Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications
Abstract
:1. Introduction
2. Scope of This Short Review/Perspective
3. Examples of ESIPT/DSE Emitters
3.1. 2-(2′-Hydroxyphenylbenzazole) (HBX) Fluorophores
3.2. Other Fluorophores
4. Photophysical Properties
Dye | λabs (Sol.) (nm) | λem (Sol.) (nm) | Φf (Sol.) | Solv. | λem (Solid) (nm) | Φf (Solid) | Matrix | Ref |
---|---|---|---|---|---|---|---|---|
1 | 363 | 472 | 0.15 | CH2Cl2 | 473 | 0.12 | KBr | [62] |
2a | 353 | 496 | 0.51 | toluene | 470 | 0.36 | KBr | [62] |
2b | 347 | 482 | 0.54 | toluene | 460 | 0.39 | KBr | [62] |
2c | 346 | 479 | 0.49 | toluene | 488 | 0.68 | KBr | [62] |
2d | 368 | 507 | 0.53 | toluene | 490 | 0.30 | KBr | [62] |
3 | 330 | 458 | 0.31 | THF | 460 | 0.16 | powder | [63] |
4 | 328 | 486 | 0.20 | THF | 484 | 0.16 | crystal | [64] |
5 | 366 | 414/477 | 0.19 | benzene | 470 | 0.13 | KBr | [65] |
6a | 349 | 397/514 | 0.10 | toluene | 530 | 0.51 | KBr | [67] |
6b | 349 | 489 | 0.19 | toluene | 504 | 0.63 | KBr | [67] |
6c | 347 | 550 | 0.32 | Toluene | 504 | 0.60 | KBr | [67] |
6d | 332 | 519 | 0.23 | toluene | 503 | 0.68 | KBr | [67] |
6e | 368 | 550 | 0.30 | toluene | 547 | 0.48 | KBr | [67] |
7a | 371 | 537 | 0.38 | toluene | 527 | 0.76 | KBr | [68] |
7b | 373 | 551 | 0.43 | toluene | 532 | 0.61 | KBr | [69] |
7c | 370 | 530 | 0.52 | toluene | 526 | 0.58 | KBr | [69] |
7d | 368 | 539 | 0.49 | toluene | 534 | 0.70 | KBr | [70] |
7e | 371 | 535 | 0.32 | toluene | 530 | 0.82 | KBr | [70] |
7f | 340 | 538 | 0.28 | toluene | 514 | 0.53 | KBr | [70] |
7g | 345 | 513 | 0.11 | toluene | 504 | 0.66 | KBr | [70] |
8a | 332 | 497 | 0.12 | CH2Cl2 | 496 | 0.38 | KBr | [71] |
8b | 335 | 518 | 0.40 | CH2Cl2 | 505 | 0.38 | KBr | [71] |
8c | 347 | 520 | 0.58 | CH2Cl2 | 541 | 0.22 | KBr | [71] |
9 | 372 | 543 | 0.50 | CH2Cl2 | 563 | 0.29 | KBr | [71] |
10 | 397 | 452/520 | 0.37 | CHCl3 | 520 | 0.34 | powder | [72] |
11a | 378 | 570 | 0.22 | toluene | 558 | 0.52 | KBr | [69] |
11b | 378 | 490/582 | 0.15 | toluene | 574 | 0.48 | KBr | [62] |
12 | 362 | 520 | 0.49 | CH2Cl2 | 528 | 0.57 | 5-CB | [73] |
13 | 400 | 605 | 0.08 | toluene | 605 | 0.23 | Crystal | [74] |
14 | 376 | 444 | 0.65 | toluene | 465/527 | 0.22 | Film | [75] |
15 | 424 | 521 | 0.87 | toluene | 573 | 0.19 | KBr | [76] |
16 | 350 | 534 | 0.12 | PBS | 534 | 0.51 | powder | [77] |
17 | 400 | 600 | 0.34 | CH2Cl2 | 695 | 0.34 | powder | [78] |
18a | 307 | 466 | 0.38 | CH2Cl2 | 466 | 0.57 | powder | [79] |
18b | 325 | 479 | 0.63 | CH2Cl2 | 477 | 0.74 | powder | [79] |
19a | 322 | 471 | 0.25 | CH2Cl2 | 491 | 0.87 | powder | [80] |
19b | 303 | 452 | 0.25 | CH2Cl2 | 463 | 0.68 | powder | [80] |
19c | 326 | 468 | 0.56 | CH2Cl2 | 494 | 0.74 | powder | [80] |
19d | 321 | 457 | 0.53 | CH2Cl2 | 473 | 0.15 | powder | [80] |
20 | 450 | 481 | 0.17 | CHCl3 | 481 | 0.38 | powder | [72] |
21 | 370 | 425 | 0.47 | toluene | 530 | 0.31 | PS | [81] |
22 | 368 | 433 | 0.60 | toluene | 530 | 0.55 | PS | [81] |
23a | 407 | 490 | 0.68 | toluene | 467 | 0.88 | PMMA | [82] |
23b | 388 | 506 | 0.29 | toluene | 473 | 0.44 | PMMA | [82] |
23c | 436 | 593 | 0.64 | CH2Cl2 | 528 | 0.83 | PMMA | [82] |
23d | 396 | 532 | 0.56 | CH2Cl2 | 482 | 0.45 | PMMA | [82] |
24a | 366 | 520 | 0.48 | benzene | 535 | 0.11 | powder | [83] |
24b | 366 | 523 | 0.74 | benzene | 540 | 0.39 | powder | [83] |
24c | 380 | 512 | 0.69 | benzene | 523 | 0.42 | powder | [83] |
24d | 369 | 505 | 0.85 | benzene | 515 | 0.53 | powder | [83] |
24e | 362 | 510 | 0.51 | benzene | 495 | 0.25 | powder | [83] |
25 | 366 | 542 | 0.52 | benzene | 535 | 0.13 | powder | [83] |
26 | 388 | 521 | 0.75 | CH2Cl2 | 530 | 0.51 | crystal | [84] |
27a | 508/544 | 558/593 | 0.11 | toluene | 675 | 0.08 | crystal | [85] |
27b | 532/560 | 579/616 | 0.27 | toluene | 656 | 0.73 | crystal | [85] |
27c | 537/568 | 586/622 | 0.58 | toluene | 670 | 0.51 | crystal | [85] |
27d | 536/568 | 582/621 | 0.43 | toluene | 682 | 0.41 | crystal | [85] |
28 | 343 | 500/535 | 0.43 | CH2Cl2 | 544 | 0.54 | powder | [86] |
5. First-Principle Modelling
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Moliner, F.; Kielland, N.; Lavilla, R.; Vendrell, M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew. Chem. Int. Ed. 2017, 56, 3758. [Google Scholar] [CrossRef] [PubMed]
- Levi, L.; Muller, T.J.J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev. 2016, 45, 2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Finney, N.S. Small-molecule fluorescent probes and their design. RSC Adv. 2018, 8, 29051–29061. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Hu, Y.; Liu, Q.; Li, X.; Li, X.; Kim, C.; James, T.D.; Li, J.; Chen, X.; Guo, Y. Two-Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angew. Chem. Int. Ed. 2021, 60, 10756–10765. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Tiwari, K.; Tiwari, R.; Pramanik, S.K.; Das, A. Small Molecules as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem. Rev. 2019, 119, 11718. [Google Scholar] [CrossRef]
- Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 2017, 46, 2237. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fluorescent chameleon labels for bioconjugation and imaging of proteins, nucleic acids, biogenic amines and surface amino groups. Methods Appl. Fluoresc. 2021, 9, 042001. [Google Scholar] [CrossRef]
- Park, S.-H.; Kwon, N.; Lee, J.-H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 282, 82. [Google Scholar] [CrossRef]
- Gsänger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Organic Semiconductors based on Dyes and Color Pigments. Adv. Mater. 2016, 28, 3615. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234. [Google Scholar] [CrossRef]
- Matsuki, K.; Pu, J.; Takenobu, T. Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials. Adv. Funct. Mater. 2020, 30, 1908641. [Google Scholar] [CrossRef]
- Bera, M.K.; Pal, P.; Malik, S. Solid-state emissive organic chromophores: Design, strategy and building blocks. J. Mater. Chem. C 2020, 8, 788. [Google Scholar] [CrossRef]
- Shimizu, M.; Hiyama, T. Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State. Chem. Asian J. 2010, 5, 1516. [Google Scholar] [CrossRef]
- Gierschner, J.; Shi, J.; Milian-Medina, B.; Roca-Sanjuan, D.; Varghese, S.; Park, S.Y. Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Adv. Opt. Mater. 2021, 9, 2002251. [Google Scholar] [CrossRef]
- Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W.Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616. [Google Scholar] [CrossRef]
- Förster, T. Excimers. Angew. Chem. Int. Ed. 1969, 8, 333. [Google Scholar] [CrossRef]
- Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K.H.; Gryko, D.T. π-Expanded coumarins: Synthesis, optical properties and applications. J. Mater. Chem. C 2015, 3, 1421. [Google Scholar] [CrossRef]
- Mishra, A.; Behera, R.K.; Behera, P.K.; Mishra, B.K.; Behera, G.B. Cyanines during the 1990s: A Review. Chem. Rev. 2000, 100, 1973. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26, 5429. [Google Scholar]
- Suzuki, S.; Sasaki, S.; Sairi, A.S.; Iwai, R.; Tang, B.Z.; Konishi, G.-I. Principles of Aggregation-Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications. Angew. Chem. Int. Ed. 2020, 59, 9856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, P.; Zhuang, Z.; Zhao, Z.; Tang, B.Z. AIEgens based on main group heterocycles. J. Mater. Chem. C 2018, 6, 11835. [Google Scholar] [CrossRef]
- Chen, S.-H.; Luo, S.-H.; Xing, L.-J.; Jiang, K.; Huo, Y.-P.; Chen, Q.; Wang, Z.-Y. Rational Design and Facile Synthesis of Dual-State Emission Fluorophores: Expanding Functionality for the Sensitive Detection of Nitroaromatic Compounds. Chem. Eur. J. 2022, 28, e202103478. [Google Scholar] [CrossRef]
- Zou, L.; Guo, S.; Lv, H.; Chen, F.; Wei, L.; Gong, Y.; Liu, Y.; Wei, C. Molecular design for organic luminogens with efficient emission in solution and solid-state. Dyes Pigm. 2022, 198, 109958. [Google Scholar] [CrossRef]
- Venkatramaiah, N.; Kumar, G.D.; Chandrasekaran, Y.; Ganduri, R.; Patil, S. Efficient Blue and Yellow Organic Light-Emitting Diodes Enabled by Aggregation-Induced Emission. ACS Appl. Mater. Interfaces 2018, 10, 3838. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, L.; Dang, D.; Zhi, Y.; Wang, X.; Meng, L. A Strategy of Self-Isolated Enhanced Emission to Achieve Highly Emissive Dual-State Emission for Organic Luminescent Materials. Chem. Eur. J. 2018, 24, 10383. [Google Scholar] [CrossRef]
- Singh, D.K.; Jang, K.; Kim, J.; Lee, J.; Kim, I. Intramolecular Electrophilic Cyclization Approach to 6-Substituted Naphtho[2,1-b] benzofurans: Novel Dual-State Emissive Fluorophores with Blue Emission. ACS Comb. Sci. 2019, 21, 408. [Google Scholar] [CrossRef]
- Ohno, K.; Narita, F.; Yokobori, H.; Iiduka, N.; Sugaya, T.; Nagasawa, A.; Fujihara, T. Substituent effect on emission of flavonolate-boron difluoride complexes: The role of π-system for dual-state (solution and solid) emission. Dyes Pigm. 2021, 187, 109081. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Ge, G.; Liu, Z.; Yu, Y.; Xue, M. Multi-state emission properties and the inherent mechanism of D-A-D type asymmetric organic boron complexes. J. Mater. Chem. C 2017, 5, 11030. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Q.; Dong, L.; Cai, Z.; Shi, J.; Zhi, J.; Tong, B.; Dong, Y. The Dual-State Luminescent Mechanism of 2,3,4,5-Tetraphenyl-1H-pyrrole. Chem. Eur. J. 2018, 24, 14269. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Wang, Z.-Y.; Ren, T.-B.; Xu, W.; Liu, Y.-P.; Zhang, X.-X.; Wu, P.; Yuan, L.; Zhang, X.-B. A general strategy for development of a single benzene fluorophore with full-color-tunable, environmentally insensitive, and two-photon solid-state emission. Chem. Commun. 2019, 55, 11462. [Google Scholar] [CrossRef] [PubMed]
- Belmonte-Vazquez, J.L.; Amador-Sanchez, Y.A.; Rodriguez-Cortes, L.A.; Rodriguez-Molina, B. Dual-State Emission (DSE) in Organic Fluorophores: Design and Applications. Chem. Mater. 2021, 33, 7160. [Google Scholar] [CrossRef]
- Rodriguez-Cortes, L.A.; Navarro-Huerta, A.; Rodriguez-Molina, B. One molecule to light it all: The era of dual-state emission. Matter 2021, 33, 2622. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, S.; Chen, Y.; Guo, H.; Yang, P. Excited state intramolecular proton transfer (ESIPT): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803. [Google Scholar] [CrossRef]
- Gayathri, P.; Pannipara, M.; Al-Sehemi, A.G.; Anthony, S.P. Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm 2021, 23, 3771. [Google Scholar] [CrossRef]
- Joshi, H.C.; Antonov, L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021, 26, 1475. [Google Scholar] [CrossRef]
- Jankowska, J.; Sobolewski, A.L. Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules 2021, 26, 5140. [Google Scholar] [CrossRef]
- Massue, J.; Jacquemin, D.; Ulrich, G. Molecular Engineering of Excited-state Intramolecular Proton Transfer (ESIPT) Dual and Triple Emitters. Chem. Lett. 2018, 47, 1083. [Google Scholar] [CrossRef]
- Padalkar, V.S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2016, 45, 169. [Google Scholar] [CrossRef] [PubMed]
- Berbigier, F.G.; Duarte, L.G.T.A.; Fialho Zawacki, M.; de Araújo, B.B.; de Moura Santos, C.; Atvars, T.D.Z.; Gonçalves, P.F.B.; Petzhold, C.L.; Rodembusch, F.S. ATRP Initiators Based on Proton Transfer Benzazole Dyes: Solid-State Photoactive Polymer with Very Large Stokes Shift. ACS Appl. Polym. Mater. 2020, 2, 1406. [Google Scholar] [CrossRef]
- Li, Y.; Dahal, D.; Abeywickrama, C.S.; Pang, Y. Progress in Tuning Emission of the Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes. ACS Omega 2021, 6, 6547. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.-H.; Bull, S.D.; He, X.-P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.-C.; Wang, X.-D.; Liao, L.-S. Organic Lasers Harnessing Excited State Intramolecular Proton Transfer Process. ACS Photonics 2020, 7, 1355. [Google Scholar] [CrossRef]
- Chen, L.; Fu, P.-Y.; Wang, H.-P.; Pan, M. Excited-State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Adv. Opt. Mater. 2021, 9, 2001952. [Google Scholar] [CrossRef]
- Mutai, T.; Muramatsu, T.; Yoshikawa, I.; Houjou, H.; Ogura, M. Development of Imidazo[1,2-a]pyridine Derivatives with an Intramolecular Hydrogen-Bonded Seven-Membered Ring Exhibiting Bright ESIPT Luminescence in the Solid State. Org. Lett. 2019, 21, 2143. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.G.T.A.; Germino, J.C.; Berbigier, J.F.; Barboza, C.A.; Faleiros, M.M.; de Alencar Simoni, D.; Galante, M.T.; de Holanda, M.S.; Rodembusch, F.S.; Atvars, T.D.Z. White-light generation from all-solution-processed OLEDs using a benzothiazole-salophen derivative reactive to the ESIPT process. Phys. Chem. Chem. Phys. 2019, 21, 1172. [Google Scholar] [CrossRef]
- Li, B.; Lan, J.; Wu, D.; You, J. Rhodium(III)-Catalyzed ortho-Heteroarylation of Phenols through Internal Oxidative C-H Activation: Rapid Screening of Single-Molecular White-Light-Emitting Materials. Angew. Chem. Int. Ed. 2015, 54, 14008. [Google Scholar] [CrossRef]
- Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Ziessel, R. White Emitters by Tuning the Excited-State Intramolecular Proton-Transfer Fluorescence Emission in 2-(2′-Hydroxybenzofuran)benzoxazole Dyes. Chem. Eur. J. 2014, 20, 12843. [Google Scholar] [CrossRef]
- Skonieczny, K.; Yoo, J.; Larsen, J.M.; Espinoza, E.M.; Barbasiewicz, M.; Vullev, V.I.; Lee, C.-H.; Gryko, D.-T. How To Reach Intense Luminescence for Compounds Capable of Excited-State Intramolecular Proton Transfer ? Chem. Eur. J. 2016, 22, 7485. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Zhao, S.; Guo, J.; Zhang, Z.; Zhang, H.; Liu, Y.; Wang, Y. Hydroxyphenyl-benzothiazole based full color organic emitting materials generated by facile molecular modification. J. Mater. Chem. 2011, 21, 3568. [Google Scholar] [CrossRef]
- Sakai, K.-I.; Ishikawa, T.; Akutagawa, T. A blue-white-yellow color-tunable excited state intramolecular proton transfer (ESIPT) fluorophore: Sensitivity to polar-nonpolar solvent ratios. J. Mater. Chem. C 2013, 1, 7866. [Google Scholar] [CrossRef]
- Benelhadj, K.; Massue, J.; Ulrich, G. 2,4 and 2,5-bis(benzooxazol-2′-yl) hydroquinone (DHBO) and their borate complexes: Synthesis and optical properties. New J. Chem. 2016, 40, 5877. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, L.; Niu, Y.; Wang, Y.; Yuan, M.-S.; Zhang, Y. Excited State Intramolecular ProtonTransfer in Regioisomers of HBT: Effects of the Position and Electronic Nature of Substituents. Chem. Asian J. 2016, 11, 3454. [Google Scholar] [CrossRef]
- Iijima, T.; Momotake, A.; Shinohara, Y.; Sato, T.; Nishimura, Y.; Arai, T. Excited-State Intramolecular Proton Transfer of Naphthalene-Fused 2-(2′-Hydroxyaryl) benzazole Family. J. Phys. Chem. A 2010, 114, 1603. [Google Scholar] [CrossRef]
- Massue, J.; Ulrich, G.; Ziessel, R. Effect of 3,5-Disubstitution on the Optical Properties of Luminescent 2-(2′-Hydroxyphenyl)benzoxazoles and Their Borate Complexes. Eur. J. Org. Chem. 2013, 2013, 5701–5709. [Google Scholar] [CrossRef]
- Heyer, E.; Benelhadj, K.; Budzák, S.; Jacquemin, D.; Massue, J.; Ulrich, G. On the Fine-Tuning of the Excited-State Intramolecular Proton Transfer (ESIPT) Process in 2-(2′-Hydroxybenzofuran)benzazole (HBBX) Dyes. Chem. Eur. J. 2017, 23, 7324. [Google Scholar] [CrossRef]
- Ren, Y.; Fan, D.; Ying, H.; Li, X. Rational design of the benzothiazole-based fluorescent scaffold for tunable emission. Tetrahedron Lett. 2019, 60, 1060. [Google Scholar] [CrossRef]
- Peng, X.-L.; Ruiz-Barragan, S.; Li, Z.-S.; Li, Q.-S.; Blancafort, L. Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. J. Mater. Chem. C 2016, 4, 2802. [Google Scholar] [CrossRef]
- Benelhadj, K.; Massue, J.; Retailleau, P.; Ulrich, G.; Ziessel, R. 2-(2′-Hydroxyphenyl) benzimidazole and 9, 10-Phenanthroimidazole Chelates and Borate Complexes: Solution- and Solid-State Emitters. Org. Lett. 2013, 15, 2918. [Google Scholar] [CrossRef]
- Pariat, T.; Munch, M.; Durko-Maciag, M.; Mysliwiec, J.; Retailleau, P.; Vérité, P.M.; Jacquemin, D.; Massue, J.; Ulrich, G. Impact of Heteroatom Substitution on Dual-State Emissive Rigidified 2-(2′-hydroxyphenyl) benzazole Dyes: Towards Ultra-Bright ESIPT Fluorophores. Chem. Eur. J. 2021, 27, 3483. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yamada, Y.; Fukuda, R.; Ehara, M.; Takeuchi, D. ESIPT emission behavior of methoxy-substituted 2-hydroxyphenylbenzimidazole isomers. New J. Chem. 2018, 42, 5923. [Google Scholar] [CrossRef]
- Takagi, K.; Ito, K.; Yamada, Y.; Nakashima, T.; Fukuda, R.; Ehara, M.; Masu, H. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer Active π-Conjugated Benzimidazole Compounds: Influence of Structural Rigidification by Ring Fusion. J. Org. Chem. 2017, 82, 12173. [Google Scholar] [CrossRef] [PubMed]
- Munch, M.; Colombain, E.; Stoerkler, T.; Vérité, P.M.; Jacquemin, J.; Ulrich, G.; Massue, J. Blue-Emitting 2-(2’-Hydroxyphenyl)Benzazole Fluorophores by Modulation of Excited-State Intramolecular Proton Transfer (ESIPT): Spectroscopic Studies and Theoretical Calculations. J. Phys. Chem. B 2022, 126, 2108. [Google Scholar] [CrossRef]
- Vazquez, S.R.; Rodriguez, M.C.R.; Mosquera, M.; Rodriguez-Prieto, F. Rotamerism, Tautomerism, and Excited-State Intramolecular Proton Transfer in 2-(4′-N, N-Diethylamino-2′-hydroxyphenyl) benzimidazoles: Novel Benzimidazoles Undergoing Excited-State Intramolecular Coupled Proton and Charge Transfer. J. Phys. Chem. A 2008, 112, 376. [Google Scholar] [CrossRef]
- Munch, M.; Curtil, M.; Vérité, P.M.; Jacquemin, D.; Massue, J.; Ulrich, G. Ethynyl-Tolyl Extended 2-(2′-Hydroxyphenyl)benzoxazole Dyes: Solution and Solid-state Excited-State Intramolecular Proton Transfer (ESIPT) Emitters. Eur. J. Org. Chem. 2019, 2019, 1134–1144. [Google Scholar] [CrossRef]
- Massue, J.; Felouat, A.; Vérité, P.M.; Curtil, M.; Jacquemin, D.; Cyprych, K.; Durko, M.; Sznitko, L.; Mysliwiec, J.; Ulrich, G. An extended excited-state intramolecular proton transfer (ESIPT) emitter for random lasing applications. Phys. Chem. Chem. Phys. 2018, 20, 19958. [Google Scholar] [CrossRef]
- Massue, J.; Felouat, A.; Curtil, M.; Vérité, P.M.; Jacquemin, D.; Ulrich, G. Solution and Solid-State Excited-State Intramolecular Proton Transfer (ESIPT) emitters incorporating Bis-triethyl-or triphenylsilylethynyl units. Dyes Pigm. 2019, 160, 915. [Google Scholar] [CrossRef]
- Massue, J.; Pariat, T.; Vérité, P.M.; Jacquemin, D.; Durko, M.; Chtouki, T.; Sznitko, L.; Mysliwiec, J.; Ulrich, G. Natural Born Laser Dyes: Excited-State Intramolecular Proton Transfer (ESIPT) Emitters and Their Use in Random Lasing Studies. Nanomaterials 2019, 9, 1093. [Google Scholar] [CrossRef] [Green Version]
- Pariat, T.; Stoerkler, T.; Diguet, C.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J. Org. Chem. 2021, 86, 17606. [Google Scholar] [CrossRef] [PubMed]
- Goebel, D.; Rusch, P.; Duvinage, D.; Bigall, N.C.; Nachtsheim, B.J. Emission color-tunable oxazol(in)yl-substituted excited-state intramolecular proton transfer (ESIPT)-based luminophores. Chem. Commun. 2020, 56, 15430. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Kobayashi, M.; Yoshida, H.; Shimizu, M. Remarkable Increase of Fluorescence Quantum Efficiency by Cyano Substitution on an ESIPT Molecule 2-(2-Hydroxyphenyl)benzothiazole: A Highly Photoluminescent Liquid Crystal Dopant. Crystals 2021, 11, 1105. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Ding, J.; Wang, R.; Zhang, Y. Effect of π-conjugation on solid-state fluorescence in highly planar dyes bearing an intramolecular H-bond. Dyes Pigm. 2020, 182, 108665. [Google Scholar] [CrossRef]
- Padalkar, V.S.; Sakamaki, D.; Kuwada, K.; Horio, A.; Okamoto, H.; Tohnai, N.; Akutagawa, T.; Sakai, K.-I.; Seki, S. π-π Interactions: Influence on Molecular Packing and Solid-State Emission of ESIPT and non-ESIPT Motifs. Asian J. Org. Chem. 2016, 5, 938. [Google Scholar] [CrossRef]
- Raoui, M.; Massue, J.; Azarias, C.; Jacquemin, D.; Ulrich, G. Highly fluorescent extended 2-(2′-hydroxyphenyl) benzazole dyes: Synthesis, optical properties and first-principle calculations. Chem. Commun. 2016, 52, 9216. [Google Scholar] [CrossRef]
- Tian, J.; Shi, D.; Zhang, Y.; Li, X.; Li, X.; Teng, H.; James, T.D.; Li, J.; Guo, Y. Stress response decay with aging visualized using a dual-channel logic-based fluorescent probe. Chem. Sci. 2021, 12, 13483. [Google Scholar] [CrossRef]
- Kaur, I.; Shivani; Kaur, P.; Singh, K. 2-(2′-Hydroxyphenyl) benzothiazole derivatives: Emission and color tuning. Dyes Pigm. 2020, 176, 108198. [Google Scholar] [CrossRef]
- Göbel, D.; Rusch, P.; Duvinage, D.; Stauch, T.; Bigall, N.C.; Nachtsheim, B.J. Substitution Effect on 2-(Oxazolinyl)-phenols and 1,2,5-Chalcogenadiazole-Annulated Derivatives: Emission-Color-Tunable, Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores. J. Org. Chem. 2021, 86, 14333. [Google Scholar] [CrossRef]
- Göbel, D.; Duvinage, D.; Stauch, T.; Nachtsheim, B.J. Nitrile-substituted 2-(oxazolinyl)-phenols: Minimalistic excited-state intramolecular proton transfer (ESIPT)-based fluorophores. J. Mater. Chem. C 2020, 8, 9213. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, Q.; Lan, J.; You, J. Tuning the dual emission of keto/enol forms of excited-state intramolecular proton transfer (ESIPT) emitters via intramolecular charge transfer (ICT). Dyes Pigm. 2021, 193, 109497. [Google Scholar] [CrossRef]
- Stoerkler, T.; Frath, D.; Jacquemin, D.; Massue, J.; Ulrich, G. Dual-State Emissive π-Extended Salicylaldehyde Fluorophores: Synthesis, Photophysical Properties and First-Principle Calculations. Eur. J. Org. Chem. 2021, 2021, 3726. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, J.; Xu, K.; Zhu, X.; Wan, Y. Enhancement of the excited-state intramolecular proton transfer process to produce all-powerful DSE molecules for bridging the gap between ACQ and AIE. Dyes Pigm. 2019, 160, 839. [Google Scholar] [CrossRef]
- Trannoy, V.; Léaustic, A.; Gadan, S.; Guillot, R.; Allain, C.; Clavier, G.; Mazerat, S.; Geffroy, B.; Yu, P. A highly efficient solution and solid state ESIPT fluorophore and its OLED application. New J. Chem. 2021, 45, 3014. [Google Scholar] [CrossRef]
- Xia, G.; Shao, Q.; Liang, K.; Wang, Y.; Jiang, L.; Wang, H. A phenyl-removal strategy for accessing an efficient dual-state emitter in the red/NIR region guided by TDDFT calculations. J. Mater. Chem. C 2020, 8, 13621. [Google Scholar] [CrossRef]
- Anghel, C.C.; Badescu, C.; Mirea, A.G.; Paun, A.; Hadade, N.D.; Madalan, A.M.; Matache, M.; Popescu, C.C. Two are better than one-Synthesis of novel blue and green emissive hydroxy-oxadiazoles. Dyes Pigm. 2022, 197, 109927. [Google Scholar] [CrossRef]
- Zheng, H.-W.; Kang, Y.; Wu, M.; Liang, Q.-F.; Zheng, J.-Q.; Zheng, X.-J.; Jin, L.-P. ESIPT-AIE active Schiff base based on 2-(2′-hydroxyphenyl)benzo-thiazole applied as multi-functional fluorescent chemosensors. Dalton. Trans. 2021, 50, 3916. [Google Scholar] [CrossRef]
- Kaewmati, P.; Yakiyama, Y.; Ohtsu, H.; Kawano, M.; Haesuwannakij, S.; Higashibayashi, S.; Sakurai, H. Tris(2-hydroxyphenyl)triazasumanene: Bowl-shaped excited-state intramolecular proton transfer (ESIPT) fluorophore coupled with aggregation-induced enhanced emission (AIEE). Mater. Chem. Front. 2018, 2, 514. [Google Scholar] [CrossRef]
- Gunduz, S.; Goren, A.C.; Ozturk, T. Facile Syntheses of 3-Hydroxyflavones. Org. Lett. 2012, 14, 1576. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Demchenko, A.P. Electrochromic Modulation of Excited-State Intramolecular Proton Transfer: The New Principle in Design of Fluorescence Sensors. J. Am. Chem. Soc. 2002, 124, 12372. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Pivovarenko, V.G.; Ozturk, T.; Demchenko, A.P. Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 2003, 27, 1336. [Google Scholar] [CrossRef]
- Paterson, M.J.; Robb, M.A.; Blancafort, L.; DeBellis, A.D. Theoretical Study of Benzotriazole UV Photostability: Ultrafast Deactivation through Coupled Proton and Electron Transfer Triggered by a Charge-Transfer State. J. Am. Chem. Soc. 2004, 126, 2912. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.J.; Robb, M.A.; Blancafort, L.; DeBellis, A.D. Mechanism of an Exceptional Class of Photostabilizers: A Seam of Conical Intersection Parallel to Excited State Intramolecular Proton Transfer (ESIPT) in o-Hydroxyphenyl-(1,3,5)-triazine. J. Phys. Chem. A 2005, 109, 7527. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-H.G.; Sun, H.-L.S.; Tan, C.-J. TD-DFT Study of the Excited-State Potential Energy Surfaces of 2-(2′-Hydroxyphenyl) benzimidazole and its Amino Derivatives. J. Phys. Chem. A 2010, 114, 4065. [Google Scholar] [CrossRef]
- Wu, D.; Guo, W.-W.; Liu, X.-Y.; Cui, G. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission. ChemPhysChem 2016, 17, 2340. [Google Scholar] [CrossRef]
- Guo, W.-W.; Liu, X.-Y.; Chen, W.-K.; Cui, G. Excited-state proton transfer in 4-2′-hydroxyphenylpyridine: Full-dimensional surface-hopping dynamics simulations. RSC Adv. 2016, 6, 85574. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Guo, X.; Zhang, J. A CASSCF/CASPT2 insight into excited-state intramolecular proton transfer of four imidazole derivatives. J. Comput. Chem. 2015, 36, 2374. [Google Scholar] [CrossRef]
- Li, C.-X.; Guo, W.-W.; Xie, B.-B.; Cui, G. Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations. J. Chem. Phys. 2016, 145, 074308. [Google Scholar] [CrossRef]
- Cammi, R.; Mennucci, B. Linear response theory for the polarizable continuum model. J. Chem. Phys. 1999, 110, 9877. [Google Scholar] [CrossRef]
- Caricato, M.; Mennucci, B.; Tomasi, J.; Ingrosso, F.; Cammi, R.; Corni, S.; Scalmani, G. Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 2006, 124, 124520. [Google Scholar] [CrossRef]
- Guido, C.A.; Chrayteh, A.; Scalmani, G.; Mennucci, B.; Jacquemin, D. Simple Protocol for Capturing Both Linear-Response and State-Specific Effects in Excited-State Calculations with Continuum Solvation Models. J. Chem. Theory Comput. 2021, 17, 5155. [Google Scholar] [CrossRef] [PubMed]
- Verite, P.M.; Guido, C.A.; Jacquemin, D. First-principles investigation of the double ESIPT process in a thiophene-based dye. Phys. Chem. Chem. Phys. 2019, 21, 2307. [Google Scholar] [CrossRef] [PubMed]
- Loco, D.; Gelfand, N.; Jurinovich, S.; Protti, S.; Mezzetti, A.; Mennucci, B. Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV-Vis and Fluorescence Spectra: An Integrated Strategy. J. Phys. Chem. A 2018, 122, 390. [Google Scholar] [CrossRef] [PubMed]
- Nottoli, M.; Bondanza, M.; Lipparini, F.; Mennucci, B. An enhanced sampling QM/AMOEBA approach: The case of the excited state intramolecular proton transfer in solvated 3-hydroxyflavone. J. Chem. Phys. 2021, 154, 184107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Y.; Cao, Z.; Zhu, C. Aggregation-induced emission spectra of triphenylamine salicylaldehyde derivatives via excited-state intramolecular proton transfer revealed by molecular spectral and dynamics simulations. RSC Adv. 2021, 11, 37171. [Google Scholar] [CrossRef]
- Wang, H.; Gong, Q.; Wang, G.; Dang, J.; Liu, F. Deciphering the Mechanism of Aggregation-Induced Emission of a Quinazolinone Derivative Displaying Excited-State Intramolecular Proton-Transfer Properties: A QM, QM/MM, and MD Study. J. Chem. Theory Comput. 2019, 15, 5440. [Google Scholar] [CrossRef]
- Presti, D.; Labat, F.; Pedone, A.; Frisch, M.J.; Hratchian, H.P.; Ciofini, I.; Menziani, M.C.; Adamo, C. Modeling emission features of salicylidene aniline molecular crystals: A QM/QM’ approach. J. Comput. Chem. 2016, 37, 861. [Google Scholar] [CrossRef] [Green Version]
- Dommett, M.; Rivera, M.; Crespo-Otero, R. How Inter- and Intramolecular Processes Dictate Aggregation-Induced Emission in Crystals Undergoing Excited-State Proton Transfer. J. Phys. Chem. Lett. 2017, 8, 6148. [Google Scholar] [CrossRef]
- Mancini, D.T.; Sen, K.; Barbatti, M.; Thiel, W.; Ramalho, T.C. Excited-State Proton Transfer Can Tune the Color of Protein Fluorescent Markers. Chem. Phys. Chem. 2015, 16, 3444. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Dong, H.; Yang, H.; Zheng, Y. Aggregation Promotes Excited-State Intramolecular Proton Transfer for Benzothiazole-Substituted Tetraphenylethylene Compound. ACS Appl. Bio Mater. 2019, 2, 5182. [Google Scholar] [CrossRef]
- Presti, D.; Pedone, A.; Ciofini, I.; Labat, F.; Menziani, M.C.; Adamo, C. Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: The effect of the electrostatic embedding scheme. Theor. Chim. Acta 2016, 135, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Presti, D.; Wilbraham, L.; Targa, C.; Labat, F.; Pedone, A.; Menziani, M.C.; Ciofini, I.; Adamo, C. Understanding Aggregation-Induced Emission in Molecular Crystals: Insights from Theory. J. Phys. Chem. C 2017, 121, 5847. [Google Scholar] [CrossRef]
- Rivera, M.; Dommett, M.; Crespo-Otero, R. ONIOM(QM:QM’) electrostatic embedding schemes for photochemistry in molecular crystals. J. Chem. Theory Comput. 2019, 15, 2504. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.; Dommett, M.; Sidat, A.; Rahim, W.; Crespo-Otero, R. fromage: A library for the study of molecular crystal excited states at the aggregate scale. J. Comput. Chem. 2020, 41, 1045. [Google Scholar] [CrossRef] [PubMed]
- Dommett, M.; Rivera, M.; Smith, M.T.H.; Crespo-Otero, R. Molecular and crystalline requirements for solid state fluorescence exploiting excited state intramolecular proton transfer. J. Mater. Chem. C 2020, 8, 2558. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoerkler, T.; Pariat, T.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022, 27, 2443. https://doi.org/10.3390/molecules27082443
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules. 2022; 27(8):2443. https://doi.org/10.3390/molecules27082443
Chicago/Turabian StyleStoerkler, Timothée, Thibault Pariat, Adèle D. Laurent, Denis Jacquemin, Gilles Ulrich, and Julien Massue. 2022. "Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications" Molecules 27, no. 8: 2443. https://doi.org/10.3390/molecules27082443