A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Methods
2.2. Analysis of Milk Samples
3. Materials and Methods
3.1. Chemicals, Reagents, and Samples
3.2. Sample Pre-Treatment
3.3. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cappelli, P.; Vannucchi, V. Vitamine. In Chimica Degli Alimenti. Conservazione e Trasformazione, 2nd ed.; Zanichelli, S.P.A., Ed.; Editografica, Rastignano: Bologna, Italy, 2005; pp. 116–137. [Google Scholar]
- Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar] [CrossRef]
- Yoshida, Y.; Saito, Y.; Jones, L.S.; Shigeri, Y. Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants. J. Biosci. Bioeng. 2007, 104, 439–445. [Google Scholar] [CrossRef]
- Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005, 49, 7–30. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Sontag, T.J.; Parker, R.S. Cytochrome P450 omega hydroxylase pathway of tocopherol catabolism novel mechanism of regulation of vitamin E status. J. Biol. Chem. 2002, 277, 25290–25296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossi, C.G.; Gonzalez-Manan, D.; Romero, N.; Silva, D.; Videla, L.A.; Tapia, G.S. Anti-oxidative and anti-inflammatory effects of Rosa Mosqueta oil supplementation in rat liver ischemia-reperfusion. Food Funct. 2018, 9, 4847–4857. [Google Scholar] [CrossRef] [PubMed]
- Avunduk, M.C.; Yurdakul, T.; Erdemli, E.; Yavuz, A. Prevention of renal damage by alpha tocopherol in ischemia and reperfusion models of rats. Urol. Res. 2003, 31, 280–285. [Google Scholar] [CrossRef]
- Shin, H.; Eo, H.; Lim, Y. Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation. Nutr. Res. Pract. 2016, 10, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Nagarathna, P.K.M.; Babiker, B.; Godfrey, H.V.N.; Ramesh, K. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. Int. J. Pharm. Biol. Sci. 2019, 9, 1008–1013. [Google Scholar]
- Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res. 2016, 60, 1354–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Niki, E.; Noguchi, N. Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chem. Phys. Lipids 2003, 123, 63–75. [Google Scholar] [CrossRef]
- Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Phillips, P.H.; Kastelic, J.; Hart, E.B. The effect of mixed tocopherols on milk and butterfat production of the dairy cow. J. Nutr. 1948, 36, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Soulat, J.; Andueza, D.; Graulet, B.; Labonne, C.; Martin, B.; Ferlay, A.; Girard, C.L.; Ait Kaddour, A. Comparison of the potential abilities of three spectroscopy methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to predict carotenoid, vitamin and fatty acid contents in cow milk. Foods 2020, 9, 592. [Google Scholar] [CrossRef]
- Duriot, B.; Graulet, B. Quantification of carotenoids, retinol, and tocopherols in milk and dairy products. In Food and Nutritional Components in Focus No. 1. Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects; Preedly, V.R., Ed.; Royal Society of Chemistry: London, UK, 2012; pp. 332–354. Available online: www.rsc.org (accessed on 10 April 2021).
- Baldi, A.; Savoini, G.; Pinotti, L.; Monfardini, E.; Cheli, F.; Dell’Orto, V. Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2000, 47, 599–608. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Berard, J.; Kreuzer, M.; Cassandro, M.; De Marchi, M. Technical note: Development and validation of an HPLC method for the quantification of tocopherols in different types of commercial cow milk. J. Dairy Sci. 2018, 101, 6866–6871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krukovsky, V.N.; Whiting, F.; Loosli, J.K. Tocopherol, carotenoid, and vitamin A content of milk fat and the resistance of milk to the development of oxidized flavors as influenced by breed and season. J. Dairy Sci. 1950, 33, 791–796. [Google Scholar] [CrossRef]
- Quaive, M.L.; Harris, P.L. Chemical assay of foods for vitamin E content. Anal. Chem. 1948, 20, 1221–1224. [Google Scholar] [CrossRef]
- Emmerie, A.; Engel, C. Colorimetric detrmination of alfa-tocopherol (Vitamin E). Recl. Trav. Chim. Pays-Bas 1938, 57, 1351–1355. [Google Scholar] [CrossRef]
- Lanina, S.A.; Toledo, P.; Samples, S.; Kamal-Eldin, A.; Jastrebova, J.A. Comparison of reversed-phase liquid chromatography–mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J. Chroatogr. A 2007, 1157, 159–170. [Google Scholar] [CrossRef]
- Analysis of Tocopherols and Tocotrienols by HPLC. Available online: https://lipidlibrary.aocs.org/lipid-analysis/selected-topics-in-the-analysis-of-lipids/analysis-of-tocopherols-and-tocotrienols-by-hplc (accessed on 16 July 2020).
- Czauderna, M.; Kowalczyk, J. Alkaline saponification results in decomposition of tocopherols in milk and ovine blood plasma. J. Chromatogr. B 2007, 858, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Pignitter, M.; Grosshagauer, S.; Somoza, V. Stability of Vitamin E in Foods. In Vitamin E in Human Health. Nutrition and Health; Weber, P., Birringer, M., Blumberg, J., Eggersdorfer, M., Frank, J., Eds.; Humana Press: Cham, Switzerland, 2019; pp. 215–232. Available online: https://doi:10.1007/978-3-030-05315-4_16 (accessed on 18 July 2020).
- Renzi, M.; Righi, F.; Quarantelli, C.; Quarantelli, A.; Bonomi, A. Simplified HPLC UV method for the determination of α-tocopherol in plasma. Ital. J. Anim. Sci. 2005, 4, 191–195. [Google Scholar] [CrossRef]
- Rupérez, F.J.; Martin, D.; Herrera, E.; Barbas, C. Chromatographic analysis of α tocopherol and related compounds in various matrices. J. Chromatogr. A 2001, 935, 45–69. [Google Scholar] [CrossRef]
- Havemose, M.S.; Weisbjerg, M.R.; Bredie, W.L.P.; Nielsen, J.H. Influence of feeding different types of roughage on the oxidative stability of milk. Int. Dairy J. 2004, 14, 563–570. [Google Scholar] [CrossRef]
- Plozza, T.; Craige Trenerry, V.; Caridi, D. The simultaneous determination of vitamins A, E and β-carotene in bovine milk by high performance liquid chromatography–ion trap mass spectrometry (HPLC–MSn). Food Chem. 2012, 134, 559–563. [Google Scholar] [CrossRef]
- Kadioglu, Y.; Demirkaya, F.; Kursat Demirkaya, A. Quantitative determination of underivatized α-tocopherol in cow milk, vitamin and multivitamin drugs by GC-FID. Chromatographia 2009, 70, 665–670. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, A.J. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- La Torre, G.L.; Saitta, M.; Potortì, A.G.; Di Bella, G.; Dugo, G. High Performance Liquid Chromatography coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometry for sensitive determination of bioactive amines in donkey milk. J. Chromatogr. A 2010, 1217, 5214–5224. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Yang, R.; Mao, J.; Wang, J.J.X.; Zhang, W.; Zhang, Q.; Li, P. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem. 2019, 289, 313–319. [Google Scholar] [CrossRef]
- Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). OJEC 2002, L221, 8–36.
- EURACHEM/CITAC. Guide 2012. Quantifying Uncertainty in Analytical Measurement, 3rd ed.; Ellison, S.L.R., Williams, A., Eds.; 2012; ISBN 978-0-948926-30-3. Available online: www.eurachem.org (accessed on 15 November 2019).
- Gentile, F.; La Torre, G.L.; Potortì, A.G.; Saitta, M.; Alfa, M.; Dugo, G. Organic wine safety: UPLC-FLD determination of Ochratoxin A in Southern Italy wines from organic farming and winemaking. Food Control 2016, 59, 20–26. [Google Scholar] [CrossRef]
- Salvo, A.; La Torre, G.L.; Di Stefano, V.; Capocchiano, V.; Mangano, V.; Saija, E.; Pellizzeri, V.; Casale, K.E.; Dugo, G. Fast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterization. Food Chem. 2017, 221, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Modicana. Atlante delle Razze Bovine—Razze Minori Italiane. 2020. Available online: https://www.agraria.org/razzebovineminori/modicana.htm/ (accessed on 17 June 2020).
- Licitra, G.; Blake, R.W.; Oltenacu, P.A.; Barresi, S.; Scuderi, S.; Van Soest, P.J. Assessment of the dairy production needs of cattle owners in Southeastern Sicily. J. Dairy Sci. 1998, 81, 2510–2517. [Google Scholar] [CrossRef]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Stout, M.A.; Benoist, D.M.; Drake, M.A. Technical note: Simultaneous carotenoid and vitamin analysis of milk from total mixed ratio-fed cows optimized for xanthophyll detection. J. Dairy Sci. 2018, 101, 4906–4943. [Google Scholar] [CrossRef] [PubMed]
- Guardiano, C. Livelli di Pascolo, Componenti Volatili, Antiossidanti e Qualità del Latte. Tesi di Dottorato di Ricerca in “Scienze e Tecnologie Agrarie Tropicali e Subtropicali” XXIII Ciclo. University of Catania, 20 February 2012. Available online: http://archivia.unict.it/bitstream/10761/1018/2/GRDCML80A26H163X-Tesi%20Dottorato.pdf/ (accessed on 13 June 2020).
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. OJEU 2010, L276, 33–79.
- Legislative Decree No. 26. Attuazione della Direttiva 2010/63/UE sulla Protezione degli Animali Utilizzati a Fini Scientifici. (14G00036). Gazzetta Ufficiale della Repubblica Italiana. 2014, Volume 61, pp. 1–59. Available online: https://www.gazzettaufficiale.it/eli/id/2014/03/14/14G00036/sg (accessed on 22 October 2019).
Analyte | tR 1 (min) | R2 | LOD 2 (mg L−1) | LOQ 2 (mg L−1) | Level I | Level II | Level III | |||
---|---|---|---|---|---|---|---|---|---|---|
Recovery 3 (%) | RSD (%) | Recovery 3 (%) | RSD (%) | Recovery 3 (%) | RSD (%) | |||||
α-tocopherol | 4.67 | 0.9986 | 0.030 | 0.101 | 90.5 | 5.2 | 91.8 | 3.5 | 95.3 | 0.4 |
γ-tocopherol | 5.58 | 0.9987 | 0.027 | 0.089 | 88.6 | 5.9 | 87.8 | 3.3 | 91.6 | 0.3 |
δ-tocopherol | 6.59 | 0.9983 | 0.029 | 0.097 | 88.4 | 7.4 | 89.8 | 3.6 | 92.8 | 0.6 |
Analyte | Intra-Day Precision (RSD%, n = 6) | Inter-Day Precision (RSD%, n = 12) | ||||||
---|---|---|---|---|---|---|---|---|
tR 1 | Area | tR 1 | Area | |||||
Level I (0.5 mg L−1) | Level II (2.5 mg L−1) | Level III (5 mg L−1) | Level I (0.5 mg L−1) | Level II (2.5 mg L−1) | Level III (5 mg L−1) | |||
α-tocopherol | 0.11 | 1.89 | 2.30 | 0.35 | 1.04 | 3.17 | 4.83 | 5.08 |
γ-tocopherol | 0.13 | 2.25 | 1.09 | 0.57 | 1.40 | 5.20 | 5.14 | 3.95 |
δ-tocopherol | 0.16 | 2.55 | 2.08 | 1.35 | 1.35 | 5.19 | 3.47 | 5.12 |
Analyte | Range | Mean ± SD | Median | |
---|---|---|---|---|
Farm A (n = 11) | α-TC | 4.00–4.79 | 4.32 ± 0.22 | 4.31 |
γ-TC | 2.66–3.09 | 2.95 ± 0.13 | 2.99 | |
δ-TC | 1.12–1.46 | 1.29 ± 0.10 | 1.30 | |
Farm B (n = 12) | α-TC | 4.77–7.79 | 6.09 ± 1.08 | 6.05 |
γ-TC | 2.62–4.01 | 3.07 ± 0.37 | 3.05 | |
δ-TC | 0.99–1.71 | 1.34 ± 0.24 | 1.37 | |
Farm C (n = 13) | α-TC | 3.46–6.50 | 4.91 ± 0.95 | 4.71 |
γ-TC | 2.86–3.99 | 3.45 ± 0.37 | 3.56 | |
δ-TC | 1.01–1.68 | 1.30 ± 0.22 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondo, A.; La Torre, G.L.; Gervasi, T.; di Matteo, G.; Spano, M.; Ingallina, C.; Salvo, A. A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination. Molecules 2021, 26, 4645. https://doi.org/10.3390/molecules26154645
Rotondo A, La Torre GL, Gervasi T, di Matteo G, Spano M, Ingallina C, Salvo A. A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination. Molecules. 2021; 26(15):4645. https://doi.org/10.3390/molecules26154645
Chicago/Turabian StyleRotondo, Archimede, Giovanna Loredana La Torre, Teresa Gervasi, Giacomo di Matteo, Mattia Spano, Cinzia Ingallina, and Andrea Salvo. 2021. "A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination" Molecules 26, no. 15: 4645. https://doi.org/10.3390/molecules26154645