Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Epidemiology of Prostate Cancer
2.1.1. Global Scale
2.1.2. Local Scale
2.2. Screening and Diagnosis of Prostate Cancer
- Negative for prostate cancer, there were no cancer cells detected in the biopsy samples.
- Positive for prostate cancer, there were cancer cells detected in the biopsy samples.
- Suspicious, abnormal cells present, but may not be cancer cells [26].
2.3. Prostate Cancer and Genetics
Genetic Inheritance
2.4. Precision Medicine for Prostate Cancer
2.5. Treatment and Management of Prostate Cancer
2.5.1. Active Surveillance
2.5.2. Radical Prostatectomy
2.5.3. Cryotherapy
2.5.4. Radiation
Brachytherapy
External Beam Radiation Therapy
2.5.5. Radium-223 Therapy
2.5.6. Hormonal Therapy
2.5.7. Abiraterone
2.5.8. Chemotherapy
Docetaxel
Cabazitaxel
Enzalutamide
- Competitive inhibition of androgen binding to the androgen receptor;
- Inhibition of nuclear translocation and co-factor recruitment;
- Inhibition of the binding of DNA with activated androgen receptor.
2.6. Combination Therapy
2.7. Drug Repurposing
2.8. Treatment Challenges
2.8.1. Drug Resistance
2.8.2. ABC Transporters
2.8.3. Cytochrome P450
2.8.4. Mutations in Androgen Receptors
2.8.5. Tumor Microenvironment
2.9. Role of Estrogen Receptors (ERs) in Prostate Cancer Etiology and Progression
2.10. Experimental Work Exploring Alternative Treatments
Traditional Medicine in Prostate Cancer Medicine in Prostate Cancer Treatment
2.11. Gene Therapy
2.12. CRISPR Cas9
2.13. Nanotechnology
2.14. Next-Generation Sequencing
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhang, D.; Yan, W.; Yang, D.; Shen, B. Translational Bioinformatics for Diagnostic and Prognostic Prediction of Prostate Cancer in the Next-Generation Sequencing Era. BioMed Res. Int. 2013, 2013, 901578. [Google Scholar] [CrossRef]
- Hjelmborg, J.B.; Scheike, T.; Holst, K.; Skytthe, A.; Penney, K.L.; Graff, R.E.; Pukkala, E.; Christensen, K.; Adami, H.-O.; Holm, N.V.; et al. The Heritability of Prostate Cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2303–2310. [Google Scholar] [CrossRef]
- Termini, D.; Hartogh, D.J.D.; Jaglanian, A.; Tsiani, E. Curcumin against Prostate Cancer: Current Evidence. Biomolecules 2020, 10, 1536. [Google Scholar] [CrossRef]
- Wen, S.; Chang, H.-C.; Tian, J.; Shang, Z.; Niu, Y.; Chang, C. Stromal Androgen Receptor Roles in the Development of Normal Prostate, Benign Prostate Hyperplasia, and Prostate Cancer. Am. J. Pathol. 2015, 185, 293–301. [Google Scholar] [CrossRef]
- Cittadini, A.; Isidori, A.M.; Salzano, A. Testosterone therapy and cardiovascular diseases. Cardiovasc. Res. 2021, 118, 2039–2057. [Google Scholar] [CrossRef]
- Bluemn, E.G.; Nelson, P.S. The androgen/androgen receptor axis in prostate cancer. Curr. Opin. Oncol. 2012, 24, 251–257. [Google Scholar] [CrossRef]
- Ziaran, S.; Novakova, Z.V.; Böhmer, D.; Danišovič, L. Biomarkers for determination prostate cancer: Implication for diagnosis and prognosis. Neoplasma 2015, 62, 683–691. [Google Scholar] [CrossRef]
- Takayama, K.-I. Splicing Factors Have an Essential Role in Prostate Cancer Progression and Androgen Receptor Signaling. Biomolecules 2019, 9, 131. [Google Scholar] [CrossRef]
- Bach, C.; Pisipati, S.; Daneshwar, D.; Wright, M.; Rowe, E.; Gillatt, D.; Persad, R.; Koupparis, A. The status of surgery in the management of high-risk prostate cancer. Nat. Rev. Urol. 2014, 11, 342–351. [Google Scholar] [CrossRef]
- Ziegler, A.; Koch, A.; Krockenberger, K.; Großhennig, A. Personalized medicine using DNA biomarkers: A review. Qual. Life Res. 2012, 131, 1627–1638. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, C.; Bangma, C.H.; Bjartell, A.; Catto, J.; Culig, Z.; Grönberg, H.; Luo, J.; Visakorpi, T.; Rubin, M. The Mutational Landscape of Prostate Cancer. Eur. Urol. 2013, 64, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Haas, G.P.; Delongchamps, N.; Brawley, O.W.; Wang, C.Y.; De La Roza, G. The worldwide epidemiology of prostate cancer: Perspectives from autopsy studies. Can. J. Urol. 2008, 15, 3866–3871. [Google Scholar] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Taitt, H.E. Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am. J. Men’s Health 2018, 12, 1807–1823. [Google Scholar] [CrossRef]
- Bashir, M.N. Epidemiology of Prostate Cancer. Asian Pac. J. Cancer Prev. 2015, 16, 5137–5141. [Google Scholar] [CrossRef]
- Ferlay, J.; Parkin, D.; Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 2010, 46, 765–781. [Google Scholar] [CrossRef]
- Matshela, R.F.; Maree, L.; van Belkum, C. Prevention and Detection of Prostate Cancer. Cancer Nurs. 2014, 37, 189–197. [Google Scholar] [CrossRef]
- Babb, C.; Urban, M.; Kielkowski, D.; Kellett, P. Prostate Cancer in South Africa: Pathology Based National Cancer Registry Data (1986–2006) and Mortality Rates (1997–2009). Prostate Cancer 2014, 2014, 419801. [Google Scholar] [CrossRef]
- Altwaijry, N.; Somani, S.; Parkinson, J.; Tate, R.; Keating, P.; Warzecha, M.; MacKenzie, G.R.; Leung, H.Y.; Dufès, C. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Deliv. 2018, 25, 679–689. [Google Scholar] [CrossRef]
- Adhyam, M.; Gupta, A.K. A Review on the Clinical Utility of PSA in Cancer Prostate. Indian J. Surg. Oncol. 2012, 3, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Kise, H.; Nishioka, J.; Hayashi, T. The Interaction among Protein C Inhibitor, Prostate-Specific Antigen, and the Semenogelin System. Semin. Thromb. Hemost. 2007, 33, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lamy, P.-J.; Allory, Y.; Gauchez, A.-S.; Asselain, B.; Beuzeboc, P.; de Cremoux, P.; Fontugne, J.; Georges, A.; Hennequin, C.; Lehmann-Che, J.; et al. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur. Urol. Focus 2018, 4, 790–803. [Google Scholar] [CrossRef]
- Meyer, A.R.; Joice, G.A.; Schwen, Z.R.; Partin, A.W.; Allaf, M.E.; Gorin, M.A. Initial Experience Performing In-office Ultrasound-guided Transperineal Prostate Biopsy Under Local Anesthesia Using the PrecisionPoint Transperineal Access System. Urology 2018, 115, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Niraj, L.K. MRI in Dentistry—A Future Towards Radiation Free Imaging—Systematic Review. J. Clin. Diagn. Res. 2016, 10, ZE14–ZE19. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Foltz, W.D.; Milosevic, M.F.; Toi, A.; Bristow, R.G.; Ménard, C.; Haider, M.A. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: A pilot study in men with prostate cancer. Int. J. Radiat. Biol. 2009, 85, 805–813. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Albright, F.; Stephenson, R.A.; Agarwal, N.; Teerlink, C.C.; Lowrance, W.T.; Farnham, J.M.; Albright, L.A.C. Prostate cancer risk prediction based on complete prostate cancer family history. Prostate 2015, 75, 390–398. [Google Scholar] [CrossRef]
- Prando, A. Diffusion-weighted MRI of peripheral zone prostate cancer: Comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. Int. Braz. J. Urol. 2010, 36, 504–517. [Google Scholar] [CrossRef]
- Ferro, M.; de Cobelli, O.; Vartolomei, M.D.; Lucarelli, G.; Crocetto, F.; Barone, B.; Sciarra, A.; Del Giudice, F.; Muto, M.; Maggi, M.; et al. Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. Int. J. Mol. Sci. 2021, 22, 9971. [Google Scholar] [CrossRef]
- Moran, A.; O’Hara, C.; Khan, S.; Shack, L.; Woodward, E.R.; Maher, E.; Lalloo, F.; Evans, D.G.R. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 2012, 11, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Turanli, B.; Grøtli, M.; Boren, J.; Nielsen, J.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Drug Repositioning for Effective Prostate Cancer Treatment. Front. Physiol. 2018, 9, 500. [Google Scholar] [CrossRef]
- Bardis, M.D.; Houshyar, R.; Chang, P.D.; Ushinsky, A.; Glavis-Bloom, J.; Chahine, C.; Bui, T.-L.; Rupasinghe, M.; Filippi, C.G.; Chow, D.S. Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends. Cancers 2020, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.H.; Knudson, A.G.; Pandolfi, P.P. A continuum model for tumour suppression. Nature 2011, 476, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Eeles, R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J. Androl. 2012, 14, 409–414. [Google Scholar] [CrossRef]
- Meyer, M.S.; Penney, K.L.; Stark, J.R.; Schumacher, F.R.; Sesso, H.D.; Loda, M.; Fiorentino, M.; Finn, S.; Flavin, R.J.; Kurth, T.; et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 2010, 31, 1597–1603. [Google Scholar] [CrossRef]
- Silverman, R.H. Implications for RNase L in Prostate Cancer Biology. Biochemistry 2003, 42, 1805–1812. [Google Scholar] [CrossRef]
- Wallis, C.J.; Nam, R.K. Prostate Cancer Genetics: A Review. EJIFCC 2015, 26, 79–91. [Google Scholar]
- Alvarez-Cubero, M.J.; Martinez-Gonzalez, L.J.; Saiz, M.; Carmona-Saez, P.; Alvarez, J.C.; Pascual-Geler, M.; Lorente, J.A.; Cozar, J.M. Prognostic role of genetic biomarkers in clinical progression of prostate cancer. Exp. Mol. Med. 2015, 47, e176. [Google Scholar] [CrossRef]
- Chandrasekaran, G.; Hwang, E.C.; Kang, T.W.; Kwon, D.D.; Park, K.; Lee, J.-J.; Lakshmanan, V.K. Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci. Rep. 2017, 7, 43830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlin, R.; Créoff, M.; Merle, S.; Jean-Marie-Flore, M.; Rose, M.; Malsa, S.; Promeyrat, X.; Martin, F.; Comlan, G.; Rabia, N.; et al. Mutation HOXB13 c.853delT in Martinican prostate cancer patients. Prostate 2020, 80, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Manzari, Z.; Mehrabani-Yeganeh, H.; Nejati-Javaremi, A.; Moradi, M.H.; Gholizadeh, M. Detecting selection signatures in three Iranian sheep breeds. Anim. Genet. 2019, 50, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.-O.; Oh, K.-J.; Nguyen, N.T.X.; Kim, Y.-R.; Kim, M.S.; Lee, S.D.; Ryu, S.B.; Jung, C. Evaluation of HOXB13 as a molecular marker of recurrent prostate cancer. Mol. Med. Rep. 2012, 5, 901–904. [Google Scholar] [CrossRef]
- Guarini, A.; Marinelli, M.; Tavolaro, S.; Bellacchio, E.; Magliozzi, M.; Chiaretti, S.; De Propris, M.S.; Peragine, N.; Santangelo, S.; Paoloni, F.; et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 2012, 97, 47–55. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef]
- Gallagher, D.J.; Gaudet, M.M.; Pal, P.; Kirchhoff, T.; Balistreri, L.; Vora, K.; Bhatia, J.; Stadler, Z.; Fine, S.W.; Reuter, V.; et al. Germline BRCA Mutations Denote a Clinicopathologic Subset of Prostate Cancer. Clin. Cancer Res. 2010, 16, 2115–2121. [Google Scholar] [CrossRef]
- Xu, B.; Tong, N.; Li, J.-M.; Zhang, Z.-D.; Wu, H.-F. ELAC2 polymorphisms and prostate cancer risk: A meta-analysis based on 18 case–control studies. Prostate Cancer Prostatic Dis. 2010, 13, 270–277. [Google Scholar] [CrossRef]
- Suzuki, T.; Li, W.; Zhang, Q.; Karim, A.; Novak, E.K.; Sviderskaya, E.V.; Hill, S.P.; Bennett, D.C.; Levin, A.V.; Nieuwenhuis, H.K.; et al. Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat. Genet. 2002, 30, 321–324. [Google Scholar] [CrossRef]
- Moore, K.J.; Freeman, M.W. Scavenger Receptors in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2006, 26, 1702–1711. [Google Scholar] [CrossRef]
- Leighton, X.; Bera, A.; Eidelman, O.; Eklund, M.; Puthillathu, N.; Pollard, H.B.; Srivastava, M. High ANXA7 Potentiates Eucalyptol Toxicity in Hormone-refractory Prostate Cancer. Anticancer Res. 2018, 38, 3831–3842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, M.; Leighton, X.; Starr, J.; Eidelman, O.; Pollard, H.B. Diverse Effects of ANXA7 and p53 on LNCaP Prostate Cancer Cells Are Associated with Regulation of SGK1 Transcription and Phosphorylation of the SGK1 Target FOXO3A. BioMed Res. Int. 2014, 2014, 193635. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Kataoka, H.; Joh, T.; Tada, T.; Asai, K.; Nakanishi, M.; Okada, N.; Okada, H. Susceptibility to killer T cells of gastric cancer cells enhanced by mitomycin-C involves induction of ATBF1 and activation of p21 (Waf1/Cip1) promoter. Microbiol. Immunol. 2004, 48, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Kai, K.; Zhang, Z.; Yamashita, H.; Yamamoto, Y.; Miura, Y.; Iwase, H. Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer. BMC Cancer 2008, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Frierson, H.F.; Chen, C.; Li, C.; Ran, Q.; Otto, K.B.; Cantarel, B.M.; Vessella, R.L.; Gao, A.C.; Petros, J.; et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat. Genet. 2005, 37, 407–412. [Google Scholar] [CrossRef]
- Chang, B.-L.; Zheng, S.L.; Isaacs, S.D.; Wiley, K.E.; Turner, A.; Li, G.; Walsh, P.C.; Meyers, D.A.; Isaacs, W.B.; Xu, J. A Polymorphism in the CDKN1B Gene Is Associated with Increased Risk of Hereditary Prostate Cancer. Cancer Res. 2004, 64, 1997–1999. [Google Scholar] [CrossRef]
- Soyano, A.E.; Baldeo, C.; Kasi, P.M. BRCA Mutation and Its Association With Colorectal Cancer. Clin. Color. Cancer 2018, 17, e647–e650. [Google Scholar] [CrossRef]
- Sirma, H.; Broemel, M.; Stumm, L.; Tsourlakis, T.; Steurer, S.; Tennstedt, P.; Salomon, G.; Michl, U.; Haese, A.; Simon, R.; et al. Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol. Lett. 2013, 6, 1245–1252. [Google Scholar] [CrossRef]
- Slavin, D.A.; Koritschoner, N.P.; Prieto, C.C.; López-Díaz, F.J.; Chatton, B.; Bocco, J.L. A new role for the Krüppel-like transcription factor KLF6 as an inhibitor of c-Jun proto-oncoprotein function. Oncogene 2004, 23, 8196–8205. [Google Scholar] [CrossRef]
- Narla, G.; DiFeo, A.; Fernandez, Y.; Dhanasekaran, S.M.; Huang, F.; Sangodkar, J.; Hod, E.; Leake, D.; Friedman, S.L.; Hall, S.J.; et al. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J. Clin. Investig. 2008, 118, 2711–2721. [Google Scholar] [CrossRef]
- Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine; Cold Spring Harbor (New York): Cold Spring Harbor Laboratory Press. $135.00. viii + 362 p.; ill.; index. ISBN: 9781621820765. 2018. Q. Rev. Biol. 2019, 94, 450. Available online: https://www.journals.uchicago.edu/doi/10.1086/706427 (accessed on 25 May 2022). [CrossRef]
- Rebello, R.J.; Pearson, R.B.; Hannan, R.D.; Furic, L. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer. Genes 2017, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, W.; Roberts, W.; Hooker, S.; Fedor, H.; DeMarzo, A.; Isaacs, W.; Kittles, R.A. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer. Prostate Cancer Prostatic Dis. 2010, 13, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Gurel, B.; Ali, T.Z.; Montgomery, E.A.; Begum, S.; Hicks, J.; Goggins, M.; Eberhart, C.G.; Clark, D.P.; Bieberich, C.J.; Epstein, J.I.; et al. NKX3.1 as a Marker of Prostatic Origin in Metastatic Tumors. Am. J. Surg. Pathol. 2010, 34, 1097–1105. [Google Scholar] [CrossRef]
- Menini, T.; Gugliucci, A. Paraoxonase 1 in neurological disorders. Redox Rep. 2014, 19, 49–58. [Google Scholar] [CrossRef]
- Stevens, V.L.; Rodriguez, C.; Talbot, J.T.; Pavluck, A.L.; Thun, M.J.; Calle, E.E. Paraoxonase 1 (PON1) polymorphisms and prostate cancer in the CPS-II Nutrition Cohort. Prostate 2008, 68, 1336–1340. [Google Scholar] [CrossRef]
- Markowska, A.; Pawałowska, M.; Lubin, J.; Markowska, J. Signalling pathways in endometrial cancer. Współczesna Onkol. 2014, 18, 143–148. [Google Scholar] [CrossRef]
- Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Kempf, C.R.; Long, J.; Laidler, P.; Mijatovic, S.; Maksimovic-Ivanic, D.; Stivala, F.; Mazzarino, M.C.; et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011, 3, 192–222. [Google Scholar] [CrossRef]
- Fraser, M.; Zhao, H.; Luoto, K.R.; Lundin, C.; Coackley, C.; Chan, N.; Joshua, A.M.; Bismar, T.A.; Evans, A.; Helleday, T.; et al. PTEN Deletion in Prostate Cancer Cells Does Not Associate with Loss of RAD51 Function: Implications for Radiotherapy and Chemotherapy. Clin. Cancer Res. 2012, 18, 1015–1027. [Google Scholar] [CrossRef]
- Jamaspishvili, T.; Berman, D.M.; Ross, A.E.; Scher, H.I.; De Marzo, A.M.; Squire, J.A.; Lotan, T.L. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 2018, 15, 222–234. [Google Scholar] [CrossRef]
- Penta, J.S.; Johnson, F.; Wachsman, J.T.; Copeland, W.C. Mitochondrial DNA in human malignancy. Mutat. Res. Mutat. Res. 2001, 488, 119–133. [Google Scholar] [CrossRef]
- Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Heins, Z.; et al. Abstract 3302: The molecular landscape of oncogenic signaling pathways in The Cancer Genome Atlas. Cancer Res. 2018, 78, 3302. [Google Scholar] [CrossRef]
- Cox, A.D.; Der, C.J. Ras history: The Saga Continues. Small GTPases 2010, 1, 2–27. [Google Scholar] [CrossRef]
- Hessels, D.; Schalken, J.A. Urinary biomarkers for prostate cancer: A review. Asian J. Androl. 2013, 15, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Alford, A.V.; Brito, J.M.; Yadav, K.K.; Yadav, S.S.; Tewari, A.K.; Renzulli, J. The Use of Biomarkers in Prostate Cancer Screening and Treatment. Rev. Urol. 2017, 19, 221–234. [Google Scholar] [CrossRef]
- Porzycki, P.; Ciszkowicz, E. Modern biomarkers in prostate cancer diagnosis. Cent. Eur. J. Urol. 2020, 73, 300–306. [Google Scholar] [CrossRef]
- Shen, M.M.; Abate-Shen, C. Molecular genetics of prostate cancer: New prospects for old challenges. Genes Dev. 2010, 24, 1967–2000. [Google Scholar] [CrossRef]
- Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef]
- Kipriyanov, E.A.; Karnaukh, P.A.; Vazhenin, I.A.; Vazhenin, A.V. Radical prostatectomy and robotic radiosurgery as treatment options for localized prostate cancer. Sib. J. Oncol. 2020, 19, 50–56. [Google Scholar] [CrossRef]
- Mateo, L.; Duran-Frigola, M.; Gris-Oliver, A.; Palafox, M.; Scaltriti, M.; Razavi, P.; Chandarlapaty, S.; Arribas, J.; Bellet, M.; Serra, V.; et al. Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Med. 2020, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Giri, V.N.; Morgan, T.M.; Morris, D.S.; Berchuck, J.E.; Hyatt, C.; Taplin, M.; Morris, F.D.S.; Ms, C.C.H. Genetic testing in prostate cancer management: Considerations informing primary care. CA: A Cancer J. Clin. 2022, 72, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tong, D.; Liu, G.; Yi, Y.; Xu, J.; Yang, X.; Wang, L.; Zhang, J.; Ye, J.; Zhang, Y.; et al. A novel BRCA2 mutation in prostate cancer sensitive to combined radiotherapy and androgen deprivation therapy. Cancer Biol. Ther. 2018, 19, 669–675. [Google Scholar] [CrossRef] [PubMed]
- McCrea, E.M.; Lee, D.K.; Sissung, T.M.; Figg, W.D. Precision Medicine Applications in Prostate Cancer. Ther. Adv. Med. Oncol. 2018, 10, 175883591877692. [Google Scholar] [CrossRef]
- Trewartha, D.; Carter, K. Advances in prostate cancer treatment. Nat. Rev. Drug Discov. 2013, 12, 823–824. [Google Scholar] [CrossRef]
- Dunn, M.W.; Kazer, M.W. Prostate Cancer Overview. Semin. Oncol. Nurs. 2011, 27, 241–250. [Google Scholar] [CrossRef]
- Lima, Z.S.; Ghadamzadeh, M.; Arashloo, F.T.; Amjad, G.; Ebadi, M.R.; Younesi, L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: Genetic mutations and implications for current treatment paradigms. J. Hematol. Oncol. 2019, 12, 39. [Google Scholar] [CrossRef]
- Shah, S.; Young, H.N.; Cobran, E.K. Comparative Effectiveness of Conservative Management Compared to Cryotherapy in Localized Prostate Cancer Patients. Am. J. Men’s Health 2018, 12, 1681–1691. [Google Scholar] [CrossRef]
- Choo, R.; Klotz, L.; Danjoux, C.; Morton, G.C.; DeBoer, G.; Szumacher, E.; Fleshner, N.; Bunting, P.; Hruby, G. Feasibility Study: Watchful Waiting For Localized Low To Intermediate Grade Prostate Carcinoma With Selective Delayed Intervention Based On Prostate Specific Antigen, Histological And/Or Clinical Progression. J. Urol. 2002, 167, 1664–1669. [Google Scholar] [CrossRef]
- Bergh, R.C.V.D.; Roemeling, S.; Roobol, M.J.; Aus, G.; Hugosson, J.; Rannikko, A.S.; Tammela, T.L.; Bangma, C.H.; Schröder, F.H. Outcomes of Men with Screen-Detected Prostate Cancer Eligible for Active Surveillance Who Were Managed Expectantly. Eur. Urol. 2009, 55, 1–8. [Google Scholar] [CrossRef]
- Luzzago, S.; Suardi, N.; Dell’Oglio, P.; Cardone, G.; Gandaglia, G.; Esposito, A.; De Cobelli, F.; Cristel, G.; Kinzikeeva, E.; Freschi, M.; et al. Multiparametric MRI represents an added value but not a substitute of follow-up biopsies in patients on active surveillance for low-risk prostate cancer. Eur. Urol. Suppl. 2017, 16, e1395–e1396. [Google Scholar] [CrossRef]
- Costello, A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat. Rev. Urol. 2020, 17, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Schellhammer, P.F. Treatment options for localized prostate cancer. Am. Fam. Physician 2011, 84, 413–420. [Google Scholar] [PubMed]
- Mouraviev, V.; Polascik, T.J. Update on cryotherapy for prostate cancer in 2006. Curr. Opin. Urol. 2006, 16, 152–156. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Potosky, A.L.; Legler, J.; Albertsen, P.C.; Stanford, J.L.; Gilliland, F.D.; Hamilton, A.S.; Eley, J.W.; Stephenson, R.A.; Harlan, L.C. Health Outcomes after Prostatectomy or Radiotherapy for Prostate Cancer: Results From the Prostate Cancer Outcomes Study. JNCI J. Natl. Cancer Inst. 2000, 92, 1582–1592. [Google Scholar] [CrossRef]
- Wallner, K.; Lee, H.; Wasserman, S.; Dattoli, M. Low risk of urinary incontinence following prostate brachytherapy in patients with a prior transurethral prostate resection. Int. J. Radiat. Oncol. 1997, 37, 565–569. [Google Scholar] [CrossRef]
- Crawford, E.D.; Higano, C.S.; Shore, N.D.; Hussain, M.; Petrylak, D.P. Treating Patients with Metastatic Castration Resistant Prostate Cancer: A Comprehensive Review of Available Therapies. J. Urol. 2015, 194, 1537–1547. [Google Scholar] [CrossRef]
- Heidenreich, A.; Aus, G.; Bolla, M.; Joniau, S.; Matveev, V.B.; Schmid, H.P.; Zattoni, F. EAU Guidelines on Prostate Cancer. Eur. Urol. 2008, 53, 68–80. [Google Scholar] [CrossRef]
- Seidenfeld, J.; Samson, D.J.; Hasselblad, V.; Aronson, N.; Albertsen, P.C.; Bennett, C.L.; Wilt, T.J. Single-Therapy Androgen Suppression in Men with Advanced Prostate Cancer: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2000, 132, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Brogden, R.N.; Chrisp, P. Flutamide. Drugs Aging 1991, 1, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Goldspiel, B.R.; Kohler, D.R. Flutamide: An Antiandrogen for Advanced Prostate Cancer. DICP 1990, 24, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Tamada, S.; Kato, M.; Yasuda, S.; Machida, Y.; Ohmachi, T.; Ishii, K.; Iwata, H.; Yamamoto, S.; Kanamaru, T.; et al. Enzalutamide versus flutamide for castration-resistant prostate cancer after combined androgen blockade therapy with bicalutamide: The OCUU-CRPC study. Int. J. Clin. Oncol. 2020, 25, 486–494. [Google Scholar] [CrossRef]
- Miyake, H.; Hara, I.; Eto, H. Clinical outcome of maximum androgen blockade using flutamide as second-line hormonal therapy for hormone-refractory prostate cancer. Br. J. Urol. 2005, 96, 791–795. [Google Scholar] [CrossRef]
- Koike, H.; Morikawa, Y.; Matsui, H.; Shibata, Y.; Ito, K.; Suzuki, K. Chlormadinone acetate is effective for hot flush during androgen deprivation therapy. Prostate Int. 2013, 1, 113–116. [Google Scholar] [CrossRef]
- Kubota, Y.; Nakada, T.; Sasagawa, I.; Yanai, H.; Itoh, K.; Suzuki, H. The prognosis of stage A patients treated with the antiandrogen chlormadinone acetate. Int. Urol. Nephrol. 1999, 31, 229–235. [Google Scholar] [CrossRef]
- Sugimoto, M.; Kakehi, Y.; Horie, S.; Hirao, Y.; Akaza, H. A randomized controlled trial evaluating the effect of low-dose chlormadinone in patients with low-risk prostate cancer: PROSAS study. Jpn. J. Clin. Oncol. 2022, 52, 187–196. [Google Scholar] [CrossRef]
- Molina, A.; Belldegrun, A. Novel Therapeutic Strategies for Castration Resistant Prostate Cancer: Inhibition of Persistent Androgen Production and Androgen Receptor Mediated Signaling. J. Urol. 2011, 185, 787–794. [Google Scholar] [CrossRef]
- Obligacion, R.; Ramzan, I.; Murray, M. Drug-Metabolizing Enzymes and Transporters: Expression in the Human Prostate and Roles in Prostate Drug Disposition. J. Androl. 2006, 27, 138–150. [Google Scholar] [CrossRef]
- Stein, M.N.; Singer, E.A.; Patel, N.; Bershadskiy, A.; Sokoloff, A. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J. Androl. 2014, 16, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. Personalised medicine for cancer: From drug development into clinical practice. Expert Opin. Pharmacother. 2005, 6, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, C.; Nadiminty, N.; Lou, W.; Tummala, R.; Evans, C.P.; Gao, A.C. Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer. Mol. Cancer Ther. 2013, 12, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Abidi, A. Cabazitaxel: A novel taxane for metastatic castration-resistant prostate cancer-current implications and future prospects. J. Pharmacol. Pharmacother. 2013, 4, 230–237. [Google Scholar] [CrossRef]
- Cookson, M.S.; Roth, B.J.; Dahm, P.; Engstrom, C.; Freedland, S.J.; Hussain, M.; Lin, D.W.; Lowrance, W.T.; Murad, M.H.; Oh, W.; et al. Castration-Resistant Prostate Cancer: AUA Guideline. J. Urol. 2013, 190, 429–438. [Google Scholar] [CrossRef]
- Gerritsen, W.R.; Sharma, P. Current and Emerging Treatment Options for Castration-Resistant Prostate Cancer: A Focus on Immunotherapy. J. Clin. Immunol. 2012, 32, 25–35. [Google Scholar] [CrossRef]
- Nishiyama, T. Androgen deprivation therapy in combination with radiotherapy for high-risk clinically localized prostate cancer. J. Steroid Biochem. Mol. Biol. 2012, 129, 179–190. [Google Scholar] [CrossRef]
- Singh, P.; Pal, S.K.; Alex, A.; Agarwal, N. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol. 2015, 11, 2137–2148. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G. Drug Repurposing (DR): An emerging approach in drug discovery. In Drug Repurposing: Hypothesis, Molecular Aspects and Therapeutic Applications; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef]
- Gillessen, S.; Gilson, C.; James, N.; Adler, A.; Sydes, M.; Clarke, N. Repurposing Metformin as Therapy for Prostate Cancer within the STAMPEDE Trial Platform. Eur. Urol. 2016, 70, 906–908. [Google Scholar] [CrossRef]
- Bahmad, H.F.; Demus, T.; Moubarak, M.M.; Daher, D.; Moreno, J.C.A.; Polit, F.; Lopez, O.; Merhe, A.; Abou-Kheir, W.; Nieder, A.M.; et al. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med. Sci. 2022, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Braga-Basaria, M.; Muller, D.C.; Carducci, M.A.; Dobs, A.S.; Basaria, S. Lipoprotein profile in men with prostate cancer undergoing androgen deprivation therapy. Int. J. Impot. Res. 2006, 18, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Giacinti, S.; Poti, G.; Roberto, M.; Macrini, S.; Bassanelli, M.; Di Pietro, F.; Aschelter, A.M.; Ceribelli, A.; Ruggeri, E.M.; Marchetti, P. Molecular Basis of Drug Resistance and Insights for New Treatment Approaches in mCRPC. Anticancer Res. 2018, 38, 6029–6039. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C. Overcoming docetaxel resistance in prostate cancer: A perspective review. Ther. Adv. Med. Oncol. 2012, 4, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Singh, A.; Rovito, P.M.; Wang, C.Y.; Haas, G.P. Double Primary Cancers of the Prostate and Bladder: A Literature Review. Clin. Prostate Cancer 2004, 3, 83–86. [Google Scholar] [CrossRef]
- Tokizane, T.; Shiina, H.; Igawa, M.; Enokida, H.; Urakami, S.; Kawakami, T.; Ogishima, T.; Okino, S.T.; Li, L.-C.; Tanaka, Y.; et al. Cytochrome P450 1B1 Is Overexpressed and Regulated by Hypomethylation in Prostate Cancer. Clin. Cancer Res. 2005, 11, 5793–5801. [Google Scholar] [CrossRef]
- Rochat, B.; Morsman, J.M.; Murray, G.I.; Figg, W.D.; McLeod, H.L. Human CYP1B1 and anticancer agent metabolism: Mechanism for tumor-specific drug inactivation? J. Pharmacol. Exp. Ther. 2001, 296, 537–541. [Google Scholar]
- DeVore, N.M.; Scott, E.E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 2012, 482, 116–119. [Google Scholar] [CrossRef]
- Lam, T.; Birzniece, V.; McLean, M.; Gurney, H.; Hayden, A.; Cheema, B.S. The Adverse Effects of Androgen Deprivation Therapy in Prostate Cancer and the Benefits and Potential Anti-oncogenic Mechanisms of Progressive Resistance Training. Sports Med.-Open 2020, 6, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Gritsina, G.; Gao, W.-Q. Transcriptional repression by androgen receptor: Roles in castration-resistant prostate cancer. Asian J. Androl. 2019, 21, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bolton, E.C.; Jones, J.O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 2015, 54, R15–R29. [Google Scholar] [CrossRef] [PubMed]
- Cimadamore, A.; Mazzucchelli, R.; Lopez-Beltran, A.; Massari, F.; Santoni, M.; Scarpelli, M.; Cheng, L.; Montironi, R. Prostate Cancer in 2021: Novelties in Prognostic and Therapeutic Biomarker Evaluation. Cancers 2021, 13, 3471. [Google Scholar] [CrossRef]
- Shiao, S.L.; Chu, G.C.-Y.; Chung, L.W. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett. 2016, 380, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Sejda, A.; Sigorski, D.; Gulczyński, J.; Wesołowski, W.; Kitlińska, J.; Iżycka-Świeszewska, E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology 2020, 87, 87–99. [Google Scholar] [CrossRef]
- Arora, H.; Panara, K.; Kuchakulla, M.; Kulandavelu, S.; Burnstein, K.L.; Schally, A.V.; Hare, J.M.; Ramasamy, R. Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc. Natl. Acad. Sci. USA 2018, 115, 11298–11303. [Google Scholar] [CrossRef]
- Hussein, M.-R.A.; Al-Assiri, M.; Musalam, A.O. Phenotypic characterization of the infiltrating immune cells in normal prostate, benign nodular prostatic hyperplasia and prostatic adenocarcinoma. Exp. Mol. Pathol. 2009, 86, 108–113. [Google Scholar] [CrossRef]
- Gurel, B.; Lucia, M.S.; Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Kristal, A.R.; Parnes, H.L.; Hoque, A.; Lippman, S.M.; Sutcliffe, S.; et al. Chronic Inflammation in Benign Prostate Tissue Is Associated with High-Grade Prostate Cancer in the Placebo Arm of the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 847–856. [Google Scholar] [CrossRef]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef]
- Worthington, J.J.; Fenton, T.M.; Czajkowska, B.I.; Klementowicz, J.E.; Travis, M.A. Regulation of TGFβ in the immune system: An emerging role for integrins and dendritic cells. Immunobiology 2012, 217, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Hägglöf, C.; Bergh, A. The Stroma—A Key Regulator in Prostate Function and Malignancy. Cancers 2012, 4, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Snaterse, G.; Visser, J.A.; Arlt, W.; Hofland, J. Circulating steroid hormone variations throughout different stages of prostate cancer. Endocr.-Relat. Cancer 2017, 24, R403–R420. [Google Scholar] [CrossRef]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Castoria, G. Estrogens and Their Receptors in Prostate Cancer: Therapeutic Implications. Front. Oncol. 2018, 8, 2. [Google Scholar] [CrossRef]
- Rahman, H.P.; Hofland, J.; Foster, P.A. In touch with your feminine side: How oestrogen metabolism impacts prostate cancer. Endocr.-Relat. Cancer 2016, 23, R249–R266. [Google Scholar] [CrossRef]
- Ellem, S.J.; Risbridger, G.P. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J. Steroid Biochem. Mol. Biol. 2010, 118, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.; Huang, B.; Gustafsson, J.-A. Estrogen Receptor β as a Pharmaceutical Target. Trends Pharmacol. Sci. 2017, 38, 92–99. [Google Scholar] [CrossRef]
- Bonkhoff, H. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression. Prostate 2018, 78, 2–10. [Google Scholar] [CrossRef]
- Takizawa, I.; Lawrence, M.G.; Balanathan, P.; Rebello, R.; Pearson, H.B.; Garg, E.; Pedersen, J.; Pouliot, N.; Nadon, R.; Watt, M.J.; et al. Estrogen receptor alpha drives proliferation in PTEN-deficient prostate carcinoma by stimulating survival signaling, MYC expression and altering glucose sensitivity. Oncotarget 2015, 6, 604–616. [Google Scholar] [CrossRef]
- Bardin, A.; Boulle, N.; Lazennec, G.; Vignon, F.; Pujol, P. Loss of ERβ expression as a common step in estrogen-dependent tumor progression. Endocr.-Relat. Cancer 2004, 11, 537–551. [Google Scholar] [CrossRef]
- Christoforou, P.; Christopoulos, P.F.; Koutsilieris, M. The Role of Estrogen Receptor β in Prostate Cancer. Mol. Med. 2014, 20, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Oguntibeju, O. African Herbal Medicines: Adverse Effects and Cytotoxic Potentials with Different Therapeutic Applications. Int. J. Environ. Res. Public Health 2021, 18, 5988. [Google Scholar] [CrossRef] [PubMed]
- Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. 2019, 27, 565–573. [Google Scholar] [CrossRef]
- Matowa, P.R.; Gundidza, M.; Gwanzura, L.; Nhachi, C.F.B. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe. BMC Complement. Med. Ther. 2020, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Ahmadibeni, Y.; Karim, K.; Boadi, W. Abstract 2180: Triphenylmethanol conjugates of leuprorelin asanti-cancer prodrugs. Cancer Res. 2017, 77, 2180. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Veter-Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012, 6, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Alara, J.A.; Alara, O.R. ETHNO-MEDICINAL POTENTIALS AND PHYTOCHEMICAL PROPERTIES OF Aloe vera: A REVIEW. J. Chem. Eng. Ind. Biotechnol. 2019, 5, 57–73. [Google Scholar] [CrossRef]
- Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 3750. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.H.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Gori, J.L.; Hsu, P.; Maeder, M.L.; Shen, S.; Welstead, G.G.; Bumcrot, D. Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy. Hum. Gene Ther. 2015, 26, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Keiser, M.S.; Davidson, B.L. Viral Vectors for Gene Transfer. Curr. Protoc. Mouse Biol. 2018, 8, e58. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.-E. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Mandal, S.; Tiwari, A.; Monachesi, C.; Catassi, G.N.; Srivastava, A.; Gatti, S.; Lionetti, E.; Catassi, C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021, 10, 2351. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Khurana, A.; Navik, U.; Allawadhi, P.; Bharani, K.K.; Weiskirchen, R. Apoptosis and Pharmacological Therapies for Targeting Thereof for Cancer Therapeutics. Sci 2022, 4, 15. [Google Scholar] [CrossRef]
- Sharifi, N.; Salmaninejad, A.; Ferdosi, S.; Bajestani, A.N.; Khaleghiyan, M.; Estiar, M.A.; Jamali, M.; Nowroozi, M.R.; Shakoori, A. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncol. Lett. 2016, 12, 4651–4658. [Google Scholar] [CrossRef]
- Rossini, A.; Giussani, M.; Ripamonti, F.; Aiello, P.; Regondi, V.; Balsari, A.; Triulzi, T.; Tagliabue, E. Combined targeting of EGFR and HER2 against prostate cancer stem cells. Cancer Biol. Ther. 2020, 21, 463–475. [Google Scholar] [CrossRef]
- Jiang, F.; Liang, Y.; Wei, W.; Zou, C.; Chen, G.; Liu, Z.; Han, Z.; Zhu, J.; Zhong, W. Functional classification of prostate cancerassociated miRNAs through CRISPR/Cas9mediated gene knockout. Mol. Med. Rep. 2020, 22, 3777–3784. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Desai, N.; Momin, M.; Khan, T.; Gharat, S.; Ningthoujam, R.S.; Omri, A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin. Drug Deliv. 2021, 18, 1261–1290. [Google Scholar] [CrossRef]
- Mount Sinai School of Medicine. Gold Nanoparticles Shown to Be Safe and Effective Treatment for Prostate Cancer. 2019. Available online: https://www.sciencedaily.com/releases/2019/08/190827123513.htm (accessed on 21 July 2022).
- Sechi, M.; Sanna, V.; Pala, N. Targeted therapy using nanotechnology: Focus on cancer. Int. J. Nanomed. 2014, 9, 467–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, J.R.; Thompson, T.C. Considering the potential for gene-based therapy in prostate cancer. Nat. Rev. Urol. 2021, 18, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Balon, K.; Sheriff, A.; Jacków, J.; Łaczmański, Ł. Targeting Cancer with CRISPR/Cas9-Based Therapy. Int. J. Mol. Sci. 2022, 23, 573. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kita, Y.; Bang, U.; Gee, P.; Hotta, A. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells. STAR Protoc. 2021, 2, 100965. [Google Scholar] [CrossRef]
- Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A.M.; Schubert, M.S.; Friedmann-Morvinski, D.; Cohen, Z.R.; Behlke, M.A.; et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 2020, 6, eabc9450. [Google Scholar] [CrossRef]
- Ye, R.; Pi, M.; Cox, J.V.; Nishimoto, S.K.; Quarles, L.D. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J. Exp. Clin. Cancer Res. 2017, 36, 90. [Google Scholar] [CrossRef]
- Tsujino, T.; Komura, K.; Inamoto, T.; Azuma, H. CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 12777. [Google Scholar] [CrossRef]
- Friedman, A.D.; Claypool, S.E.; Liu, R. The smart targeting of nanoparticles. Curr. Pharm. Des. 2013, 19, 6315–6329. [Google Scholar] [CrossRef]
- Li, K.; Zhan, W.; Chen, Y.; Jha, R.K.; Chen, X. Docetaxel and Doxorubicin Codelivery by Nanocarriers for Synergistic Treatment of Prostate Cancer. Front. Pharmacol. 2019, 10, 1436. [Google Scholar] [CrossRef]
- Autio, K.A.; Dreicer, R.; Anderson, J.; Garcia, J.A.; Alva, A.; Hart, L.L.; Milowsky, M.I.; Posadas, E.M.; Ryan, C.J.; Graf, R.P.; et al. Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 1344–1351. [Google Scholar] [CrossRef]
- Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth. 2010, 26, 790–795. [Google Scholar] [CrossRef] [PubMed]
- He, M.-H.; Chen, L.; Zheng, T.; Tu, Y.; He, Q.; Fu, H.-L.; Lin, J.-C.; Zhang, W.; Shu, G.; He, L.; et al. Potential Applications of Nanotechnology in Urological Cancer. Front. Pharmacol. 2018, 9, 745. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Smith, A.D.; Ferraldeschi, R.; Al-Lazikani, B.; Workman, P.; De Bono, J.S. Drug discovery in advanced prostate cancer: Translating biology into therapy. Nat. Rev. Drug Discov. 2016, 15, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Tüfekci, K.U.; Öner, M.G.; Meuwissen, R.L.J.; Genç, Ş. The Role of MicroRNAs in Human Diseases. In miRNomics: MicroRNA Biology and Computational Analysis; Humana Press: Totowa, NJ, USA, 2013; pp. 33–50. [Google Scholar] [CrossRef]
- Palop, J.J.; Mucke, L.; Roberson, E.D. Quantifying Biomarkers of Cognitive Dysfunction and Neuronal Network Hyperexcitability in Mouse Models of Alzheimer’s Disease: Depletion of Calcium-Dependent Proteins and Inhibitory Hippocampal Remodeling. In Alzheimer’s Disease and Frontotemporal Dementia; Humana Press: Totowa, NJ, USA, 2010; Volume 670, pp. 245–262. [Google Scholar] [CrossRef]
- Johnson, T.M. Perspective on Precision Medicine in Oncology. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 988–989. [Google Scholar] [CrossRef]
- Lancaster, E.M.; Jablons, D.; Kratz, J.R. Applications of Next-Generation Sequencing in Neoantigen Prediction and Cancer Vaccine Development. Genet. Test. Mol. Biomark. 2020, 24, 59–66. [Google Scholar] [CrossRef]
- Kamps, R.; Brandão, R.D.; van den Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef]
- Wakai, T.; Prasoon, P.; Hirose, Y.; Shimada, Y.; Ichikawa, H.; Nagahashi, M. Next-generation sequencing-based clinical sequencing: Toward precision medicine in solid tumors. Int. J. Clin. Oncol. 2019, 24, 115–122. [Google Scholar] [CrossRef]
- Thadani-Mulero, M.; Portella, L.; Sun, S.; Sung, M.; Matov, A.; Vessella, R.L.; Corey, E.; Nanus, D.M.; Plymate, S.R.; Giannakakou, P. Androgen Receptor Splice Variants Determine Taxane Sensitivity in Prostate Cancer. Cancer Res. 2014, 74, 2270–2282. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, P.; Rockowitz, S.; Iaquinta, P.J.; Shamu, T.; Shukla, S.; Gao, D.; Sirota, I.; Carver, B.S.; Wongvipat, J.; et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 2013, 19, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.S.; Li, J.; Lavery, H.J.; Yadav, K.K.; Tewari, A.K. Next-generation sequencing technology in prostate cancer diagnosis, prognosis, and personalized treatment. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 267.e1–267.e13. [Google Scholar] [CrossRef]
- Friedman, A.A.; Letai, A.; Fisher, D.E.; Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Cancer 2015, 15, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Meador, C.B.; Lovly, C. Liquid biopsies reveal the dynamic nature of resistance mechanisms in solid tumors. Nat. Med. 2015, 21, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Lianos, G.D.; Mangano, A.; Cho, W.C.; Dionigi, G.; Roukos, D.H. Circulating tumor DNA: New horizons for improving cancer treatment. Future Oncol. 2015, 11, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Pajares, M.J.; Ezponda, T.; Catena, R.; Calvo, A.; Pio, R.; Montuenga, L.M. Alternative splicing: An emerging topic in molecular and clinical oncology. Lancet Oncol. 2007, 8, 349–357. [Google Scholar] [CrossRef]
- Yang, L.; Luquette, L.J.; Gehlenborg, N.; Xi, R.; Haseley, P.S.; Hsieh, C.H.; Zhang, C.; Ren, X.; Protopopov, A.; Chin, L.; et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013, 153, 919–929. [Google Scholar] [CrossRef] [Green Version]
Radiogenomics | Advantages | Limitations |
---|---|---|
Could provide precise imaging indicators that are less expensive than genetic testing. | Lack of prospective studies | |
AI and deep learning are used to produce computer-aided tools for clinical practice translation, employing large public databases containing genomes and imaging information. | Image acquisition for defining and contouring the regions of interests need expert radiologists | |
Computer-designed software, both automatic and semiautomatic, is utilized to eliminate downsides (lack of standardization, imaging, and reporting protocols which differ significantly among institutions). | Significant time used for proper manual delineation | |
Radiomics/radiogenomics biomarkers may be utilized to tailor treatment options and predict risk and outcomes. | Reading and segmenting regions of interest have a lot of inter-observer variability | |
Biopsies are required to provide insight into the tumor genome, which is an intrusive technique that may increase patient morbidity. Tumor genetic changes can be predicted using radiogenomics. | Different acquisition techniques, scanners, and radiomic investigations, as well as a lack of repeatability and reproducibility due to a lack of standardization | |
Whole-tumor data are available with a radiomics-based approach that can provide predictive and prognostic information. | Because of the differences in patient characteristics and imaging techniques, matching whole-genome sequencing data with imaging data is problematic |
Gene | Gene Description | Diagnostic/Prognostic or Predictive |
---|---|---|
BRCA genes | The comparative risk of prostate cancer at 65 years is 1.8–4.5-fold for BRCA1 carriers and 2.5–8.6-fold for BRCA2 gene carriers [31,34]. Mutations in BRCA genes inhibit DNA repair leading to prostate cancer [35]. | Diagnostic Predictive [36] |
RNASEL | Mutations in the ribonuclease L (RNase L) gene have been associated with prostate cancer [37]. The mutations found can inactivate the RNase L gene and make unsusceptible to prostate cancer [38]. RNase L is an endoribonuclease that plays a role in interferon action pathways protecting against viral infections [35,39]. | Predictive [40] |
HOXB13 | HOXB13 reduces prostate cancer growth and hormone-mediated androgen receptor activity [41,42]. The (rs339331) polymorphism increases HOXB13 binding to a transcriptional enhancer, resulting in upregulation. Most HOXB13 mutations correlate to the risk of aggressive and earlier-onset prostate cancer [43]. | Predictive [44] |
ATM gene | The ATM protein controls cell division and growth. It also leads to the development of certain body systems and helps cells recognize damaged DNA. Germline ATM mutations are linked to early metastasis and a lower prostate cancer survival rate [45,46]. | Prognostic [47] |
HPC2 or ELAC2 gene | HPC2 (hereditary prostate cancer gene 2) and ELAC2 (elaC homolog 2) are a candidate genes for hereditary prostate cancer. As with HPC1, mutations associated with prostate cancer are missense mutations [48]. | Predictive [40] |
MSR1 gene | MSR1 (macrophage scavenger receptor 1) at 8p22–23 of the hereditary prostate cancer (HPC) locus, and mutations linked to this gene have been associated with prostate cancer [49,50]. | Predictive [40] |
ANXA7 | ANXA7 is a prostate cancer prognosis factor that shows a bimodal correlation to tumor progression [51,52]. Analyses of the ANX7 protein in prostate tumor microarrays have shown increased rates of reductions in ANX7 expression in recurrence and metastasis of hormone-refractory prostate cancer as compared with primary tumors [53]. | Prognosis [51] |
(ATBF1)-A | The AT-motif binding factor 1 (ATBF1)-A is a candidate for prostate cancer tumor suppression due to its function in cell inhibition and high mutation rate. A decrease in ATBF1-A mRNA levels is associated with a poor diagnosis. ATBF1 inhibits cell proliferation; therefore, the loss of ATBF1 leads to uncontrolled cell growth [54,55]. | Predictive [41] |
CDKN1B | The CDKN1B’s main function is cell cycle gatekeeping. Research indicates that the CDKN1B gene is a vital tumor suppressor gene in prostate cancer. There is a correlation between the location of the CDKN1B gene (12p13) and susceptibility to prostate cancer in different populations [56,57]. | Prognostic [58] |
(KLF6) gene | Kruppel-like factor 6 (KLF6) is a tumor suppressor gene and a zinc finger transcription factor. In a study by Narla et al., 2008, an allele in the KLF6 gene was deleted in 77% of prostate tumors, and the normal KLF6 gene upregulated p21 (WAF1/CIP1) and decreased cell proliferation. The KLF6-SV1 mutation overexpression elevated metastasis [59,60]. | Predictive [60] |
MYC gene | MYC proto-oncogene, BHLH transcription factor encodes transcription factors, promoting tumorigenesis in prostate cancer. Studies show that prostate cancer tumor foci show overexpression of MYC and protein, which is associated with the severity of the cancer. TMPRSS2-ERG gene fusion caused by a mutation of the MYC is linked to the aggressiveness of prostate cancer and seen in 60% patients [61,62,63]. | Predictive [63] |
NK3 21 | NK3 homeobox 1 (Nkx3.1) gene expression is usually lost during the process of prostate cancer initiation and growth in humans and mouse models. It was found that the loss of Nkx3.1 expression intercedes at the transcriptional stage via the 11 kb region [64,65]. | Diagnostic [64] |
PON1 | Paraoxonase 1 (PON1) is a protein coding gene. The gene reduces oxidative stress, which leads to cancer development [66]. A study by Stevens et al., 2008, investigated the relationship between SNPs (Q192R and L55M) and prostate cancer. The results showed that the presence of a variant allele found in the Q192R and L55M SNPs was linked to an increased risk of aggressive prostate cancer [67]. | Prognostic [66] |
PTEN | Loss of phosphatase and tensin homolog PTEN is common in androgen-independent prostate cancer [68,69]. The loss of function in the PTEN gene is linked to irregular cellular proliferation. Studies have shown that mutations in the PTEN gene play a role in prostate carcinogenesis [70]. The PTEN gene is mutated in the prostate cell lines LNCaP, PC3, and DU145, and prostate cancer xenografts [71]. | Prognostic [70] |
mtDNA | Mitochondrial DNA has 16,569 bases that encode 37 genes. Mutations found in mitochondrial DNA genes have been found to cause prostate cancer [72]. In a study on mtDNA genes, approximately 12% of patients had mutations in cytochrome oxidase subunit I (COI) [73]. | Prognostic [73] |
RAS | Rat sarcoma virus (RAS) is part of a family of genes consisting of the N-RAS H-RAS and K-RAS, which are important in cell signaling. Point mutations that happen at codons 12, 13, or 61 of the family genes allow the protooncogene to be translated to a RAS oncogene [74]. | Diagnostic [75] |
Biomarker | Test | Category |
---|---|---|
Prostate-specific antigen | A PSA count >4 ng/mL has a specificity of 94%, but only 20% sensitivity in PCa detection; only 1 in 4 men with elevated PSA will be diagnosed with PCa. | Serum-based biomarker Standard prostate cancer screening method |
4K score kallikrein markers | The 4K test includes a PCa diagnostic algorithm that includes four kallikreins in blood plasma. The analysis includes a 4K panel = total PSA (tPSA), free PSA (fPSA), intact PSA, and human kallikrein 2 (hK2). | Serum-based biomarker Detection of high-grade PCa in previously unscreened men with elevated PSA |
Prostate health index (PHI) | PHI result = (−2) (proPSA/fPSA) x √ tPSA). First, the PHI test was developed to predict the probability of PCa. The use of the PHI with a cut-off ≥25 could avoid 40% of biopsies. | Serum-based biomarker Detection of any PCa PHI test also makes it possible to examine the possibility of PCa progression during active surveillance |
SelectMDx HOXC6, KLK3, DLX1 mRNA, and PSAd | SelectMDx test analyzes urine samples obtained after strokes of prostate during DRE. The presence of the HOXC6 and DLX1 genes is assessed to assess the risk of any PCa during biopsy, and the risk of high-grade PCa. | Urine-based biomarker mpMRI outcomes indicate that SelectMDx score is a promising tool in PCa detection |
TMPRSS2-ERG Fusion | TMPRSS2-ERG levels are linked to castration-resistant PCa. Fusion trans-membrane serine protease 2 (TMPRSS2) and ERG gene can be detected in 50% of PCa patients. | Urine-based TMPRSS2-ERG low sensitivity |
PCA3 Progensa Prostate Cancer Antigen 3 | Prostate cancer gene 3 (PCA3 or DD3) is a specific non-coding mRNA which is overexpressed in more than 95% of primary prostate tumors. | Urine-based biomarker PCA3 score over PSA, in terms of predictive value and specificity, has lower sensitivity |
ConfirmMDx Hypermethylation of GSTP1, APC and RASSF1 genes, PSA | Screening patients at risk of HG PCa after an initial negative biopsy. It is clinically validated for detection of PCa in tissue from PCa-negative biopsies. | Tissue-based biomarker Tissue from prostate biopsy |
Treatment Option | Disease Progression | Potential Adverse Effects |
---|---|---|
Active surveillance | Localized | Illness uncertainty |
Radical prostatectomy | Localized | Erectile dysfunction Urinary incontinence |
External beam radiation | Localized and advanced disease | Urinary urgency and frequency, dysuria, diarrhea, and proctitis Erectile dysfunction Urinary incontinence |
Brachytherapy | Localized | Urinary urgency and frequency, dysuria, diarrhea, and proctitis Erectile dysfunction Urinary incontinence |
Cryotherapy | Localized | Erectile dysfunction Urinary incontinence and retention Rectal pain and fistula |
Hormone therapy | Advanced | Fatigue Hot flashes and flare effect Hyperlipidemia Insulin resistance Cardiovascular disease Anemia Osteoporosis Erectile dysfunction Cognitive deficits |
Chemotherapy | Advanced | Myelosuppression Hypersensitivity reaction Gastrointestinal upset Peripheral neuropathy |
Primary Anticancer Agent | Secondary Anticancer Agent | Clinical Trial |
---|---|---|
Sipuleucel-T ADT Docetaxel ADT Docetaxel ADT Ipilimumab ADT ADT ADT Abiraterone Abiraterone Abiraterone | Docetaxel Radiation Thalidomide and Bevacizumab Radiation Bevacizumab Docetaxel Radiation Docetaxel Docetaxel Radiation Olaparib Radium 223 Enzalutamide | ISRCTN01534787 NCT00091364 NCT00002633/ISRCTN24991896 NCT00110214 GETUG-AFU 15 (NCT00104715) NCT00861614 CHAARTED (NCT00309985) STAMPEDE (NCT00268476) NCT00002874 NCT01972217 ERA 223 (NCT02043678) |
Primary Anticancer Agent | Secondary Anticancer Agent | Clinical Trial | Phase and Current Status |
---|---|---|---|
Abiraterone Abiraterone Abiraterone ADT Apalutamide Cabazitaxel Docetaxel Olaparib | Apalutamide ADT Olaparib PROSTVAC Docetaxel, Abiraterone ADT, radiation PROSTVAC-IF Durvalumab | LACOG-0415 (NCT02867020) LATITUDE NCT03732820 NCT00450463 NCT02913196 NCT01420250 NCT02649855 NCT03810105 | Phase 2, recruiting Phase 3, active and not recruiting Phase 3, recruiting Phase 2, no compiled results but completed Phase 1, recruiting Phase 1, active and not recruiting Phase 2, active and not recruiting Phase 2, recruiting Phase 2, active and not recruiting Phase 2, recruiting |
Drugs | Original Use | Proposed Anticancer Mechanisms | Phase | Identifier ∗ | Recruitment Status |
---|---|---|---|---|---|
Zoledronic Acid | Bisphosphonate | Inhibition of mevalonate pathway Activity of metalloproteinases | Clinical trial Phase 4 | NCT00219271 | Completed |
Dexamethasone | Anti-inflammatory agent | Modulator of ERG activity | Clinical trial Phase 3 | NCT00316927 | Completed |
Aspirin | Anti-inflammatory agent | COX inhibitor suppression of the neoplastic prostaglandins Inhibition of NF-κB | Clinical trial Phase 3 | NCT00316927 | Completed |
Minocycline | Antibacterial agent | Inhibition of proinflammatory cytokines Inhibition of matrix metalloproteinases | Clinical trial Phase 3 | NCT02928692 | Recruiting |
Celecoxib | Anti-inflammatory agent | Selective Cox-2 inhibitor Inhibition of NF-κB activity Inhibition of PDPK1/Akt signaling pathway | Clinical trial Phase 2/3 | NCT00136487 | Completed |
Leflunomide | Immunomodulatory agent | Potent inhibitor of tyrosine kinases | Clinical trial Phase 2/3 | NCT00004071 | Completed |
Statins | HMG-CoA reductase inhibitors | Inhibition of mevalonate pathway | Clinical trial Phase 2 | NCT01992042 | Completed |
Plant Name | Phytochemical/Anticancer Agent | Type of Cancer Suppressed, Clinical and Research |
---|---|---|
Moringa oliefera | Niazinine A | Blood cancer (in vitro) |
Catharanthus roseus | Vincristine and vinblastine | Testis, breast, rectum, ovary, lung, and cervical cancer (in vitro), in clinical use |
Panax ginseng | Panaxadiol, panaxatriol | Prostate, breast, colon, ovary, lung, and colon cancer (in vitro) |
Solanum Lycopersicum | Lycopene | Colon cancer as well as prostate (in vivo) |
Cannabis sativa | Cannabinoid | Colorectal cancer, lung, prostate, pancreas, and breast cancer (in vitro and in vivo) |
Taxus brevifolia | nab-Paclitaxel | Ovarian cancer as well as breast cancer (in vitro and animal studies), in clinical use |
Vitis vinifera | Cyanidin | Colon cancer (in vitro) |
Pyrus malus | Procyanidin, quercetin | Colon cancer (in vivo, in vitro) |
Curcuma longa | Curcumin | Stomach cancer, prostate cancer (in vitro) |
Camellia sinensis | Epigallocatechin gallate | Brain, bladder cancer, prostate, cervical, and bladder cancer (in vivo) |
Taxus baccata | Cabazitaxel | Prostate cancer (in vivo), in clinical use |
Taxus baccata | Docetaxel | Prostate, breast, and stomach cancer, in clinical use |
Taxus baccata | Larotaxel | Pancreatic, bladder, and breast cancer (in vivo) |
Taxus brevifolia | Paclitaxel | Breast cancer and ovarian cancer (in vivo) |
Berberis vulgaris | Cannabisin, berberine | Liver, prostate, and breast cancer (in vivo) |
Zingiber officinale | 6-Shogaol Gingerol | Ovarian cancer (in vitro) Ovarian, colon, and breast cancer (both in animal experiments and in vitro experiments) |
Aloe vera | Alexin B, emodin | Stomach cancer and leukemia (in vivo) |
Vaccinium macrocarpon | Hydroxycinnamoyl ursolic acid | Prostate and cervical cancer (in vitro) |
Hibiscus mutabilis | Lectin | Breast and liver cancer (in vitro) |
Momordica charantia | Cucurbitane-triterpene, charantin | Breast and colon cancer (in vitro) |
Podophyllum peltate | Etoposide Teniposide | Lung, testicular, leukemia, lymphoma Hodgkin’s lymphoma |
Curcuma longa | Curcumin | Stomach cancer (in vitro) Lung, prostate, skin, colon breast, lung, colon, prostate, liver esophagus (in vitro) |
Cicer arietinum Crocus | Bowman–Birk-type protease | Prostate as well as breast cancer (in vitro) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. https://doi.org/10.3390/molecules27175730
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules. 2022; 27(17):5730. https://doi.org/10.3390/molecules27175730
Chicago/Turabian StyleSekhoacha, Mamello, Keamogetswe Riet, Paballo Motloung, Lemohang Gumenku, Ayodeji Adegoke, and Samson Mashele. 2022. "Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches" Molecules 27, no. 17: 5730. https://doi.org/10.3390/molecules27175730