Viron, C.; Renimel, I.; de Queral, D.; Kurfurst, R.; Schnebert, S.; et al. In vivo skin antioxidant effect of a new combination based on a specific Vitis vinifera shoot extract and a biotechnological extract. J. Drugs Dermatol. 2007, 6, s8–s13. [Google Scholar]
- Shivananda Nayak, B.; Dan Ramdath, D.; Marshall, J.R.; Isitor, G.; Xue, S.; Shi, J. Wound-healing properties of the oils of Vitis vinifera and Vaccinium macrocarpon. Phytother. Res. 2011, 25, 1201–1208. [Google Scholar] [CrossRef]
- Mandic, A.I.; Đilas, S.M.; Ćetković, G.S.; Čanadanović-Brunet, J.M.; Tumbas, V.T. Polyphenolic Composition and Antioxidant Activities of Grape Seed Extract. Int. J. Food Prop. 2008, 11, 713–726. [Google Scholar] [CrossRef]
- Aburjai, T.; Natsheh, F. Plants Used in Cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef]
- Sharif, A.; Akhtar, N.; Khan, M.S.; Menaa, A.; Menaa, B.; Khan, B.A.; Menaa, F. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int. J. Cosmet. Sci. 2015, 37, 253–258. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.; Maged, M. Cosmeceuticals versus pharmaceuticals. Clin. Dermatol. 2009, 27, 428–430. [Google Scholar] [CrossRef]
- Aubert, C.; Chalot, G. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem. 2018, 240, 524–533. [Google Scholar] [CrossRef]
- Genova, G.; Tosetti, R.; Tonutti, P. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice. J. Sci. Food Agric. 2016, 96, 664–671. [Google Scholar] [CrossRef]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.R.; Dixon, T.K.; Bhattacharyya, T.K. Effects of topicals on the aging skin process. Facial Plast. Surg. Clin. N. Am. 2013, 21, 55–60. [Google Scholar] [CrossRef]
- Gomez, F.J.; Raba, J.; Cerutti, S.; Silva, M.F. Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle. J. Pineal Res. 2012, 52, 349–355. [Google Scholar] [CrossRef]
- Scheuer, C. Melatonin for prevention of erythema and oxidative stress in response to ultraviolet radiation. Dan. Med. J. 2017, 64, B5358. [Google Scholar] [PubMed]
- Milani, M.; Sparavigna, A. Antiaging efficacy of melatonin-based day and night creams: A randomized, split-face, assessor-blinded proof-of-concept trial. Clin. Cosmet. Investig. Dermatol. 2018, 11, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.; Silverberg, N. Active Naturals Have a Key Role in Atopic Dermatitis. Semin. Cutan. Med. Surg. 2008, 27, s8–s10. [Google Scholar] [CrossRef]
- Asemave, K.; Amarkasev Asemave, T. African Shea Butter as a Staple and Renewable Bioproduct. Int. J. Sci. Eng. Technol. 2015, 4, 5–611. [Google Scholar]
- Malachi, O. Effects of topical and dietary use of shea butter on animals. Am. J. Life Sci. 2014, 2, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Maranz, S.; Wiesman, Z.; Garti, N. Phenolic constituents of shea (Vitellaria paradoxa) kernels. J. Agric. Food Chem. 2003, 51, 6268–6273. [Google Scholar] [CrossRef] [PubMed]
- Renard, F. Le Beurre de Karité; Université de Bordeaux: Bordeaux, France, 1990. [Google Scholar]
- Andersson, A.-C.; Alander, J. Shea butter extract for bioactive skin care. Cosmet. Toilet. 2015, 130, 18–25. [Google Scholar]
- Farris, P.K. Cosmeceuticals and Cosmetic Practice; Wiley-Blackwell: Hoboken, NJ, USA, 2014. [Google Scholar]
- Intarakumhaeng, R.; Shi, Z.; Wanasathop, A.; Stella, Q.C.; Wei, K.S.; Styczynski, P.B.; Li, C.; Smith, E.D.; Li, S.K. In vitro skin penetration of petrolatum and soybean oil and effects of glyceryl monooleate. Int. J. Cosmet. Sci. 2018, 40, 367–376. [Google Scholar] [CrossRef]
- Waqas, M.K.; Akhtar, N.; Mustafa, R.; Jamshaid, M.; Khan, H.M.; Murtaza, G. Dermatological and cosmeceutical benefits of Glycine max (soybean) and its active components. Acta Pol. Pharm. 2015, 72, 3–11. [Google Scholar]
- Zhao, R.; Bruning, E.; Rossetti, D.; Starcher, B.; Seiberg, M.; Iotsova-Stone, V. Extracts from Glycine max (soybean) induce elastin synthesis and inhibit elastase activity. Exp. Dermatol. 2009, 18, 883–886. [Google Scholar] [CrossRef]
- Sheih, I.C.; Fang, T.; Wu, T.-K.; Chen, R.Y. Effects of fermentation on antioxidant properties and phytochemical composition of soy germ. J. Sci. Food Agric. 2014, 94, 3163–3170. [Google Scholar] [CrossRef]
- Stab, F.; Blat, T.; Schmidt, M. Cosmetic or Dermatological Preparation with a Content of Creatine, Creatinine or Derivatives Thereof in Combination with Soybean Germ Extract. U.S. Patent 20060018869A1, 26 January 2006. [Google Scholar]
- Lin, J.Y.; Tournas, J.A.; Burch, J.A.; Monteiro-Riviere, N.A.; Zielinski, J. Topical isoflavones provide effective photoprotection to skin. Photodermatol. Photoimmunol. Photomed. 2008, 24, 61–66. [Google Scholar] [CrossRef]
- Draelos, Z.D. Cosmeceuticals: What’s Real, What’s Not. Dermatol. Clin. 2019, 37, 107–115. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, S.; Vishnupriya, V.; Gayathri, R. Phytochemical Analysis and In vitro Antioxidant Activity of Jojoba Oil. J. Pharm. Sci. Res. 2016, 8, 512–516. [Google Scholar]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural Oils for Skin-Barrier Repair: Ancient Compounds Now Backed by Modern Science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef]
- Anjum, F.M.; Nadeem, M.; Khan, M.I.; Hussain, S. Nutritional and therapeutic potential of sunflower seeds: A review. Br. Food J. 2012, 114, 544–552. [Google Scholar] [CrossRef]
- Scapagnini, G.; Davinelli, S.; Di Renzo, L.; De Lorenzo, A.; Olarte, H.H.; Micali, G.; Cicero, A.F.; Gonzalez, S. Cocoa bioactive compounds: Significance and potential for the maintenance of skin health. Nutrients 2014, 6, 3202–3213. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Chocolate in Health and Nutrition; Humana Press: London, UK, 2013. [Google Scholar]
- Agostoni, C.; Bresson, J.-L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2809. [Google Scholar]
- Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin Trans. 1972, 1387–1399. [Google Scholar] [CrossRef]
- Mitani, H.; Ryu, A.; Suzuki, T.; Yamashita, M.; Arakane, K.; Koide, C. Topical application of plant extracts containing xanthine derivatives can prevent UV-induced wrinkle formation in hairless mice. Photodermatol. Photoimmunol. Photomed. 2007, 23, 86–94. [Google Scholar] [CrossRef]
- Ashland. Vincience™ Biofunctionals 2017 Synopsis for Skin Care and Hair Care Applications. Available online: https://www.ashland.com/file_source/Ashland/Industries/Personal%20and%20Home%20Care/Articles/PC-12152.11_Vincience.pdf (accessed on 22 October 2019).
- Jadoon, S.; Karim, S.; Bin Asad, M.H.; Akram, M.R.; Khan, A.K.; Malik, A.; Chen, C.; Murtaza, G. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity. Oxid. Med. Cell. Longev. 2015, 2015, 709628. [Google Scholar] [CrossRef] [Green Version]
- Efstratiou, E.; Hussain, A.I.; Nigam, P.S.; Moore, J.E.; Ayub, M.A.; Rao, J.R. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement. Ther. Clin. Pract. 2012, 18, 173–176. [Google Scholar] [CrossRef]
- Babaee, N.; Moslemi, D.; Khalilpour, M.; Vejdani, F.; Moghadamnia, Y.; Bijani, A.; Baradaran, M.; Kazemi, M.T.; Khalilpour, A.; Pouramir, M.; et al. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: A randomized controlled clinical study. DARU J. Pharm. Sci. 2013, 21, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.; Ferreira, M.S.; Sousa-Lobo, J.M.; Cruz, M.T.; Almeida, I.F. Anti-Inflammatory Activity of Calendula officinalis L. Flower Extract. Cosmetics 2021, 8, 31. [Google Scholar] [CrossRef]
- Akhtar, N.; Zaman, S.U.; Khan, B.A.; Amir, M.N.; Ebrahimzadeh, M.A. Calendula extract: Effects on mechanical parameters of human skin. Acta Pol. Pharm. 2011, 68, 693–701. [Google Scholar] [PubMed]
- Naveed, A.; Zaman, S.u.; Khan, B.; Khan, H.M.s.; Ahmad, M.; Rasool, F.; Mahmood, T.; Rasul, A. Evaluation of various functional skin parameters using a topical cream of Calendula officinalis extract. Afr. J. Pharm. Pharmacol. 2011, 5, 199–206. [Google Scholar]
- Mistry, N. Guidelines for Formulating Anti-Pollution Products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Campa, M.; Baron, E. Anti-aging Effects of Select Botanicals: Scientific Evidence and Current Trends. Cosmetics 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Rozas-Muñoz, E.; Lepoittevin, J.P.; Pujol, R.; Giménez-Arnau, A. Allergic Contact Dermatitis to Plants: Understanding the Chemistry will Help our Diagnostic Approach. Actas Dermo-Sifiliogriicas 2012, 103, 456–477. [Google Scholar] [CrossRef]
- Carpenter, E.L.; Le, M.N.; Miranda, C.L.; Reed, R.L.; Stevens, J.F.; Indra, A.K.; Ganguli-Indra, G. Photoprotective Properties of Isothiocyanate and Nitrile Glucosinolate Derivatives From Meadowfoam (Limnanthes alba) Against UVB Irradiation in Human Skin Equivalent. Front. Pharmacol. 2018, 9, 477. [Google Scholar] [CrossRef]
- Draelos, Z.D.; Dover, J.S.; Alam, M. Cosmeceuticals E-Book: Procedures in Cosmetic Dermatology Series; Elsevier Health Sciences: Oxford, UK, 2014. [Google Scholar]
- Isbell, T.A.; Abbott, T.P.; Carlson, K.D. Oxidative Stability of Vegetable Oils in Binary Mixtures with Meadowfoam Oil. Ind. Crops Prod. 1999, 9, 115–123. [Google Scholar] [CrossRef]
- Thornfeldt, C. A cosmeceutical with novel mechanisms of action effectively reduces signs of extrinsic aging: P1128. In Proceedings of the American Academy of Dermatology 64th Anual Conference, San Francisco, CA, USA, 3–7 March 2006. [Google Scholar]
- Siracusa, L.; Saija, A.; Cristani, M.; Cimino, F.; D’Arrigo, M.; Trombetta, D.; Rao, F.; Ruberto, G. Phytocomplexes from liquorice (Glycyrrhiza glabra L.) leaves--chemical characterization and evaluation of their antioxidant, anti-genotoxic and anti-inflammatory activity. Fitoterapia 2011, 82, 546–556. [Google Scholar] [CrossRef]
- Kiso, A.; Kawashima, Y.; Ohto, N.; Zhou, Y.Y.; Yashiki, K.; Murakami, T.; Araho, D.; Kambara, T.; Mizutani, K. The Effects of Licorice Leaf Extract on Ceramide and Hyaluronan Synthesis. J. Soc. Cosmet. Chem. Jpn. 2009, 43, 267–273. [Google Scholar] [CrossRef]
- Puglia, C.; Rizza, L.; Drechsler, M.; Bonina, F. Nanoemulsions as vehicles for topical administration of glycyrrhetic acid: Characterization and in vitro and in vivo evaluation. Drug Deliv. 2010, 17, 123–129. [Google Scholar] [CrossRef]
- Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment. Cell Melanoma Res. 1998, 11, 355–361. [Google Scholar] [CrossRef]
- Hollinger, J.C.; Angra, K.; Halder, R.M. Are Natural Ingredients Effective in the Management of Hyperpigmentation? A Systematic Review. J. Clin. Aesthet. Dermatol. 2018, 11, 28–37. [Google Scholar]
- Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and Isoliquiritigenin as Tyrosinase Inhibitors from Licorice Roots. J. Agric. Food Chem. 2003, 51, 1201–1207. [Google Scholar] [CrossRef]
- Makino, E.T.; Mehta, R.C.; Banga, A.; Jain, P.; Sigler, M.L.; Sonti, S. Evaluation of a hydroquinone-free skin brightening product using in vitro inhibition of melanogenesis and clinical reduction of ultraviolet-induced hyperpigmentation. J. Drugs Dermatol. 2013, 12, s16–s20. [Google Scholar]
- Costa, A.; Moises, T.A.; Cordero, T.; Alves, C.R.; Marmirori, J. Association of emblica, licorice and belides as an alternative to hydroquinone in the clinical treatment of melasma. J. Bras. Ann. Dermatol. 2010, 85, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Zubair, S.; Mujtaba, G. Comparison of efficacy of topical 2% liquiritin, topical 4% liquiritin and topical 4% hydroquinone in the management of melasma. J. Pak. Med. Assoc. 2009, 19, 158–163. [Google Scholar]
- Draelos, Z.D. Skin lightening preparations and the hydroquinone controversy. Dermatoc. Ther. 2007, 20, 308–313. [Google Scholar] [CrossRef]
- ArieRakhmini, A.; FaridhaIlyas, F.; VitayaniMuchtar, S.; IlhamjayaPatellongi, I.; KhairuddinDjawad, K.; GeminiAlam, G. Comparison of 10%, 20% and 40% Licorice Extract Cream as Skin Lightening Agent. Int. J. Med. Rev. Case Rep. 2018, 2, 1. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, M.S.; Iqbal, A.; Khan, B.A.; Bashir, S. Glycyrrhiza glabra extract cream: Effects on skin pigment ‘melanin’. In 2011 International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE; IACSIT Press: Singapore, 2011; Volume 5. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W. Final report of the safety assessment of Acacia catechu gum, Acacia concinna fruit extract, Acacia dealbata leaf extract, Acacia dealbata leaf wax, Acacia decurrens extract, Acacia farnesiana extract, Acacia farnesiana flower wax, Acacia farnesiana gum, Acacia senegal extract, Acacia senegal gum, and Acacia senegal gum extract. Int. J. Toxicol. 2005, 24, 75–118. [Google Scholar]
- Vincent Hubich, P.L.; Jean-David, R. Flexible Wax Derivatives via Polyglycerolysis. Personal Care Magazine, 10 June 2016; 39–43. [Google Scholar]
- Wallace, T.C.; Giusti, M.M. Anthocyanins in Health and Disease, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010, 45, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.M.; Albuquerque, U.P.d.; Araújo, E.d.L. Tannis: From chemistry to ecology. Quím. Nova 2005, 28, 892–896. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Gonzalez-Paramas, A.M.; Barreiro, M.F.; Ferreira, I.C. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Huang, C.K.; Miller, T.A. The truth about over-the-counter topical anti-aging products: A comprehensive review. Aesthet. Surg. J. 2007, 27, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.M.; Rocco, C.; Ruberto, G. New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity. J. Nat. Prod. 2003, 66, 477–480. [Google Scholar] [CrossRef]
- Brahmachari, G. Naturally Occurring Flavanones: An Overview. Nat. Prod. Commun. 2008, 3, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Dzialo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
Botanical Ingredient | 2011 (%) | 2018 (%) |
---|---|---|
Vitis vinifera | ||
Vitis vinifera (grape) seed oil | 3.95 | 2.91 |
Vitis vinifera (grape) fruit extract | 1.69 | 0.00 |
Palmitoyl grape seed oil | 0.56 | 0.00 |
Palmitoyl grapevine shoot extract | 6.21 | 3.88 |
Palmitoyl grape seed extract | 0.00 | 3.88 |
Vitis vinifera extract | 0.00 | 0.97 |
Vitis vinifera seed extract | 0.00 | 0.97 |
Butyrospermum parkii | ||
Butyrospermum parkii (shea) butter extract | 0.00 | 0.97 |
Butyrospermum parkii (shea) butter | 5.65 | 14.56 |
Glycine soja | ||
Glycine soja (soybean) oil | 1.13 | 6.80 |
Glycine soja (soybean) germ extract | 0.00 | 3.88 |
Hydrolized soy protein | 3.39 | 0.00 |
Soy isoflavones | 0.00 | 0.97 |
Simmondsia chinensis | ||
Simmondsia chinensis (jojoba) seed oil | 0.56 | 0.00 |
Simmondsia chinensis oil | 0.00 | 4.85 |
Jojoba esters | 0.00 | 6.80 |
Helianthus annuus | ||
Helianthus annuus seed oil | 1.13 | 8.74 |
Helianthus annuus seed wax | 0.00 | 0.97 |
Theobroma cacao | ||
Theobroma cacao seed butter | 0.56 | 0.00 |
Theobroma cacao (cocoa) seed extract | 0.00 | 6.80 |
Calendula officinalis | ||
Calendula officinalis flower extract | 1.69 | 4.85 |
Limnanthes alba | ||
Limnanthes alba (meadowfoam) seed oil | 0.56 | 4.85 |
Limnathes alba (meadowfoam) | 0.56 | 0.00 |
Glycyrrhiza glabra | ||
Glycyrrhiza glabra (licorice) leaf extract | 3.39 | 0 |
Glycyrrhiza glabra root extract | 0 | 1.94 |
Acacia decurrens | ||
Acacia decurrens flower wax | 0.00 | 6.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. https://doi.org/10.3390/molecules26123584
Ferreira MS, Magalhães MC, Oliveira R, Sousa-Lobo JM, Almeida IF. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules. 2021; 26(12):3584. https://doi.org/10.3390/molecules26123584
Chicago/Turabian StyleFerreira, Marta Salvador, Maria Catarina Magalhães, Rita Oliveira, José Manuel Sousa-Lobo, and Isabel Filipa Almeida. 2021. "Trends in the Use of Botanicals in Anti-Aging Cosmetics" Molecules 26, no. 12: 3584. https://doi.org/10.3390/molecules26123584