Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Co-Mo-B/NF and Co-B/NF
3.3. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, F.; He, J.; Wang, H.; Lin, J.; Chen, R.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022. [Google Scholar] [CrossRef]
- Rammal, M.B.; El-Ghoubaira, V.; Omanovic, S. Part II: NiMoO4 nanostructures synthesized by the solution combustion method: A parametric study on the influence of material synthesis and electrode-fabrication parameters on the electrocatalytic activity in the hydrogen evolution reaction. Molecules 2022, 27, 1199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liang, X.; Wang, L.; Sun, K.; Wang, Y.; Xie, Z.; Wu, Q.; Bai, X.; Hamdy, M.S.; Chen, H.; et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022. [Google Scholar] [CrossRef]
- Xu, X.; Shao, Z.; Jiang, S.P. High-entropy materials for water electrolysis. Energy Technol. 2022. [Google Scholar] [CrossRef]
- Li, C.; Yu, G.; Shen, X.; Li, Y.; Chen, W. Theoretical study on the high HER/OER electrocatalytic activities of 2D GeSi, SnSi, and SnGe monolayers and further improvement by imposing biaxial strain or doping heteroatoms. Molecules 2022, 27, 5092. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Z.; Zhang, X.; Sun, A.; Ji, X. Controllable atom implantation for achieving coulomb-force unbalance toward lattice distortion and vacancy construction for accelerated water splitting. J. Colloid Interf. Sci. 2022, 610, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Eid, K.; Sliem, M.H.; Abdullah, A.M. Tailoring the defects of sub-100 nm multipodal titanium nitride/oxynitride nanotubes for efficient water splitting performance. Nanoscale Adv. 2021, 3, 5016–5026. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Liu, Q.; Cheng, N.; Asiri, A.M.; Sun, X.; Li, C. Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. J. Mater. Chem. A 2014, 2, 14812–148160. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Z.; Yang, Q.; Zhang, X.; Liu, J.; Liu, M.; Bi, T.; Ji, X. Atmospheric-temperature chain reaction towards ultrathin non-crystal-phase construction for highly efficient water splitting. Chem. Eur. J. 2022, 28, e202200683. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Qiu, Y.; Zhang, H.; Bi, T.; Yang, Q.; Liu, M.; Zhou, J.; Ji, X. Lattice-disorder layer generation from liquid processing at room temperature with boosted nanointerface exposure toward water splitting. Sustain. Energy Fuels 2022, 6, 3008–3013. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, L.; Yue, L.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y.; Lu, S.; Zheng, B.; Sun, X. A NiCo LDHs nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Liu, Z.; Zhang, X.; Han, H.; Ji, X. Solar-driven photoelectron injection effect on MgCo2O4@WO3 core-shell heterostructure for efficient overall water splitting. Appl. Surface Sci. 2022, 578, 152049. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y.; Zheng, Y.; Qiao, S. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, S.; Zhang, L.; Luo, Y.; Yang, Q.; Dong, K.; Fang, X.; Zheng, D.; Alshehri, A.A.; Sun, X. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 2022, 15, 8922–8927. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Wang, Z.; Liu, J.; Pei, W.; Yang, P.; Zhao, J.; Qiu, J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Liu, P.; Liang, J.; Luo, Y.; Cui, G.; Tang, B.; Liu, Q.; Yan, X.; Hao, H.; et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090. [Google Scholar] [CrossRef]
- Zhang, L.; Laing, J.; Yue, L.; Dong, K.; Li, J.; Zhao, D.; Li, Z.; Sun, S.; Luo, Y.; Liu, Q.; et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022. [Google Scholar] [CrossRef]
- Khan, M.A.; Al-Attas, T.; Roy, S.; Rahman, M.M.; Ghaffour, N.; Thangdurai, V.; Larter, S.; Hu, J.; Ajayan, P.M.; Kibria, M.G. Seawater electrolysis for hydrogen production: A solution looking for a problem. Energy Environ. Sci. 2021, 14, 4831–4839. [Google Scholar] [CrossRef]
- Dresp, S.; Dionigi, F.; Klingehof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Ahsan, M.A.; He, T.; Eid, K.; Abdullah, A.M.; Curry, M.L.; Du, A.; Santiago, A.R.P.; Echegoyen, L.; Noveron, J.C. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Kim, S.; Ahn, S.H. Electrodeposited amorphous Co–P–B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 6282–6288. [Google Scholar] [CrossRef]
- Eid, K.; Soliman, K.A.; Abdulmalik, D.; Mitoraj, D.; Sleim, M.H.; Liedke, M.O.; Abdullah, A.M. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: Experimental insights on the photocatalytic-activity-defects relationship. Catal. Sci. Technol. 2020, 10, 801–809. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, Y.; Peng, S.; Hu, Y. Fe-B alloy coupled with Fe clusters as an efficient cocatalyst for photocatalytic hydrogen evolution. Chem. Eng. J. 2018, 344, 506–513. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Luo, Y.; Liu, Q.; Lu, S.; Chen, G.; Gao, S.; Chen, S.; Sun, X. A cobalt–phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustain. Energy Fuels 2020, 4, 3884–3887. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Li, Z.; Meng, Y.; Tan, Z.; Zhu, M. Double-shelled carbon nanocages grafted with carbon nanotubes embedding Co nanoparticles for enhanced hydrogen evolution electrocatalysis. Chem. Commun. 2021, 57, 3022–3025. [Google Scholar] [CrossRef]
- Li, S.; Ren, P.; Yang, C.; Liu, X.; Yin, Z.; Li, W.; Yang, H.; Li, J.; Wang, X.; Wang, Y.; et al. Fe5C2 nanoparticles as low-cost HER electrocatalyst: The importance of Co substitution. Sci. Bull. 2018, 63, 1358–1363. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, N.; Miotello, A.; Kothari, D.C. Cobalt-Boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 2015, 279, 620–625. [Google Scholar] [CrossRef]
- Kadrekar, R.; Patel, N.; Arya, A. Understanding the role of boron and stoichiometric ratio in the catalytic performance of amorphous Co-B catalyst. Appl. Surf. Sci. 2020, 518, 146199. [Google Scholar] [CrossRef]
- Hao, W.; Wu, R.; Zhang, R.; Ha, Y.; Chen, Z.; Wang, L.; Yang, Y.; Ma, X.; Sun, D.; Fang, F.; et al. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater. 2018, 8, 1801372. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D.C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64–71. [Google Scholar] [CrossRef]
- Fernandes, R.; Chunduri, A.; Gupta, S.; Kadrekar, R.; Arya, A.; Miotello, A.; Patel, N. Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting. Electrochim. Acta 2020, 35, 136738. [Google Scholar] [CrossRef]
- Chai, L.; Liu, S.; Pei, S.; Wang, C. Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chem. Eng. J. 2021, 420, 129686. [Google Scholar] [CrossRef]
- Deng, Z.; Liang, J.; Liu, Q.; Ma, C.; Xie, L.; Yue, L.; Ren, Y.; Li, T.; Luo, Y.; Li, N.; et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, L.; Wang, C.; Duan, W.; Zhang, L.; Zhang, F.; Zhang, J.; Zhen, Y.; Gao, L.; Fu, F.; et al. Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Appl. Catal. B Environ. 2022, 304, 120993. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, J.; Hu, W.; Wen, H.; Qiu, Y.; Tang, P.; Chen, M.; Wang, P. Hierarchical nanostructured Co-Mo-B/CoMoO4−x amorphous composite for the alkaline hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 42605–42612. [Google Scholar] [CrossRef]
- Bau, J.A.; Kozlov, S.M.; Azofra, L.M.; Ould-Chikh, S.; Emwas, A.; Idriss, H.; Cavallo, L.; Takanabe, K. Role of oxidized Mo species on the active surface of Ni-Mo electrocatalysts for hydrogen evolution under alkaline conditions. ACS Catal. 2020, 10, 12858–12866. [Google Scholar] [CrossRef]
- Sun, Z.; Hao, S.; Ji, X.; Zheng, X.; Xie, J.; Li, X.; Tang, B. Efficient alkaline hydrogen evolution electrocatalysis enabled by an amorphous Co-Mo-B film. Dalton Trans. 2018, 47, 7640–7643. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Meng, C.; Liang, J.; Li, T.; Wang, Y.; Liu, Q.; Luo, Y.; Cui, G.; Asiri, A.M.; Lu, S.; et al. NiFe LDH nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, Z.; Deng, B.; Ye, C.; Zhang, L.; Wang, Y.; Li, T.; Liu, Q.; Cui, G.; Asiri, A.M.; et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Luo, J.; Kang, Z.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Deng, P.; Shen, Y.; et al. Mo-decorated cobalt phosphide nanoarrays as bifunctional electrocatalysts for efficient overall water/seawater splitting. Mater. Today Nano 2022, 18, 100216. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Ding, T.; Zuoa, J.; Yang, Q. Fabrication of amorphous CoMoS4 as a bifunctional electrocatalyst for water splitting under strong alkaline conditions. Nanoscale 2016, 8, 18887–18892. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angew. Chem. Int. Ed. 2016, 55, 6290. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chai, C.; Jiang, C.; Liu, L.; Xi, J. MoS2–CoS2 heteronanosheet arrays coated on porous carbon microtube textile for overall water splitting. J. Power Sources 2021, 514, 230580. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Tan, J.; Yuet, Q.; Yang, F.; Zhangal, Z.; Yang, L.; Cheng, H.-M.; Liu, B. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Z.; Wang, Z.; Singh, C.V.; Jiang, Q. Interface Engineering of Co/CoMoN/NF Heterostructures for High-Performance Electrochemical Overall Water Splitting. Adv. Sci. 2022, 9, 2105313. [Google Scholar] [CrossRef]
- Wang, X.; Ling, Y.; Li, L.; Li, L.; Chen, G.; Tao, X.; Li, J.; Li, B.; Luo, Q. Asymmetric electrodes with a transition metal disulfide heterostructure and amorphous bimetallic hydroxide for effective alkaline water electrolysis. J. Mater. Chem. A 2019, 7, 2895–2900. [Google Scholar] [CrossRef]
- Yu, L.; Song, S.; McElhenny, B.; Ding, F.; Luo, D.; Yu, Y.; Chen, S.; Ren, Z.J. A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. Mater. Chem. A 2019, 7, 19728–19732. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Tan, L.; Liu, X.; Wen, Y.; Hou, W.; Zhan, T. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, T.; Yuvakkumar, R.; Senthil, K.; Ravi, G.; Xu, X.; Xu, G.; Velauthapillai, D. Pristine and Cobalt Doped Copper Sulfide Microsphere Particles for Seawater Splitting. Int. J. Hydrogen Energy 2022, 47, 37171–37182. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Li, C.; Yao, H.; Zhang, C.; Zhou, J.; Xu, R.; Chu, L.; Wang, H.; Gu, M.; et al. Asymmetric Co–N3P1 Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System. Adv. Mater. 2022, 34, 2204021. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P–Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2021, 31, 2006484. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Song, Y.; Zhang, Y.; Qiu, Y.; Sun, M.; Tian, Y.; Li, C.; Lv, Z.; Zhang, L. Nickel–Cobalt Hydrogen Phosphate on Nickel Nitride Supported on Nickel Foam for Alkaline Seawater Electrolysis. ACS Appl. Mater. Int. 2022, 14, 22061–22070. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Wang, X.; Ouyang, L.; Zhang, L.; Sun, S.; Liang, Y.; Luo, Y.; Zheng, D.; Kang, T.; Liu, Q.; et al. Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater. Molecules 2022, 27, 7617. https://doi.org/10.3390/molecules27217617
Fang X, Wang X, Ouyang L, Zhang L, Sun S, Liang Y, Luo Y, Zheng D, Kang T, Liu Q, et al. Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater. Molecules. 2022; 27(21):7617. https://doi.org/10.3390/molecules27217617
Chicago/Turabian StyleFang, Xiaodong, Xiangguo Wang, Ling Ouyang, Longcheng Zhang, Shengjun Sun, Yimei Liang, Yongsong Luo, Dongdong Zheng, Tairan Kang, Qian Liu, and et al. 2022. "Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater" Molecules 27, no. 21: 7617. https://doi.org/10.3390/molecules27217617