The Use of Cerium Compounds as Antimicrobials for Biomedical Applications
Abstract
:1. Introduction
2. The Antimicrobial Properties of Cerium-Based Compounds
3. Antimicrobial Activity of Cerium Oxide Nanoparticles
4. Clinical Applications of Cerium Compounds as Antimicrobials
4.1. Effects in the Eschar
4.2. Other Nanocomposites That Contain Cerium and Their Applications
5. Controversies and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, C.H. Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci. 1983, 8, 445–449. [Google Scholar] [CrossRef]
- Suzuki, T.; Kosacki, I.; Anderson, H.; Colomban, P. Electrical Conductivity and Lattice Defects in Nanocrystalline CeO2 Thin Films. J. Am. Ceram. Soc. 2004, 84, 2007–2014. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, C.H.; Raitano, J.M.; Hanson, J.C.; Caliebe, W.A.; Khalid, S.; Chan, S.W. Phase stability in ceria-zirconia binary oxide nanoparticles: The effect of the Ce3+ concentration and the redox environment. J. Appl. Phys. 2006, 99, 084313. [Google Scholar] [CrossRef]
- Nash, K.L.; Sullivan, J.C. Chapter 102 Kinetics of complexation and redox reactions of the lanthanides in aqueous solutions. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1991; Volume 15, pp. 347–391. [Google Scholar]
- Skorodumova, N.V.; Simak, S.I.; Lundqvist, B.I.; Abrikosov, I.A.; Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002, 89, 166601. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Naik, P. Synthesis and biomedical applications of Cerium oxide nanoparticles—A Review. Biotechnol. Rep. 2018, 17, 1–5. [Google Scholar] [CrossRef]
- Jowsey, J.; Rowland, R.E.; Marshall, J.H. The deposition of the rare earths in bone. Radiat. Res. 1958, 8, 490–501. [Google Scholar] [CrossRef]
- Gabbiani, G.; Jacqmin, M.L.; Richard, R.M. Soft-tissue calcification induced by rare earth metals and its prevention by sodium pyrophosphate. Br. J. Pharm. Chemother. 1966, 27, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Boeckx, W.; Blondeel, P.N.; Vandersteen, K.; De Wolf-Peeters, C.; Schmitz, A. Effect of cerium nitrate-silver sulphadiazine on deep dermal burns: A histological hypothesis. Burns 1992, 18, 456–462. [Google Scholar] [CrossRef]
- Furie, B.C.; Mann, K.G.; Furie, B. Substitution of lanthanide ions for calcium ions in the activation of bovine prothrombin by activated factor X. High affinity metal-binding sites of prothrombin and the derivatives of prothrombin activation. J. Biol. Chem. 1976, 251, 3235–3241. [Google Scholar] [CrossRef]
- Achyuthan, K.E.; Mary, A.; Greenberg, C.S. Tb(III)-ion-binding-induced conformational changes in platelet factor XIII. Biochem. J. 1989, 257, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Vincke, E. Untersuchungen uber Thromboseprophylaxe mit organischen Salzen seltener Erden. I. Mittelung: Wirkung auf das Blut. Z. Gesamte Exp. Med. 1944, 113, 522–602. [Google Scholar] [CrossRef]
- Yamada, S.; Tonomura, Y. Reaction mechanism of the Ca2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ca2+ ions. J. Biochem. 1972, 72, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Crompton, M.; Heid, I.; Baschera, C.; Carafoli, E. The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series. FEBS Lett. 1979, 104, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Mela, L. Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anesthetic drugs. Biochemistry 1969, 8, 2481–2486. [Google Scholar] [CrossRef] [PubMed]
- Beedle, A.M.; Hamid, J.; Zamponi, G.W. Inhibition of transiently expressed low- and high-voltage-activated calcium channels by trivalent metal cations. J. Membr. Biol. 2002, 187, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Mlinar, B.; Enyeart, J.J. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J. Physiol. 1993, 469, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Nachshen, D.A. Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca influx by multivalent metal cations. J. Gen. Physiol. 1984, 83, 941–967. [Google Scholar] [CrossRef]
- Lansman, J.B. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J. Gen. Physiol. 1990, 95, 679–696. [Google Scholar] [CrossRef] [Green Version]
- Enyeart, J.J.; Xu, L.; Gomora, J.C.; Enyeart, J.A. Modulation of IA potassium current in adrenal cortical cells by a series of ten lanthanide elements. J. Membr. Biol. 1998, 164, 139–153. [Google Scholar] [CrossRef]
- Ma, J.Y.; Narahashi, T. Enhancement of gamma-aminobutyric acid-activated chloride channel currents by lanthanides in rat dorsal root ganglion neurons. J. Neurosci. 1993, 13, 4872–4879. [Google Scholar] [CrossRef]
- Bentrop, D.; Bertini, I.; Cremonini, M.A.; Forsén, S.; Luchinat, C.; Malmendal, A. Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR. Biochemistry 1997, 36, 11605–11618. [Google Scholar] [CrossRef] [PubMed]
- Sotiroudis, T.G. Lanthanide ions and Cd2+ are able to substitute for Ca2+ in regulating phosphorylase kinase. Biochem. Int. 1986, 13, 59–64. [Google Scholar] [PubMed]
- Johannsson, O.; Perrault, G.; Savoie, L.; Tuchweber, B. Action of various metallic chlorides on calcaemia and phosphataemia. Br. J. Pharm. Chemother. 1968, 33, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.H. Biochemistry of the Elements. In Biochemistry of the Lanthanides; Springer: Boston, MA, 1990. [Google Scholar]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemeg, H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlberg, E.; Umstatter, F.; Kleist, C.; Domhan, C.; Mier, W.; Uhl, P. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can. J. Microbiol. 2020, 66, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Vila, J.; Moreno-Morales, J.; Balleste-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect. 2020, 26, 596–603. [Google Scholar] [CrossRef]
- Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med. 2007, 13, 260–267. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Hancock, R.E. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar] [CrossRef]
- Hancock, R.E.; Wong, P.G. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob. Agents Chemother. 1984, 26, 48–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drossbach, G. Ueber den Einfluss der Elemente der Cer-und Zircongruppe auf das Wachstum von Bakterien. Zent. Bakteriol Parasitenk Infekt. Abt 1897, 1, 57–58. [Google Scholar]
- Böhm, C.R. Die seltenen Erden in der Therapie. Angew. Chem. 1915, 28, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Burkes, S.; McCleskey, C.S. The Bacteriostatic Activity of Cerium, Lanthanum, and Thallium. J. Bacteriol. 1947, 54, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Muroma, A. Studies in the bactericidal action of salts of certain rare earth metals. Ann. Med. Exp. Biol. Fenn. 1958, 36 (Suppl. S6), 1–54. [Google Scholar]
- Sobek, J.M.; Talburt, D.E. Effects of the rare earth cerium on Escherichia coli. J. Bacteriol. 1968, 95, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Monafo, W.W.; Tandon, S.N.; Ayvazian, V.H.; Tuchschmidt, J.; Skinner, A.M.; Deitz, F. Cerium nitrate: A new topical antiseptic for extensive burns. Surgery 1976, 80, 465–473. [Google Scholar]
- Fox, C.L., Jr. Silver sulfadiazine—A new topical therapy for Pseudomonas in burns. Therapy of Pseudomonas infection in burns. Arch. Surg. 1968, 96, 184–188. [Google Scholar] [CrossRef]
- Strathie, N.; Swanson, C. Silver nitrate treatment of burns. Problems in 1 patient’s care. Am. J. Nurs. 1966, 66, 524–527. [Google Scholar]
- Fox, C.L., Jr. Pharmacology and clinical use of silver sulfadiazine and related topical antimicrobial agents. Pahlavi Med. J. 1977, 8, 45–64. [Google Scholar] [PubMed]
- Monafo, L. The use of topical cerium nitrate-silver sulfadiazine in major burn injuries. Panminerva Med. 1983, 25, 151–154. [Google Scholar] [PubMed]
- Fox, C.L., Jr.; Monafo, W.W., Jr.; Ayvazian, V.H.; Skinner, A.M.; Modak, S.; Stanford, J.; Condict, C. Topical chemotherapy for burns using cerium salts and silver sulfadiazine. Surg. Gynecol. Obs. 1977, 144, 668–672. [Google Scholar]
- Carr, H.S.; Wlodkowski, T.J.; Rosenkranz, H.S. Silver sulfadiazine: In vitro antibacterial activity. Antimicrob. Agents Chemother. 1973, 4, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Holder, I.A. In vitro inactivation of silver sulphadiazine by the addition of cerium salts. Burns 1982, 8, 274–277. [Google Scholar] [CrossRef]
- Rosenkranz, H.S.; Carr, H.S. The determination of the susceptibility of bacterial isolates to silver sulfadiazine. Chemotherapy 1978, 24, 143–145. [Google Scholar] [CrossRef]
- Munster, A.M.; Helvig, E.; Rowland, S. Cerium nitrate-silver sulfadiazine cream in the treatment of burns: A prospective evaluation. Surgery 1980, 88, 658–660. [Google Scholar] [CrossRef]
- Bowser, B.H.; Caldwell, F.T.; Cone, J.B.; Eisenach, K.D.; Thompson, C.H. A prospective analysis of silver sulfadiazine with and without cerium nitrate as a topical agent in the treatment of severely burned children. J. Trauma 1981, 21, 558–563. [Google Scholar] [CrossRef]
- de Gracia, C.G. An open study comparing topical silver sulfadiazine and topical silver sulfadiazine-cerium nitrate in the treatment of moderate and severe burns. Burns 2001, 27, 67–74. [Google Scholar] [CrossRef]
- Marone, P.; Monzillo, V.; Perversi, L.; Carretto, E. Comparative in vitro activity of silver sulfadiazine, alone and in combination with cerium nitrate, against staphylococci and gram-negative bacteria. J. Chemother. 1998, 10, 17–21. [Google Scholar] [CrossRef]
- Frouin, A. Action des sels de terres rares sur le developpement du bacille tuberculeux et de l’Aspergillus niger. Compt. Rend. Soc. Biol. 1912, 73, 640–641. [Google Scholar]
- Gould, B.S. Effects of thorium, zirconium, titanium and cerium on enzyme action. Proc. Soc. Exptl. Biol. Med. 1936, 34, 381–385. [Google Scholar] [CrossRef]
- Monafo, W.W.; Robinson, H.N. The treatment of burned children. Clin. Plast. Surg. 1977, 4, 537–546. [Google Scholar] [CrossRef]
- Helvig, E.I.; Munster, A.M.; Su, C.T.; Oppel, W. Cerium nitrate-silver sulfadiazine cream in the treatment of burns: A prospective, randomized study. Am. Surg. 1979, 45, 270–272. [Google Scholar] [PubMed]
- Hirakawa, K. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate. Radioisotopes 1983, 32, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Boeckx, W.; Focquet, M.; Cornelissen, M.; Nuttin, B. Bacteriological effect of cerium-flamazine cream in major burns. Burns 1985, 11, 337–342. [Google Scholar] [CrossRef]
- Schuenck, R.P.; Dadalti, P.; Silva, M.G.; Fonseca, L.S.; Santos, K.R. Oxacillin- and mupirocin-resistant Staphylococcus aureus: In vitro activity of silver sulphadiazine and cerium nitrate in hospital strains. J. Chemother. 2004, 16, 453–458. [Google Scholar] [CrossRef]
- Attof, R.; Magnin, C.; Bertin-Maghit, M.; Olivier, L.; Tissot, S.; Petit, P. Methemoglobinemia by cerium nitrate poisoning. Burns 2006, 32, 1060–1061. [Google Scholar]
- Garidi; Li, X.; Li, L.; Zhaorigetu. The research on preparing CeO2 nanocrystalline by homogeneous precipitation method. Guang Pu Xue Yu Guang Pu Fen Xi 2006, 26, 1746–1748. [Google Scholar]
- Maensiri, S.; Masingboon, C.; Laokul, P.; Jareonboon, W.; Promarak, V.; Anderson, P.; Seraphin, S. Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO2 Nanoparticles. Cryst. Growth Des. 2007, 7, 950–955. [Google Scholar] [CrossRef]
- Kremer, T.; Hernekamp, F.; Riedel, K.; Peter, C.; Gebhardt, M.M.; Germann, G.; Heitmann, C.; Walther, A. Topical application of cerium nitrate prevents burn edema after burn plasma transfer. Microvasc. Res. 2009, 78, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Chianéa, D.; Delauné, D.; Monpeurt, C.; Vest, P.; Bargues, L.J.; Renard, C. Apparent high chloraemia in persons with deep third-degree burns: Interference linked to topical treatment. Burns 2010, 36, 945–947. [Google Scholar] [CrossRef] [PubMed]
- Zholobak, N.M.; Olevinskaia, Z.M.; Spivak, N.; Shcherbakov, A.B.; Ivanov, V.K.; Usatenko, A.V. Antiviral effect of cerium dioxide nanoparticles stabilized by low-molecular polyacrylic acid. Mikrobiol. Z. 2010, 72, 42–47. [Google Scholar] [PubMed]
- Pelletier, D.A.; Suresh, A.K.; Holton, G.A.; McKeown, C.K.; Wang, W.; Gu, B.; Mortensen, N.P.; Allison, D.P.; Joy, D.C.; Allison, M.R.; et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 2010, 76, 7981–7989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Shah, S.; Shah, H.; Rispoli, F.J.; McDonnell, K.T.; Workeneh, S.; Karakoti, A.; Kumar, A.; Seal, S. Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS ONE 2012, 7, e47827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobrado, L.; Silva-Dias, A.; Azevedo, M.M.; Pina-Vaz, C.; Rodrigues, A.G. In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J. Antimicrob. Chemother. 2013, 68, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.S.; Anandkumar, M.; Tsai, T.Y.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int. J. Nanomed. 2014, 9, 5515–5531. [Google Scholar]
- Selvaraj, V.; Manne, N.D.; Arvapalli, R.; Rice, K.M.; Nandyala, G.; Fankenhanel, E.; Blough, E.R. Effect of cerium oxide nanoparticles on sepsis induced mortality and NF-κB signaling in cultured macrophages. Nanomedicine 2015, 10, 1275–1288. [Google Scholar] [CrossRef]
- Silva-Dias, A.; Miranda, I.M.; Branco, J.; Cobrado, L.; Monteiro-Soares, M.; Pina-Vaz, C.; Rodrigues, A.G. In vitro antifungal activity and in vivo antibiofilm activity of cerium nitrate against Candida species. J. Antimicrob. Chemother. 2015, 70, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, A.; Karthikeyan, C.; Haja Hameed, A.S.; Gopinath, K.; Gowri, S.; Karthika, V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 408–415. [Google Scholar] [CrossRef]
- Nath, B.K.; Chaliha, C.; Kalita, E.; Kalita, M.C. Synthesis and characterization of ZnO:CeO2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr. Polym. 2016, 148, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Al-Shawafi, W.M.; Salah, N.; Alshahrie, A.; Ahmed, Y.M.; Moselhy, S.S.; Hammad, A.H.; Hussain, M.A.; Memic, A. Size controlled ultrafine CeO(2) nanoparticles produced by the microwave assisted route and their antimicrobial activity. J. Mater. Sci. Mater. Med. 2017, 28, 177. [Google Scholar] [CrossRef] [PubMed]
- Es-Haghi, A.; Mashreghi, M.; Rezazade Bazaz, M.; Homayouni-Tabrizi, M.; Darroudi, M. Fabrication of biopolymer based nanocomposite wound dressing: Evaluation of wound healing properties and wound microbial load. IET Nanobiotechnol. 2017, 11, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria Magdalane, C.; Kaviyarasu, K.; Judith Vijaya, J.; Siddhardha, B.; Jeyaraj, B. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies. J. Photochem. Photobiol. B 2017, 173, 23–34. [Google Scholar] [CrossRef]
- Li, X.; Qi, M.; Sun, X.; Weir, M.D.; Tay, F.R.; Oates, T.W.; Dong, B.; Zhou, Y.; Wang, L.; Xu, H.H.K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019, 94, 627–643. [Google Scholar] [CrossRef]
- Qi, S.; Wu, J.; Xu, Y.; Zhang, Y.; Wang, R.; Li, K.; Xu, Y. Chemical Stability and Antimicrobial Activity of Plasma-Sprayed Cerium Oxide-Incorporated Calcium Silicate Coating in Dental Implants. Implant Dent. 2019, 28, 564–570. [Google Scholar] [CrossRef]
- Matter, M.T.; Furer, L.A.; Starsich, F.H.L.; Fortunato, G.; Pratsinis, S.E.; Herrmann, I.K. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 2830–2839. [Google Scholar] [CrossRef]
- Sales, D.A.; Marques, T.M.F.; Ghosh, A.; Gusmão, S.B.S.; Vasconcelos, T.L.; Luz-Lima, C.; Ferreira, O.P.; Hollanda, L.M.; Lima, I.S.; Silva-Filho, E.C.; et al. Synthesis of silver-cerium titanate nanotubes and their surface properties and antibacterial applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111051. [Google Scholar] [CrossRef]
- Estes, L.M.; Singha, P.; Singh, S.; Sakthivel, T.S.; Garren, M.; Devine, R.; Brisbois, E.J.; Seal, S.; Handa, H. Characterization of a nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) interactions and their synergistic antimicrobial potential for biomedical applications. J. Colloid Interface Sci. 2021, 586, 163–177. [Google Scholar] [CrossRef]
- Ma, T.; Zhai, X.; Huang, Y.; Zhang, M.; Zhao, X.; Du, Y.; Yan, C. A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Adv. Healthc. Mater. 2021, 10, e2100033. [Google Scholar] [CrossRef]
- Ikram, M.; Hayat, S.; Imran, M.; Haider, A.; Naz, S.; Ul-Hamid, A.; Shahzadi, I.; Haider, J.; Shahzadi, A.; Nabgan, W.; et al. Novel Ag/cellulose-doped CeO2 quantum dots for efficient dye degradation and bactericidal activity with molecular docking study. Carbohydr. Polym. 2021, 269, 118346. [Google Scholar] [CrossRef]
- Cao, L.; Shao, G.; Ren, F.; Yang, M.; Nie, Y.; Peng, Q.; Zhang, P. Cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels delivery for wound healing care systems on surgery. Drug Deliv. 2021, 28, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, A.; Perumal, E. Metal oxide nanoparticles as antimicrobial agents: A promise for the future. Int. J. Antimicrob. Agents 2017, 49, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine 2013, 8, 1483–1508. [Google Scholar] [CrossRef]
- Dhall, A.; Self, W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef] [Green Version]
- Estevez, A.Y.; Erlichman, J.S. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine 2014, 9, 1437–1440. [Google Scholar] [CrossRef] [Green Version]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 10, 1056–1058. [Google Scholar] [CrossRef]
- Hirst, S.M.; Karakoti, A.; Singh, S.; Self, W.; Tyler, R.; Seal, S.; Reilly, C.M. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ. Toxicol. 2013, 28, 107–118. [Google Scholar] [CrossRef]
- Das, M.; Patil, S.; Bhargava, N.; Kang, J.F.; Riedel, L.M.; Seal, S.; Hickman, J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Perez, J.M.; Webster, T.J. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles. Int. J. Nanomed. 2013, 8, 3395–3399. [Google Scholar]
- Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A.M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006, 40, 6151–6156. [Google Scholar] [CrossRef] [PubMed]
- Burello, E.; Worth, A.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 2011, 5, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, K.; Karthika, V.; Sundaravadivelan, C.; Gowri, S.; Arumugam, A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 2015, 5, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y.; He, X.; Zhang, Z.; Li, Y.; Zhang, H.; Ma, Y.; Wu, Z.; Chai, Z. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J. Nanosci. Nanotechnol. 2011, 11, 4103–4108. [Google Scholar] [CrossRef]
- Zholobak, N.; Ivanov, V.; Shcherbakov, A. Interaction of Nanoceria with Microorganisms; Elsevier Inc.: New York, NY, USA, 2016; pp. 419–450. [Google Scholar]
- Wang, X.; Yang, F.; Yang, W.; Yang, X. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: Effects of the orientation and plane surface. Chem. Commun. 2007, 42, 4419–4421. [Google Scholar] [CrossRef]
- Zeyons, O.; Thill, A.; Chauvat, F.; Menguy, N.; Cassier-Chauvat, C.; Oréar, C.; Daraspe, J.; Auffan, M.; Rose, J.; Spalla, O. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology 2009, 3, 284–295. [Google Scholar] [CrossRef]
- Babenko, L.P.; Zholobak, N.M.; Shcherbakov, A.B.; Voychuk, S.I.; Lazarenko, L.M.; Spivak, M.Y. Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Mikrobiol. Z 2012, 74, 54–62. [Google Scholar] [PubMed]
- Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 2019, 62, 1727–1739. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef] [PubMed]
- Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 2016, 6, 38064. [Google Scholar] [CrossRef] [Green Version]
- Sumaoka, J.; Azuma, Y.; Komiyama, M. Enzymatic Manipulation of the Fragments Obtained by Cerium(IV)-Induced DNA Scission: Characterization of Hydrolytic Termini. Chem. A Eur. J. 1998, 4, 205–209. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, H.; Liu, C.; Bing, W.; Wang, Z.; Qu, X. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angew. Chem. Int. Ed. Engl. 2016, 55, 10732–10736. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Ren, J.; Qu, X. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31. [Google Scholar] [CrossRef]
- Bellio, P.; Luzi, C.; Mancini, A.; Cracchiolo, S.; Passacantando, M.; Di Pietro, L.; Perilli, M.; Amicosante, G.; Santucci, S.; Celenza, G. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2428–2435. [Google Scholar] [CrossRef]
- Passacantando, M.; Santucci, S. Surface electronic and structural properties of CeO2 nanoparticles: A study by core-level photoemission and peak diffraction. J. Nanopart. Res. 2013, 15, 1785. [Google Scholar] [CrossRef]
- Dar, M.A.; Gul, R.; Alfadda, A.A.; Karim, M.R.; Kim, D.W.; Cheung, C.L.; Almajid, A.A.; Alharthi, N.H.; Pulakat, L. Size-Dependent Effect of Nanoceria on Their Antibacterial Activity towards Escherichia coli. Sci. Adv. Mater. 2017, 9, 1248–1253. [Google Scholar] [CrossRef]
- Kartsonakis, I.; Liatsi, P.; Danilidis, I.; Kordas, G. Synthesis, Characterization, and Antibacterial Action of Hollow Ceria Nanospheres with/without a Conductive Polymer Coating. J. Am. Ceram. Soc. 2007, 91, 372–378. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.-H.; Yun, K.; Kim, S.J. Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. J. Ind. Eng. Chem. 2014, 20, 3513–3517. [Google Scholar] [CrossRef]
- Mishra, S.; Priyadarshinee, M.; Debnath, A.; Muthe, K.; Mallick, B.; Das, N.; Parhi, P. Rapid microwave assisted hydrothermal synthesis cerium vanadate nanoparticle and its photocatalytic and antibacterial studies. J. Phys. Chem. Solids 2019, 137, 109211. [Google Scholar] [CrossRef]
- Alpaslan, E.; Geilich, B.M.; Yazici, H.; Webster, T.J. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Sci. Rep. 2017, 7, 45859. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, C.C.L.; Passos Farias, I.A.; Reis Albuquerque, A.D.J.D.; e Silva, P.M.D.F.; Costa One, G.M.D.; Sampaio, F.C. Antimicrobial activity of nano cerium oxide (IV) (CeO2) against Streptococcus mutans. BMC Proc. 2014, 8, P48. [Google Scholar] [CrossRef] [Green Version]
- Unnithan, A.R.; Ramachandra Kurup Sasikala, A.; Sathishkumar, Y.; Lee, Y.; Park, C.; Pant, H. Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications. Ceram. Int. 2014, 40, 12003–12012. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Ali, M.; Zohra, T.; Akhtar, R.; Ikram, A.; Shinwari, Z.K.; Maaza, M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine 2020, 15, 467–488. [Google Scholar] [CrossRef]
- Kunga Sugumaran, V.; Gopinath, K.; Palani, N.; Arumugam, A.; Jose, S.; Bahadur, A.; Rajangam, I. Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: Antibacterial and antibiofilm activity. RSC Adv. 2016, 6, 42720–42729. [Google Scholar]
- Kannan, S.K.; Sundrarajan, M. A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity. Int. J. Nanosci. 2014, 13, 1450018. [Google Scholar] [CrossRef]
- Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B 2016, 163, 77–86. [Google Scholar] [CrossRef]
- Pol, R.; Ashwini, K. Cerium Oxide Nanoparticles: Synthesis, Characterization and Study of Antimicrobial Activity. J. Nanomater. Mol. Nanotechnol. 2017, 6, 2–6. [Google Scholar]
- Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, G.; Rajanaika, H. Synthesis and Characterization of CeO2 Nanoparticles via Solution Combustion Method for Photocatalytic and Antibacterial Activity Studies. ChemistryOpen 2015, 4, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, C.; Hou, J.; Wang, P.; You, G.; Miao, L. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: Induction of biofilm formation and stress response. Environ. Sci. Pollut. Res. Int. 2019, 26, 9293–9304. [Google Scholar] [CrossRef] [PubMed]
- Cuahtecontzi-Delint, R.; Méndez-Rojas, M.; Bandala, E.; Quiroz, M.; Recillas, S.; Sanchez-Salas, J.; Bintis, S.; De, C. Enhanced Antibacterial Activity of CeO2 Nanoparticles by Surfactants. Int. J. Chem. React. Eng. 2013, 11, 1–5. [Google Scholar]
- Malleshappa, J.; Nagabhushana, H.; Sharma, S.C.; Vidya, Y.S.; Anantharaju, K.S.; Prashantha, S.C.; Daruka Prasad, B.; Raja Naika, H.; Lingaraju, K.; Surendra, B.S. Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 452–462. [Google Scholar] [CrossRef]
- Patil, S.N.; Paradeshi, J.S.; Chaudhari, P.B.; Mishra, S.J.; Chaudhari, B.L. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide. Appl. Biochem. Biotechnol. 2016, 180, 638–654. [Google Scholar] [CrossRef]
- Munusamy, S.; Bhakyaraj, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V. Synthesis and Characterization of Cerium Oxide Nanoparticles using Curvularia lunata and Their Antibacterial properties. Int. J. Innov. Res. Sci. Eng. 2014, 2, 318. [Google Scholar]
- Bull, J.P. Revised analysis of mortality due to burns. Lancet 1971, 2, 1133. [Google Scholar] [CrossRef]
- Saffer, L.D.; Rodeheaver, G.T.; Hiebert, J.M.; Edlich, R.F. In vivo and in vitro antimicrobial activity of silver sulfadiazine and cerium nitrate. Surg. Gynecol. Obs. 1980, 151, 232–236. [Google Scholar]
- Wassermann, D.; Schlotterer, M.; Lebreton, F.; Levy, J.; Guelfi, M.C. Use of topically applied silver sulphadiazine plus cerium nitrate in major burns. Burns 1989, 15, 257–260. [Google Scholar] [CrossRef]
- Ross, D.A.; Phipps, A.J.; Clarke, J.A. The use of cerium nitrate-silver sulphadiazine as a topical burns dressing. Br. J. Plast. Surg. 1993, 46, 582–584. [Google Scholar] [CrossRef]
- Koller, J.; Orsag, M. Our experience with the use of cerium sulphadiazine in the treatment of extensive burns. Acta Chir. Plast. 1998, 40, 73–75. [Google Scholar] [PubMed]
- Winter, G.D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962, 193, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Signe-Picard, C.; Cerdan, M.I.; Naggara, C.; Teot, L. Flammacerium in the formation and stabilisation of eschar in chronic wounds. J. Wound Care 2010, 19, 369–370, 372, 374, passim. [Google Scholar] [CrossRef]
- Vitse, J.; Tchero, H.; Meaume, S.; Dompmartin, A.; Malloizel-Delaunay, J.; Geri, C.; Faure, C.; Herlin, C.; Teot, L. Silver Sulfadiazine and Cerium Nitrate in Ischemic Skin Necrosis of the Leg and Foot: Results of a Prospective Randomized Controlled Study. Int. J. Low. Extrem. Wounds 2018, 17, 151–160. [Google Scholar] [CrossRef]
- Garner, J.P.; Heppell, P.S. The use of Flammacerium in British Burns Units. Burns 2005, 31, 379–382. [Google Scholar] [CrossRef]
- Hansbrough, J.F.; Zapata-Sirvent, R.; Peterson, V.; Wang, X.; Bender, E.; Claman, H.; Boswick, J. Characterization of the immunosuppressive effect of burned tissue in an animal model. J. Surg. Res. 1984, 37, 383–393. [Google Scholar] [CrossRef]
- Zapata-Sirvent, R.L.; Hansbrough, J.F.; Bender, E.M.; Bartle, E.J.; Mansour, M.A.; Carter, W.H. Postburn immunosuppression in an animal model. IV. Improved resistance to septic challenge with immunomodulating drugs. Surgery 1986, 99, 53–59. [Google Scholar]
- Sparkes, B.G. Mechanisms of immune failure in burn injury. Vaccine 1993, 11, 504–510. [Google Scholar] [CrossRef]
- Sharon, M.; Klausner, R.D.; Cullen, B.R.; Chizzonite, R.; Leonard, W.J. Novel interleukin-2 receptor subunit detected by cross-linking under high-affinity conditions. Science 1986, 234, 859–863. [Google Scholar] [CrossRef]
- Scheidegger, D.; Sparkes, B.G.; Luscher, N.; Schoenenberger, G.A.; Allgower, M. Survival in major burn injuries treated by one bathing in cerium nitrate. Burns 1992, 18, 296–300. [Google Scholar] [CrossRef]
- Hadjiiski, O.G.; Lesseva, M.I. Comparison of four drugs for local treatment of burn wounds. Eur. J. Emerg. Med. 1999, 6, 41–47. [Google Scholar] [PubMed]
- Kremer, B.; Allgower, M.; Graf, M.; Schmidt, K.H.; Schoelmerich, J.; Schoenenberger, G.A. The present status of research in burn toxins. Intensive Care Med. 1981, 7, 77–87. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Łapa, A.; Cresswell, M.; Campbell, I.; Jackson, P.; Goldmann, W.H.; Detsch, R.; Boccaccini, A.R. Gallium- and Cerium-Doped Phosphate Glasses with Antibacterial Properties for Medical Applications. Adv. Eng. Mater. 2020, 22, 1901577. [Google Scholar] [CrossRef] [Green Version]
- Morais, D.S.; Rodrigues, M.A.; Lopes, M.A.; Coelho, M.J.; Maurício, A.C.; Gomes, R.; Amorim, I.; Ferraz, M.P.; Santos, J.D.; Botelho, C.M. Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J. Mater. Sci. Mater. Med. 2013, 24, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Sundarabharathi, L.; Chinnaswamy, M.; Ponnamma, D.; Parangusan, H.; Al-Maadeed, M.A.A. Investigation of antimicrobial properties and in-vitro bioactivity of Ce3+-Sr2+dual-substituted nano hydroxyapatites. J. Am. Ceram. Soc. 2019, 102, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Subramani, R.; Elangomannan, S.; Louis, K.; Kannan, S.; Gopi, D. Fabrication of Minerals Substituted Porous Hydroxyapaptite/Poly(3,4-ethylenedioxy pyrrole-co-3,4-ethylenedioxythiophene) Bilayer Coatings on Surgical Grade Stainless Steel and Its Antibacterial and Biological Activities for Orthopedic Applications. ACS Appl. Mater. Interfaces 2016, 8, 12404–12421. [Google Scholar] [CrossRef]
- Hammouda, H.F.; Farag, M.M.; El Deftar, M.M.F.; Abdel-Gabbar, M.; Mohamed, B.M. Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J. Genet. Eng. Biotechnol. 2022, 20, 33. [Google Scholar] [CrossRef]
- Zamani, K.; Allah-Bakhshi, N.; Akhavan, F.; Yousefi, M.; Golmoradi, R.; Ramezani, M.; Bach, H.; Razavi, S.; Irajian, G.R.; Gerami, M.; et al. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol. 2021, 21, 68. [Google Scholar] [CrossRef]
- Appu, M.; Wu, H.; Chen, H.; Huang, J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO2) nanocomposites and their potent antimicrobial capabilities. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Rad, T.; Khataee, A.; Vafaei, F.; Rahim Pouran, S. Chromium and cerium co-doped magnetite/reduced graphene oxide nanocomposite as a potent antibacterial agent against S. aureus. Chemosphere 2021, 274, 129988. [Google Scholar] [CrossRef] [PubMed]
- Naseri-Nosar, M.; Farzamfar, S.; Sahrapeyma, H.; Ghorbani, S.; Bastami, F.; Vaez, A.; Salehi, M. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation. Mater. Sci. Eng. C 2017, 81, 366–372. [Google Scholar] [CrossRef]
- Suganya Bharathi, B.; Stalin, T. Cerium oxide and peppermint oil loaded polyethylene oxide/graphene oxide electrospun nanofibrous mats as antibacterial wound dressings. Mater. Today Commun. 2019, 21, 100664. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Kahya, N.; Adımcılar, V.; Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Erim, F.B. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur. Polym. J. 2020, 133, 109777. [Google Scholar] [CrossRef]
- Kannan, S.; Harel, Y.; Levy, E.; Dolitzky, A.; Sagiv, A.E.; Aryal, S.; Suleman, L.; Lellouche, J.P.; Michaeli, S. Nano-Leish-IL: A novel iron oxide-based nanocomposite drug platform for effective treatment of cutaneous leishmaniasis. J. Control Release 2021, 335, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Masadeh, M.M.; Karasneh, G.A.; Al-Akhras, M.A.; Albiss, B.A.; Aljarah, K.M.; Al-Azzam, S.I.; Alzoubi, K.H. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 2015, 67, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Moura, J.V.B.; Freitas, T.S.; Cruz, R.P.; Pereira, R.L.S.; Silva, A.R.P.; Santos, A.T.L.; da Silva, J.H.; Luz-Lima, C.; Coutinho, H.D.M. Antibacterial properties and modulation analysis of antibiotic activity of NaCe(MoO4)2 microcrystals. Microb. Pathog. 2019, 126, 258–262. [Google Scholar] [CrossRef]
- Ternberg, J.; Luce, E.; Wise, R.J. Methemoglobinemia: A complication of silver nitrate treatment of burns. Plast. Reconstr. Surg. 1968, 42, 182. [Google Scholar]
- Gagnon, J.; Fromm, K. Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria) Depending on Their Preparation Method, Particle Size, Cell Type, and Exposure Route. Eur. J. Inorg. Chem. 2015, 2015, 4510–4517. [Google Scholar] [CrossRef] [Green Version]
- Aalapati, S.; Ganapathy, S.; Manapuram, S.; Anumolu, G.; Prakya, B.M. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology 2014, 8, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, Y.; Ding, Y.; Zhang, P.; He, X.; Zhang, Z. Toxicity of Two Different Size Ceria Nanoparticles to Mice after Repeated Intranasal Instillation. J. Nanosci. Nanotechnol. 2019, 19, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Kumari, S.I.; Grover, P. Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 2014, 29, 467–479. [Google Scholar] [CrossRef]
- Ranjbar, A.; Ghasemi, H.; Abedian, A.; Kheiripour, N. Cerium oxide nanoparticle modulates hepatic damage, inflammatory and oxidative stress biomarkers in a dose-dependent manner: An in vivo study of rat liver. Nanomed. J. 2018, 5, 245–250. [Google Scholar]
- Gagnon, C.; Bruneau, A.; Turcotte, P.; Pilote, M.; Gagné, F. Fate of Cerium Oxide Nanoparticles in Natural Waters and Immunotoxicity in Exposed Rainbow Trout. J. Nanomed. Nanotechnol. 2018, 9, 1000489. [Google Scholar] [CrossRef]
Date | Ref. | |
---|---|---|
1787 | Arrhenius identifies ‘ytterbite’. | |
1803 | Cerium discovered by Berzelius and Hisinger. | |
1894 | Pokorny identifies cerium components much more toxic to bacteria then algae. | |
1897 | Studies by Drosseback on bacteriostatic activity of cerium components. | [35] |
1912 | Toxicity study of lanthaniun sulfate on tubercle bacillus by Froulin. | [53] |
1915 | Bohn testing range of Ce3+ solution on wide range of wounds | [36] |
1936 | Gould reports effect of cerium on enzymatic activity. | [54] |
1947 | First systematic analysis of antibacterial properties of cerium by Burkers | [37] |
1976 | First clinical study of antimicrobial properties cerium Nitrate on burns by Monafo. | [40] |
1977 | Introduction of silver sulfadiazine as topical antimicrobial agents by Fox. | [43] |
1977 | Combined antimicrobial therapy of burns using cerium nitrate and silver sulfadiazine by Fox. | [45] |
1977 | Combined therapy of cerium nitrate-silver sulfadiazine cream as a topical antiseptic agent for both major and minor burn wounds in children by Monafo | [55] |
1979 | First randomised study of cerium nitrate-silver sulfadiazine cream in the treatment of burns by Helvig. | [56] |
1983 | Determination of liver and kidney toxicity of silver and cerium nitrate from a severely burned infant by Hirakawa. | [57] |
1985 | Introduction of cerium-Flamazine cream for burns treatment by Boeckx. | [58] |
2004 | Silver sulfadiazine and cerium nitrate used for treatment of oxacillin- and mupirocin-resistant Staphylococcus aureus hospital strains by Schuenck. | [59] |
2006 | Report of methemoglobinemia after Flammacerium (cerium nitrate + silver siladiazine cream) treatment by Attof. | [60] |
2006 | Synthesis of cerium oxide nanoparticles by Garidi. | [61] |
2007 | CeO2 nanoparticles synthesis using egg white by Maensiri. | [62] |
2009 | Report of topical application of cerium nitrate preventing burn oedema in rats by Kremer. | [63] |
2010 | First report of high chloraemia in patients with deep third-degree burns treated with Flammacerium by Chianea. | [64] |
2010 | Introduction of cerium dioxide nanoparticles as antiviral agent by Zholobak. | [65] |
2010 | Study on effects of engineered cerium oxide nanoparticles on bacterial growth and viability by Pelletiner. | [66] |
2012 | Study on antibacterial activity of polymer coated cerium oxide nanoparticles by Shah. | [67] |
2013 | In vivo study on antibiofilm effect of cerium nitrate against C. albicans by Cobrado. | [68] |
2014 | Synthesis of gold-supported cerium oxide nanoparticles for antibacterial applications by Babu. | [69] |
2015 | Study by Selvaraj et al. study indicating that CeO2 nanoparticles may be useful for the treatment of sepsis. | [70] |
2015 | In vitro study on antifungal activity and in vivo antibiofilm activity of cerium nitrate against Candida species by Silva-Dias. | [71] |
2015 | Green Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract with antibacterial properties by Arumugam. | [72] |
2016 | Synthesis of bimodal, ZnO:CeO2:nanocellulose:polyaniline bionanocomposite with capacity to absorb dissolved Arsenic along with a noticeable antibacterial activity by Nath. | [73] |
2017 | Study on production size controlled ultrafine CeO2 nanoparticles with antibacterial activity using microwave by Al-Shawafi. | [74] |
2017 | Fabrication of biopolymer-based silver-cerium-chitosan nanocomposite wound dressing with wound healing and antimicrobial properties by Es-Haghi. | [75] |
2017 | Synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite with antibacterial properties in UV light induced photocatalytic degradation and catalytic reduction by Magdalane. | [76] |
2019 | Study on antibacterial and anti-inflammatory capabilities of surface-treated titanium implants via nanostructured ceria by Li. | [77] |
2019 | Study on antimicrobial activity of plasma-sprayed cerium oxide-incorporated calcium silicate coating in dental implants by Qi. | [78] |
2019 | Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles by Matter. | [79] |
2020 | Synthesis of silver-cerium titanate nanotubes for antibacterial applications by Sales. | [80] |
2021 | Study on synergistic antimicrobial potential of nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) by Estes. | [81] |
2021 | Synthesis of molybdenum disulphide-ceria (MoS2-CeO2) nanocomposite with photo-thermal therapy (PTT) antibacterial capability by Ma. | [82] |
2021 | Antibacterial study of Ag/cellulose-doped CeO2 quantum dots by Ikram. | [83] |
2021 | Study on antibacterial and wound-healing properties of cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels bandages by Cao. | [84] |
Year | Particle Size/Morphology | Type of Bacteria | Concentration | Findings | References |
---|---|---|---|---|---|
2017 | 3–4 nm/spherical | Pseudomonas aeruginosa and Staphylococcus epidermidis | 250 and 500 µg/mL | Cerium oxide nanoparticles exhibited a perfect antibacterial activity against the bacteria at basic pH as compared to acidic pH values due to a smaller size and positive surface charge at pH 9 | [117] |
2017 | 3.5–6.5 nm | Escherichia coli | N/A | Nanoceria significantly inhibited the growth of E. coli. The rates of bacterial growth inhibition were found to depend on the average sizes and concentration of the nanoceria | [113] |
2015 | 5 nm/spherical | Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae and Shigella dysenteriae | Antimicrobial discs loaded with 100,000 µg CeO2 nanoparticles | Nanoceria showed a strong antibacterial activity and Gram-positive (G+) bacteria were relatively more susceptible to the NPs than Gram-negative (G−) bacteria. The toxicological behavior of CeO2 NPs was found due to the synthesized NPs with uneven ridges and oxygen defects in CeO2 NPs. | [72] |
2014 | 5 nm | Streptococcus mutans | 220 µg/mL | Nanoceria seemed to be a very effective antimicrobial agent against Streptococcus mutans probably by destroying cell walls as a result of reactive oxygen species production | [118] |
2006 | 7 nm/ellipsoidal | Escherichia coli | 0 to 730 µg/mL | Positively charged at neutral pH nanoparticles display a strong electrostatic attraction toward Gram-negative E. coli outer membranes resulting in cytotoxic effect | [95] |
2011 | 7 nm and 25 nm/truncated octahedral rhombus or irregular | Escherichia coli | 10, 100 and 200 µg/mL | Direct contact of CNPs with the surface of E. coli causes a rise in intracellular ROS level, which results in antibacterial activity. Due to agglomeration and negligible effect on membrane integrity, 7-CeO2 did not exhibit greater antibacterial activity than 25-CeO2. | [100] |
2012 | 8–10 nm | Escherichia coli | 4.3 µg/mL | Dextran-coated CeO2 are non-toxic or exert mild anti-bacterial activity to E. coli. The toxicity of CeO2 NPs depends on the physical and chemical environment; what is more, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. | [67] |
2018 | 10 nm | Escherichia coli and Klebsiella pneumoniae | 50–600 µg/mL | Inactive nanoceria can exert a synergistic action capable of enhancing the activity of β-lactam antibiotics. CeO2 NPs increases the effectiveness of antimicrobials and activity is compromised by drug resistance mechanisms. | [111] |
2014 | 10–20 nm | Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Enterococcus faecalis | 5000, 250,000 and 500,000 µg/mL | Nanoceria-doped composite nanofibers have demonstrated effective toxicity against both the Gram-positive and Gram-negative bacterial strains by disrupting bacterial cell membranes leading to irreversible damage to the cell envelope, which eventually results in cell death | [119] |
2020 | Between 10 and 20 nm/spherical or quasi spherical | Klebsiella pneumonia, Staphylococcus epidermidis, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli | 250–4000 µg/mL | Nanoceria were able to inhibit the bacterial strains across the tested concentrations ranging from 4000 µg/mL to 250 μg/mL, except for E. coli and P. aeruginosa that appeared resistant to low doses of nanoceria. B. subtilis appeared as the most susceptible strain | [120] |
2016 | 11 nm/spherical | Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae | 1000–5000 µg/disc | Nanoceria exhibited antimicrobial activity. Moreover, they showed the inhibition of respective bacterial biofilm formation | [121] |
2014 | 25 nm | Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Enterococcus faecalis | 4, 8 and 16 µg/mL | Bacterial toxicity leading to cell death resulted from the direct interaction between nanoceria and bacteria on CeO2 NPs embedded nanocomposite membrane | [115] |
2014 | 25–30 nm/elliptically spherical | Escherichia coli and Staphylococcus aureus | N/A | Nanoceria, synthetized from Acalypha indica leaf extract inhibited bacterial growth by 90%. The antibacterial properties were concentration-dependent. | [122] |
2012 | 25–50 nm | Escherichia coli | 5000 µg/mL | After UV irradiation (2 h), metal-oxide NPs inhibited the growth of E. coli due to oxidative stress (superoxide radical, hydroxyl radical, and singlet oxygen generated by TiO2 nanoparticles and ZnO nanoparticles) | [106] |
2016 | 27 nm/spherical | Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumonia.C. albicans, F. oxysporum, A. niger and A. candidus | 200 µg/mL | Interaction of bacterial and fungal cells with CeO2-CdO nanocomposite causes cell death due to generation of reactive oxygen species | [123] |
2017 | 40–100 nm/spherical, cubical and circular | Corynebacterium diphtheria, Sarcina lutea, Escherichia coli, Proteus vulgaris | 5000–20,000 µg/disc | Gram-negative bacteria were more susceptible to nanoceria in comparison to Gram-positive bacteria | [124] |
2015 | 42 nm/spherical | Pseudomonas aeruginosa and Staphylococcus aureus | 10,000–20,000 µg/mL | Increased of zone of inhibition in correlation with increased concentration of nanoceria, but only in case of P. aeruginosa (G−) | [125] |
2019 | <50 nm | Biofilm originated from Citrobacter and Pseudomonas species | 0.05–200 µg/mL | Nanoceria accelerate biofilm formation due to oxidative stress | [126] |
2013 | 100 nm/octahedral or truncated octahedral | Escherichia coli | 75–30,000 µg/mL | The interaction of nanoceria with non-ionic surfactants (Triton X-100, Polyvinyl Pyrrolidone (PVP) and Tween 80 with, 0.001% v/v) enhanced their antibacterial activity against E. coli | [127] |
2008 | 140 nm | Escherichia coli | 10,000 µg/mL | Illumination of E. coli in the presence of hollow ceria nanospheres coated with conductive polymers (polyaniline and polypyrrole) decreased bacteria concentration | [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barker, E.; Shepherd, J.; Asencio, I.O. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules 2022, 27, 2678. https://doi.org/10.3390/molecules27092678
Barker E, Shepherd J, Asencio IO. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules. 2022; 27(9):2678. https://doi.org/10.3390/molecules27092678
Chicago/Turabian StyleBarker, Emilia, Joanna Shepherd, and Ilida Ortega Asencio. 2022. "The Use of Cerium Compounds as Antimicrobials for Biomedical Applications" Molecules 27, no. 9: 2678. https://doi.org/10.3390/molecules27092678