Next Issue
Volume 28, November-1
Previous Issue
Volume 28, October-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 28, Issue 20 (October-2 2023) – 234 articles

Cover Story (view full-size image): In this study, the proposed photocatalytic amplification mechanism is founded on the synergistic effect of the slow photon effect and Z-scheme charge transfer, which is optimized by the optimal content of Ag in ZnIn2S4 quantum dots (QDs) integrated with inverse opal (IO) TiO2. This configuration enables efficient charge transfer from the Type-II heterojunction to the Z-scheme type, enhancing photocatalytic performance through regulation of the alignment of energy bands between ZnIn2S4 QDs and IO-TiO2. Notably, in Tetracycline (TC) photo-degradation, the Ag (2.0): ZnIn2S4 QDs/IO-TiO2 composite exhibits outstanding performance under 300 W Xe lamp irradiation. View this paper
 
 
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 1319 KiB  
Article
Impact of Drying Process on the Phenolic Profile and Antioxidant Capacity of Raw and Boiled Leaves and Inflorescences of Chenopodium berlandieri ssp. berlandieri
by Ángel Félix Vargas-Madriz, Aarón Kuri-García, Ivan Luzardo-Ocampo, Haidel Vargas-Madriz, Iza Fernanda Pérez-Ramírez, Miriam Aracely Anaya-Loyola, Roberto Augusto Ferriz-Martínez, Octavio Roldán-Padrón, Luis Hernández-Sandoval, Salvador Horacio Guzmán-Maldonado and Jorge Luis Chávez-Servín
Molecules 2023, 28(20), 7235; https://doi.org/10.3390/molecules28207235 - 23 Oct 2023
Cited by 1 | Viewed by 1425
Abstract
C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of the group of plants known as quelites, which are dark leafy greens widely consumed in Mexico. This study aimed to evaluate the impact of two drying procedures [...] Read more.
C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of the group of plants known as quelites, which are dark leafy greens widely consumed in Mexico. This study aimed to evaluate the impact of two drying procedures (oven drying and freeze-drying/lyophilization) on the polyphenolic composition, antioxidant capacity, and proximal chemical analysis of C. berlandieri leaves and inflorescences (raw or boiled). The results indicated that the raw freeze-dried samples had higher amounts (p < 0.05) of total phenolic compounds, total flavonoids, and antioxidant capacity, mainly in the inflorescence. The oven-dried samples showed an increased concentration of polyphenols after boiling, while the lyophilized samples showed a slightly decreased concentration. The drying process was observed to have little impact on the proximal chemical composition. Quantification by UPLC-DAD-ESI-QToF/MS identified up to 23 individual phenolic compounds, with freeze-dried samples showing higher amounts of individual compounds compared with oven-dried. Procyanidin B2 was found exclusively in the inflorescences. The inflorescences have a higher content of phenolic compounds and greater antioxidant capacity than the leaves. Regardless of the drying process, the leaves and inflorescences of C. berlandieri contain an interesting variety of phenolic compounds that may have beneficial effects on health. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Food)
Show Figures

Graphical abstract

20 pages, 5506 KiB  
Article
Main-Chain Benzoxazines Containing an Erythritol Acetal Structure: Thermal and Degradation Properties
by Huili Yang, Yanqin Du, Guangshe Zhang, Ling Han, Longgui Zhang and Riwei Xu
Molecules 2023, 28(20), 7234; https://doi.org/10.3390/molecules28207234 - 23 Oct 2023
Cited by 1 | Viewed by 904
Abstract
In this paper, the bio-based raw material erythritol was used to introduce an acetal structure into the benzoxazine resins. The benzoxazine-based resins containing an erythritol acetal structure could be degraded in an acidic solution and were environmentally friendly thermosetting resins. Compounds and resins [...] Read more.
In this paper, the bio-based raw material erythritol was used to introduce an acetal structure into the benzoxazine resins. The benzoxazine-based resins containing an erythritol acetal structure could be degraded in an acidic solution and were environmentally friendly thermosetting resins. Compounds and resins were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FT-IR) analyses, and melting points were studied by a differential scanning calorimeter (DSC); the molecular weight was analyzed by gel permeation chromatography (GPC). The dynamic mechanical properties and thermal stability of polybenzoxazine resins were studied by dynamic mechanical thermal analysis (DMTA) and a thermogravimetric analyzer (TGA), respectively. The thermal aging, wet-heat resistance, and degradation properties of polybenzoxazine resins were tested. The results showed that the polybenzoxazine resins synthesized in this paper had good thermal-oxidative aging, and wet-heat resistance and could be completely degraded in an acidic solution (55 °C DMF: water: 1 mol/L hydrochloric acid solution = 5:2:4 (v/v/v)). Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

25 pages, 1353 KiB  
Review
Ergot Alkaloids on Cereals and Seeds: Analytical Methods, Occurrence, and Future Perspectives
by Ângela Silva, Ana Rita Soares Mateus, Sílvia Cruz Barros and Ana Sanches Silva
Molecules 2023, 28(20), 7233; https://doi.org/10.3390/molecules28207233 - 23 Oct 2023
Viewed by 1610
Abstract
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, [...] Read more.
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, the presence of ergot alkaloids in food presents a concern for human safety. For this reason, it is essential to develop several analytical methods that allow the detection of these toxic compounds. This review compiles and discusses the most relevant studies and methods used in the detection and quantification of ergot alkaloids. Moreover, the decontamination techniques are also addressed, with special attention to sorting, cleaning, frying, baking, peeling, and ammonization methods, as they are the only ones already applied to ergot alkaloids. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Natural Products Chemistry 2.0)
Show Figures

Figure 1

13 pages, 5569 KiB  
Article
Facile Synthesis of Cu-Doped ZnO Nanoparticles for the Enhanced Photocatalytic Disinfection of Bacteria and Fungi
by Ruichun Nan, Shurui Liu, Mengwan Zhai, Mengzhen Zhu, Xiaodong Sun, Yisong Chen, Qiangqiang Pang and Jingtao Zhang
Molecules 2023, 28(20), 7232; https://doi.org/10.3390/molecules28207232 - 23 Oct 2023
Cited by 1 | Viewed by 1235
Abstract
In this study, Cu-doped ZnO was prepared via the facile one-pot solvothermal approach. The structure and composition of the synthesized samples were characterized by XRD (X-ray diffraction), TEM (transmission electron microscopy), and XPS (X-ray photoelectron spectroscopy) analyses, revealing that the synthesized samples consisted [...] Read more.
In this study, Cu-doped ZnO was prepared via the facile one-pot solvothermal approach. The structure and composition of the synthesized samples were characterized by XRD (X-ray diffraction), TEM (transmission electron microscopy), and XPS (X-ray photoelectron spectroscopy) analyses, revealing that the synthesized samples consisted of Cu-doped ZnO nanoparticles. Ultraviolet–visible (UV-vis) spectroscopy analysis showed that Cu-doping significantly improves the visible light absorption properties of ZnO. The photocatalytic capacity of the synthesized samples was tested via the disinfection of Escherichia coli, with the Cu-ZnO presenting enhanced disinfection compared to pure ZnO. Of the synthesized materials, 7% Cu-ZnO exhibited the best photocatalytic performance, for which the size was ~9 nm. The photocurrent density of the 7% Cu-ZnO samples was also significantly higher than that of pure ZnO. The antifungal activity for 7% Cu-ZnO was also tested on the pathogenic fungi of Fusarium graminearum. The macroconidia of F. graminearum was treated with 7% Cu-ZnO photocatalyst for 5 h, resulting in a three order of magnitude reduction at a concentration of 105 CFU/mL. Fluorescence staining tests were used to verify the survival of macroconidia before and after photocatalytic treatment. ICP-MS was used to confirm that Cu-ZnO met national standards for cu ion precipitation, indicating that Cu-ZnO are environmentally friendly materials. Full article
(This article belongs to the Special Issue Multifunctional Metal Oxides: Synthesis and Applications)
Show Figures

Graphical abstract

12 pages, 1173 KiB  
Article
The System of Self-Consistent Models: The Case of Henry’s Law Constants
by Andrey A. Toropov, Alla P. Toropova, Alessandra Roncaglioni, Emilio Benfenati, Danuta Leszczynska and Jerzy Leszczynski
Molecules 2023, 28(20), 7231; https://doi.org/10.3390/molecules28207231 - 23 Oct 2023
Viewed by 723
Abstract
Data on Henry’s law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry’s law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those [...] Read more.
Data on Henry’s law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry’s law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those that are capable of long-term movements over long distances. This ability is closely related to the values of Henry’s law constants. Chemical changes in gaseous mixtures affect the fate of atmospheric pollutants and ecology, climate, and human health. Since the number of organic compounds present in the atmosphere is extremely large, it is desirable to develop models suitable for predictions for the large pool of organic molecules that may be present in the atmosphere. Here, we report the development of such a model for Henry’s law constants predictions of 29,439 compounds using the CORAL software (2023). The statistical quality of the model is characterized by the value of the coefficient of determination for the training and validation sets of about 0.81 (on average). Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

30 pages, 5561 KiB  
Article
Synthesis, Computational, and Anticancer In Vitro Investigations of Aminobenzylnaphthols Derived from 2-Naphtol, Benzaldehydes, and α-Aminoacids via the Betti Reaction
by Mateusz Kciuk, Martyna Malinowska, Adrianna Gielecińska, Rajamanikandan Sundaraj, Somdutt Mujwar, Anna Zawisza and Renata Kontek
Molecules 2023, 28(20), 7230; https://doi.org/10.3390/molecules28207230 - 23 Oct 2023
Viewed by 1069
Abstract
Multicomponent reactions have emerged as an important approach for the synthesis of diverse and complicated chemical compounds. They have various advantages over two-component reactions, including the convenience of one-pot procedures and the ability to modify the structure of agents. Here, we employed in [...] Read more.
Multicomponent reactions have emerged as an important approach for the synthesis of diverse and complicated chemical compounds. They have various advantages over two-component reactions, including the convenience of one-pot procedures and the ability to modify the structure of agents. Here, we employed in vitro and in silico studies to explore the anticancer potential of novel aminobenzylnaphthols derived from the Betti reaction (MMZ compounds). MTT assay was used to explore the cytotoxic activity of the compounds in pancreatic (BxPC-3 cells) and colorectal (HT-29) cancer cell lines or normal human lung fibroblasts (WI-38 cells). Proapoptotic properties of two derivatives MMZ-45AA and MMZ-140C were explored using AO/EB and annexin V-FITC/PI staining. In silico studies including ADMET profiling, molecular target prediction, docking, and dynamics were employed. The compounds exhibited cytotoxic properties and showed proapoptotic properties in respective IC50 concentrations. As indicated by in silico investigations, anticancer activity of MMZs can be attributed to the inhibition of ADORA1, CDK2, and TRIM24. Furthermore, compounds exhibited favorable ADMET properties. MMZs constitute an interesting scaffold for the potential development of new anticancer agents. Full article
(This article belongs to the Special Issue Design, Synthesis and Biological Activity of Organic Compounds)
Show Figures

Figure 1

21 pages, 4608 KiB  
Article
Mitochondria-Targeted Lipid Nanoparticles Loaded with Rotenone as a New Approach for the Treatment of Oncological Diseases
by Leysan Vasileva, Gulnara Gaynanova, Darya Kuznetsova, Farida Valeeva, Anna Lyubina, Syumbelya Amerhanova, Alexandra Voloshina, Guzel Sibgatullina, Dmitry Samigullin, Konstantin Petrov and Lucia Zakharova
Molecules 2023, 28(20), 7229; https://doi.org/10.3390/molecules28207229 - 23 Oct 2023
Cited by 1 | Viewed by 1197
Abstract
This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where [...] Read more.
This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer–Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential. Full article
Show Figures

Graphical abstract

14 pages, 9067 KiB  
Article
Barium Lanthanum Oxide Nanosheets in Photocatalytic and Forensic Applications: One-Pot Synthesis and Characterization
by Sanjay S. Majani, Meghana, Sowmyashree S H, Sowjanyashree J, Sahaja Umesh, Chandan Shivamallu, Muzaffar Iqbal, Raghavendra G. Amachawadi, Venkatachalaiah K N and Shiva Prasad Kollur
Molecules 2023, 28(20), 7228; https://doi.org/10.3390/molecules28207228 - 23 Oct 2023
Cited by 1 | Viewed by 942
Abstract
The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped [...] Read more.
The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements. The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm, attributed to the 4F7/24G11/2 transition, while the emission shows two prominent peaks at 420 nm (4G7/24F7/2) and 440 nm (4G5/24F7/2). The acquired emission results were utilized to confirm the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040), and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR) dye, the results of which show more than 60% degradation at the 70th minute. It was also found that there was no further degradation after 70 min. All the acquired results suggest the clear potential of the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Nanoparticles and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 925 KiB  
Article
Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis
by Gabrielle Ange Amang à Ngnoung, Yves Oscar Nganso Ditchou, Peron Bosco Leutcha, Darline Dize, Simplice Joël Ndendoung Tatsimo, Lauve Rachel Yamthe Tchokouaha, Theodora Kopa Kowa, Babalwa Tembeni, Hamadou Mamoudou, Madan Poka, Patrick Hulisani Demana, Xavier Siwe Noundou, Fabrice Fekam Boyom and Alain Meli Lannang
Molecules 2023, 28(20), 7227; https://doi.org/10.3390/molecules28207227 - 23 Oct 2023
Cited by 1 | Viewed by 1160
Abstract
Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the [...] Read more.
Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21β-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21β-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 μg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 μg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 μg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 μg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21β-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21β-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa. Full article
Show Figures

Figure 1

4 pages, 177 KiB  
Editorial
Editorial for the Special Issue: “Spatial Structure of Minerals”
by Dun Wu, Guangqing Hu and Yuhang Gao
Molecules 2023, 28(20), 7226; https://doi.org/10.3390/molecules28207226 - 23 Oct 2023
Viewed by 558
Abstract
The spatial structure of minerals is a fundamental factor in determining the morphology, physical properties, and genesis of minerals [...] Full article
(This article belongs to the Special Issue Molecular Structure of Minerals)
13 pages, 1370 KiB  
Article
Terminal Residue and Dietary Risk Assessment of Atrazine and Isoxaflutole in Corn Using High-Performance Liquid Chromatography–Tandem Mass Spectrometry
by Junli Cao, Tao Pei, Yonghui Wang, Shu Qin, Yanli Qi, Pengcheng Ren and Jindong Li
Molecules 2023, 28(20), 7225; https://doi.org/10.3390/molecules28207225 - 23 Oct 2023
Cited by 1 | Viewed by 928
Abstract
Isoxaflutole and atrazine are representative pesticides for weed control in corn fields. Formulations containing these two pesticides have been registered in China, and their residues may threaten food safety and human health. In this study, a method for simultaneous determination of isoxaflutole, atrazine, [...] Read more.
Isoxaflutole and atrazine are representative pesticides for weed control in corn fields. Formulations containing these two pesticides have been registered in China, and their residues may threaten food safety and human health. In this study, a method for simultaneous determination of isoxaflutole, atrazine, and their metabolites in fresh corn, corn kernels, and corn straw was established based on modified QuEChERS pre-treatment and high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). The linearity of seven compounds was good (R2 ≥ 0.9912), and the matrix effect was 48.5–77.1%. At four spiked levels of 0.01, 0.02, 0.05, and 0.5 mg kg−1, all compounds’ average recovery was 76% to 116%, with relative standard deviation (RSD) less than 18.9%. Field experiments were conducted in Liaoning, Heilongjiang, Inner Mongolia, Shanxi, Beijing, and Yunnan provinces to study the terminal residues. The terminal residues of all compounds were below the LOQ (0.01 mg kg−1) in fresh corn and corn kernels, and atrazine residues in corn straw ranged from <0.05 mg kg−1 to 0.17 mg kg−1. Finally, a dietary risk assessment was conducted based on residues from field trials, food consumption, and acceptable daily intake (ADI). For all populations, the chronic dietary risk probability (RQc) of atrazine was between 0.0185% and 0.0739%, while that of isoxaflutole was 0.0074–0.0296%, much lower than 100%. The results may provide scientific guidance for using isoxaflutole and atrazine in corn field ecosystems. Full article
(This article belongs to the Special Issue Chromatographic Analysis of Pesticide in Environmental and Food)
Show Figures

Graphical abstract

24 pages, 2458 KiB  
Article
Analysis of Volatile Compounds in Processed Cream Cheese Models for the Prediction of “Fresh Cream” Aroma Perception
by Coline Caille, Mariem Boukraâ, Cécile Rannou, Angélique Villière, Clément Catanéo, Laurent Lethuaut, Araceli Lagadec-Marquez, Julia Bechaux and Carole Prost
Molecules 2023, 28(20), 7224; https://doi.org/10.3390/molecules28207224 - 23 Oct 2023
Viewed by 1298
Abstract
Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser [...] Read more.
Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict “fresh cream” aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict “fresh cream” aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a “milk” odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a “granular” and “brittle” texture and a “salty” and “sour” taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for “cooked” and “chemical” aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the “fresh cream” aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics. Full article
(This article belongs to the Special Issue Featured Papers on Bioactive Flavour and Fragrance Compounds 2023)
Show Figures

Figure 1

28 pages, 8182 KiB  
Article
Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity
by Diter Miranda-Sánchez, Carlos H. Escalante, Dulce Andrade-Pavón, Omar Gómez-García, Edson Barrera, Lourdes Villa-Tanaca, Francisco Delgado and Joaquín Tamariz
Molecules 2023, 28(20), 7223; https://doi.org/10.3390/molecules28207223 - 23 Oct 2023
Viewed by 1040
Abstract
As a new approach, pyrrolo[1,2-a]pyrazines were synthesized through the cyclization of 2-formylpyrrole-based enaminones in the presence of ammonium acetate. The enaminones were prepared with a straightforward method, reacting the corresponding alkyl 2-(2-formyl-1H-pyrrol-1-yl)acetates, 2-(2-formyl-1H-pyrrol-1-yl)acetonitrile, and 2-(2-formyl-1H-pyrrol-1-yl)acetophenones [...] Read more.
As a new approach, pyrrolo[1,2-a]pyrazines were synthesized through the cyclization of 2-formylpyrrole-based enaminones in the presence of ammonium acetate. The enaminones were prepared with a straightforward method, reacting the corresponding alkyl 2-(2-formyl-1H-pyrrol-1-yl)acetates, 2-(2-formyl-1H-pyrrol-1-yl)acetonitrile, and 2-(2-formyl-1H-pyrrol-1-yl)acetophenones with DMFDMA. Analogous enaminones elaborated from alkyl (E)-3-(1H-pyrrol-2-yl)acrylates were treated with a Lewis acid to afford indolizines. The antifungal activity of the series of substituted pyrroles, pyrrole-based enaminones, pyrrolo[1,2-a]pyrazines, and indolizines was evaluated on six Candida spp., including two multidrug-resistant ones. Compared to the reference drugs, most test compounds produced a more robust antifungal effect. Docking analysis suggests that the inhibition of yeast growth was probably mediated by the interaction of the compounds with the catalytic site of HMGR of the Candida species. Full article
(This article belongs to the Special Issue Organic Synthesis and Application of Bioactive Molecules)
Show Figures

Graphical abstract

17 pages, 2444 KiB  
Article
Effects of Branched-Chain Fatty Acids Derived from Yak Ghee on Lipid Metabolism and the Gut Microbiota in Normal-Fat Diet-Fed Mice
by Ting Tan, Yihao Luo, Wancheng Sun and Xiaoxiao Li
Molecules 2023, 28(20), 7222; https://doi.org/10.3390/molecules28207222 - 23 Oct 2023
Cited by 1 | Viewed by 1325
Abstract
Branched-chain fatty acids (BCFAs) are natural components with a variety of biological activities. However, the regulation of lipid metabolism by BCFAs is unknown. It was dedicated to examining the impacts of BCFAs inferred from yak ghee on the expression of qualities related to [...] Read more.
Branched-chain fatty acids (BCFAs) are natural components with a variety of biological activities. However, the regulation of lipid metabolism by BCFAs is unknown. It was dedicated to examining the impacts of BCFAs inferred from yak ghee on the expression of qualities related to lipid metabolism, natural pathways, and intestinal microbiota in mice. The treatment group (purified BCFAs from yak ghee) exhibited a decrease in cholesterol levels; a decrease in HMGCR levels; downregulation of FADS1, FADS2, ACC-α, FAS, GAPT4, GPAM, ACSL1, THRSP, A-FABP, and PPARα gene expression; and upregulation of SCD1, ACSS1, FABP1, CPT1, and DGAT-1 gene expression. Gut microbiota 16S rDNA sequencing analysis showed that the treatment group improved the gut microbiota by increasing the relative abundances and increasing the short-chain fatty acid levels produced by the genera Akkermansia, Clostridium, Lachnospiraceae, Lactobacillus, Anaerotaenia, and Prevotella. After adding BCFAs to cultured breast cancer cells, pathways that were downregulated were found to be related to fatty acid degradation and fatty acid metabolism, while 20 other pathways were upregulated. Our results suggest that BCFAs reduce body fat in mice by modulating intestinal flora and lipid metabolism and modulating fatty acid metabolism in breast cancer cells. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Graphical abstract

25 pages, 5829 KiB  
Article
Synthesis and Characterization of Bipyridyl-(Imidazole)n Mn(II) Compounds and Their Evaluation as Potential Precatalysts for Water Oxidation
by Ge Mu, Ryan B. Gaynor, Baylee N. McIntyre, Bruno Donnadieu and Sidney E. Creutz
Molecules 2023, 28(20), 7221; https://doi.org/10.3390/molecules28207221 - 23 Oct 2023
Viewed by 1306
Abstract
Metalloenzymes make extensive use of manganese centers for oxidative catalysis, including water oxidation; the need to develop improved synthetic catalysts for these processes has long motivated the development of bioinspired manganese complexes. Herein, we report a series of bpy-(imidazole)n (n = 1 [...] Read more.
Metalloenzymes make extensive use of manganese centers for oxidative catalysis, including water oxidation; the need to develop improved synthetic catalysts for these processes has long motivated the development of bioinspired manganese complexes. Herein, we report a series of bpy-(imidazole)n (n = 1 or 2) (bpy = 2,2′-bipyridyl) ligands and their Mn2+ complexes. Four Mn2+ complexes are structurally characterized using single-crystal X-ray diffraction, revealing different tridentate and tetradentate ligand coordination modes. Cyclic voltammetry of the complexes is consistent with ligand-centered reductions and metal-centered oxidations, and UV-vis spectroscopy complemented by TD-DFT calculations shows primarily ligand-centered transitions with minor contributions from charge-transfer type transitions at higher energies. In solution, ESI-MS studies provide evidence for ligand reorganization, suggesting complex speciation behavior. The oxidation of the complexes in the presence of water is probed using cyclic voltammetry, but the low stability of the complexes in aqueous solution leads to decomposition and precludes their ultimate application as aqueous electrocatalysts. Possible reasons for the low stability and suggestions for improvement are discussed. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

19 pages, 3664 KiB  
Article
An Ultrafast UPLC–MS/MS Method for Characterizing the In Vitro Metabolic Stability of Acalabrutinib
by Mohamed W. Attwa, Ahmed H. Bakheit, Ali S. Abdelhameed and Adnan A. Kadi
Molecules 2023, 28(20), 7220; https://doi.org/10.3390/molecules28207220 - 23 Oct 2023
Viewed by 1045
Abstract
Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the [...] Read more.
Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the utilization of acalabrutinib (ACB) in the treatment of small lymphocytic lymphoma (SLL) or chronic lymphocytic leukemia (CLL) in adult patients. The aim of this study was to develop a UPLC–MS/MS method that is effective, accurate, environmentally sustainable, and has a high degree of sensitivity. The methodology was specifically developed with the intention of quantifying ACB in human liver microsomes (HLMs). The methodology described above was subsequently utilized to assess the metabolic stability of ACB in HLMs in an in vitro environment. The validation procedures for the UPLC–MS/MS method in the HLMs were conducted in accordance with the bioanalytical method validation criteria established by the U.S.- DA. The utilization of the StarDrop software (version 6.6), which integrates the P450 metabolic module and DEREK software (KB 2018 1.1), was employed for the purpose of evaluating the metabolic stability and identifying potential hazardous alarms associated with the chemical structure of ACB. The calibration curve, as established by the ACB, demonstrated a linear correlation across the concentration range of 1 to 3000 ng/mL in the matrix of HLMs. The present study conducted an assessment of the accuracy and precision of the UPLC–MS/MS method in quantifying inter-day and intra-day fluctuations. The inter-day accuracy demonstrated a spectrum of values ranging from −1.00% to 8.36%, whilst the intra-day accuracy presented a range of values spanning from −2.87% to 4.11%. The t1/2 and intrinsic clearance (Clint) of ACB were determined through in vitro testing to be 20.45 min and 39.65 mL/min/kg, respectively. The analysis concluded that the extraction ratio of ACB demonstrated a moderate level, thus supporting the recommended dosage of ACB (100 mg) to be administered twice daily for the therapeutic treatment of persons suffering from B-cell malignancies. Several computational tools have suggested that introducing minor structural alterations to the butynoyl group, particularly the alpha, beta-unsaturated amide moiety, or substituting this group during the drug design procedure, could potentially enhance the metabolic stability and safety properties of novel derivatives in comparison to ACB. Full article
(This article belongs to the Special Issue Mass Spectrometry Analysis III)
Show Figures

Figure 1

24 pages, 2021 KiB  
Review
A Comprehensive Bibliographic Review Concerning the Efficacy of Organic Acids for Chemical Peels Treating Acne Vulgaris
by Șoimița Emiliana Măgerușan, Gabriel Hancu and Aura Rusu
Molecules 2023, 28(20), 7219; https://doi.org/10.3390/molecules28207219 - 22 Oct 2023
Viewed by 2858
Abstract
Acne vulgaris stands out as the most prevalent skin disorder among teenagers and young adults, causing physical discomfort and considerable economic and psychological burdens on individuals and society. A wide range of topical and systemic therapies are available in acne treatment. Chemical peeling [...] Read more.
Acne vulgaris stands out as the most prevalent skin disorder among teenagers and young adults, causing physical discomfort and considerable economic and psychological burdens on individuals and society. A wide range of topical and systemic therapies are available in acne treatment. Chemical peeling is a skin resurfacing technique designed to rebuild healthy skin using exfoliating substances, a simple and affordable process with various dermatological uses. Chemical peels, classified as superficial, medium, and deep, have been utilized for acne vulgaris and multiple other skin issues. In these chemical peels, a diverse range of chemical substances is employed, each with its unique mode of action. Among these, α-hydroxy and β-hydroxy acids have gathered attention for their efficacy in reducing acne lesions and enhancing overall skin appearance. Acids, such as salicylic acid, glycolic acid, or lactic acid, are commonly used in chemical peels due to their exfoliating and sebum-regulating properties. Despite the widespread use of these acids, there exists a lack of consensus regarding the most effective acid type and concentration for treating acne-prone skin. This review aims to bridge this knowledge gap by evaluating the effectiveness and safety of various organic acids used in chemical peels specifically for acne-prone skin. The findings of this comprehensive bibliographic review indicate that organic acid-based chemical peels represent effective and safe treatment options for individuals with acne-prone skin. Their adaptability sets these treatments apart; the choice of organic acid can be tailored to meet individual patient needs and tolerability levels. This personalized approach ensures that patients receive optimal care while minimizing the risks associated with the treatment. As research in this field progresses, it is anticipated that a more nuanced understanding of the ideal acid type and concentration will emerge, further enhancing the efficacy and safety of chemical peels for acne-prone skin. Full article
(This article belongs to the Special Issue Natural Products and Biomolecules for Cosmetics Applications)
Show Figures

Figure 1

21 pages, 12860 KiB  
Article
Fabrication and In Vitro Biological Assay of Thermo-Mechanically Tuned Chitosan Reinforced Polyurethane Composites
by Nadia Akram, Iram Shahzadi, Khalid Mahmood Zia, Muhammad Saeed, Akbar Ali, Rashad Al-Salahi, Hatem A. Abuelizz and Francis Verpoort
Molecules 2023, 28(20), 7218; https://doi.org/10.3390/molecules28207218 - 22 Oct 2023
Cited by 1 | Viewed by 832
Abstract
The progressive trend of utilizing bioactive materials constitutes diverse materials exhibiting biocompatibility. The innovative aspect of this research is the tuning of the thermo-mechanical behavior of polyurethane (PU) composites with improved biocompatibility for vibrant applications. Polycaprolactone (CAPA) Mn = 2000 g-mol−1 was [...] Read more.
The progressive trend of utilizing bioactive materials constitutes diverse materials exhibiting biocompatibility. The innovative aspect of this research is the tuning of the thermo-mechanical behavior of polyurethane (PU) composites with improved biocompatibility for vibrant applications. Polycaprolactone (CAPA) Mn = 2000 g-mol−1 was used as a macrodiol, along with toluene diisocyanate (TDI) and hexamethylene diisocyanate (HMDI), to develop prepolymer chains, which were terminated with 1,4 butane diol (BD). The matrix was reinforced with various concentrations of chitosan (1–5 wt %). Two series of PU composites (PUT/PUH) based on aromatic and aliphatic diisocyanate were prepared by varying the hard segment (HS) ratio from 5 to 30 (wt %). The Fourier-transformed infrared (FTIR) spectroscopy showed the absence of an NCO peak at 1730 cm−1 in order to confirm polymer chain termination. Thermal gravimetric analysis (TGA) showed optimum weight loss up to 500 °C. Dynamic mechanical analysis (DMA) showed the complex modulus (E*) ≥ 200 MPa. The scanning electron microscope (SEM) proved the ordered structure and uniform distribution of chain extender in PU. The hemolytic activities were recorded up to 15.8 ± 1.5% for the PUH series. The optimum values for the inhibition of biofilm formation were recorded as 46.3 ± 1.8% against E. coli and S. aureus (%), which was supported by phase contrast microscopy. Full article
Show Figures

Figure 1

22 pages, 2647 KiB  
Article
In Vivo Trafficking of the Anticancer Drug Tris(8-Quinolinolato) Gallium (III) (KP46) by Gallium-68/67 PET/SPECT Imaging
by Afnan M. F. Darwesh, Cinzia Imberti, Joanna J. Bartnicka, Fahad Al-Salemee, Julia E. Blower, Alex Rigby, Jayanta Bordoloi, Alex Griffiths, Michelle T. Ma and Philip J. Blower
Molecules 2023, 28(20), 7217; https://doi.org/10.3390/molecules28207217 - 22 Oct 2023
Viewed by 1131
Abstract
KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [ [...] Read more.
KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [67Ga]KP46 and [68Ga]KP46, compared with [68Ga]gallium acetate, were used for logP measurements, in vitro cell uptake studies in A375 melanoma cells, and in vivo imaging in mice bearing A375 tumour xenografts up to 48 h after intravenous (tracer level) and oral (tracer and bulk) administration. 68Ga was more efficiently accumulated in A375 cells in vitro when presented as [68Ga]KP46 than as [68Ga]gallium acetate, but the reverse was observed when intravenously administered in vivo. After oral administration of [68/67Ga]KP46, absorption of 68Ga and 67Ga from the GI tract and delivery to tumours were poor, with the majority excreted in faeces. By 48 h, low but measurable amounts were accumulated in tumours. The distribution in tissues of absorbed radiogallium and octanol extraction of tissues suggested trafficking as free gallium rather than as KP46. We conclude that KP46 likely acts as a slow releaser of gallium ions which are inefficiently absorbed from the GI tract and trafficked to tissues, including tumour and bone. Full article
Show Figures

Graphical abstract

17 pages, 564 KiB  
Article
Thermodynamic Assessment of Triclocarban Dissolution Process in N-Methyl-2-pyrrolidone + Water Cosolvent Mixtures
by Diego Ivan Caviedes-Rubio, Claudia Patricia Ortiz, Fleming Martinez and Daniel Ricardo Delgado
Molecules 2023, 28(20), 7216; https://doi.org/10.3390/molecules28207216 - 22 Oct 2023
Cited by 1 | Viewed by 904
Abstract
Solubility is one of the most important physicochemical properties due to its involvement in physiological (bioavailability), industrial (design) and environmental (biotoxicity) processes, and in this regard, cosolvency is one of the best strategies to increase the solubility of poorly soluble drugs in aqueous [...] Read more.
Solubility is one of the most important physicochemical properties due to its involvement in physiological (bioavailability), industrial (design) and environmental (biotoxicity) processes, and in this regard, cosolvency is one of the best strategies to increase the solubility of poorly soluble drugs in aqueous systems. Thus, the aim of this research is to thermodynamically evaluate the dissolution process of triclocarban (TCC) in cosolvent mixtures of {N-methyl-2-pyrrolidone (NMP) + water (W)} at seven temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15 K). Solubility is determined by UV/vis spectrophotometry using the flask-shaking method. The dissolution process of the TCC is endothermic and strongly dependent on the cosolvent composition, achieving the minimum solubility in pure water and the maximum solubility in NMP. The activity coefficient decreases from pure water to NMP, reaching values less than one, demonstrating the excellent positive cosolvent effect of NMP, which is corroborated by the negative values of the Gibbs energy of transfer. In general terms, the dissolution process is endothermic, and the increase in TCC solubility may be due to the affinity of TCC with NMP, in addition to the water de-structuring capacity of NMP generating a higher number of free water molecules. Full article
Show Figures

Graphical abstract

12 pages, 3489 KiB  
Article
Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process
by Benchamaporn Tangnorawich, Areerut Magmee, Nanjaporn Roungpaisan, Surachet Toommee, Yardnapar Parcharoen and Chiravoot Pechyen
Molecules 2023, 28(20), 7215; https://doi.org/10.3390/molecules28207215 - 22 Oct 2023
Viewed by 1383
Abstract
This work aimed to study the influence of the polybutylene succinate (PBS) content on the physical, thermal, mechanical, and chemical properties of the obtained polylactic acid (PLA)/PBS composite fibers. PLA/PBS blend fibers were prepared by a simple melt-blown process capable of yielding nanofibers. [...] Read more.
This work aimed to study the influence of the polybutylene succinate (PBS) content on the physical, thermal, mechanical, and chemical properties of the obtained polylactic acid (PLA)/PBS composite fibers. PLA/PBS blend fibers were prepared by a simple melt-blown process capable of yielding nanofibers. Morphological analysis revealed that the fiber size was irregular and discontinuous in length. Including PBS affected the fiber size distribution, and the fibers had a smoother surface with increased amounts of added PBS. Differential scanning calorimetry analysis (DSC) revealed that the crystallization temperature of the PLA sheet (105.8 °C) was decreased with increasing PBS addition levels down to 91.7 °C at 10 wt.% PBS. This suggests that the addition of PBS may affect PLA crystallization, which is consistent with the X-ray diffraction analysis that revealed that the crystallinity of PLA (19.2%) was increased with increasing PBS addition up to 28.1% at 10 wt% PBS. Moreover, adding PBS increased the tensile properties while the % elongation at break was significantly decreased. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
Show Figures

Figure 1

12 pages, 4610 KiB  
Article
The Influence of an Extended π Electron System on the Electrochemical Properties and Oxidizing Activity of a Series of Iron(III) Porphyrazines with Bulky Pyrrolyl Substituents
by Tomasz Koczorowski and Tomasz Rębiś
Molecules 2023, 28(20), 7214; https://doi.org/10.3390/molecules28207214 - 22 Oct 2023
Viewed by 694
Abstract
The present study investigates four iron(II/III) porphyrazines with extending pyrrolyl peripheral substituents to understand the impact of introduced phenyl rings on the macrocycle’s electrochemical and spectroelectrochemical properties as well as their activity in oxidation reactions. The electrochemical studies showed six well-defined redox processes [...] Read more.
The present study investigates four iron(II/III) porphyrazines with extending pyrrolyl peripheral substituents to understand the impact of introduced phenyl rings on the macrocycle’s electrochemical and spectroelectrochemical properties as well as their activity in oxidation reactions. The electrochemical studies showed six well-defined redox processes and quasi-reversible one-electron transfers—two originating from the iron cation and four related to the ring. Adding phenyl rings to the periphery increased the electrochemical gap by 0.1 V. The UV–Vis spectra changes were observed at the applied potential of −1.3 V with the presence of additional red-shifted bands. The oxidizing studies showed increased efficiency in the oxidation reaction of the reference substrate in the cases of Pz1 and Pz2 in both studied oxygen atom donors. The calculated reaction rates in t-BuOOH were 12.0 and 15.0 mmol/min, respectively, for Pz1 and Pz2, compared to 6.4 for Pz3 and 1.8 mmol/min for Pz4. The study identified potential applications for these porphyrazines in mimicking cytochrome P450 prosthetic groups for oxidation and hydroxylation reactions in the future. Full article
(This article belongs to the Section Colorants)
Show Figures

Figure 1

12 pages, 3117 KiB  
Article
Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties
by Marta Orts-Arroyo, Joel Monfort, Nicolás Moliner and José Martínez-Lillo
Molecules 2023, 28(20), 7213; https://doi.org/10.3390/molecules28207213 - 22 Oct 2023
Viewed by 1127
Abstract
We have prepared and characterized two Ru(III) compounds based on the 2,2′-biimidazole (H2biim) ligand, namely, a single complex of formula cis-[RuCl2(H2biim)2]Cl·4H2O (1) and a racemic mixture of formula {cis-[RuCl2(H [...] Read more.
We have prepared and characterized two Ru(III) compounds based on the 2,2′-biimidazole (H2biim) ligand, namely, a single complex of formula cis-[RuCl2(H2biim)2]Cl·4H2O (1) and a racemic mixture of formula {cis-[RuCl2(H2biim)2]Cl}2·4H2O (2), which contains 50% of Ru(III) complex 1. Both compounds crystallize in the monoclinic system with space groups C2 and P21 for 1 and 2, respectively. These complexes exhibit the metal ion bonded to four nitrogen atoms from two H2biim molecules and two chloride ions, which balance part of the positive charges in a distorted octahedral geometry. Significant differences are observed in their crystal packing, which leads to the observation of differences in their respective magnetic behaviors. Despite having imidazole rings in both compounds, π–π stacking interactions occur only in the crystal structure of 2, and the shortest intermolecular Ru···Ru separation in 2 is consequently shorter than that in 1. Variable-temperature dc magnetic susceptibility measurements performed on polycrystalline samples of 1 and 2 reveal different magnetic behaviors at low temperatures: while 1 behaves pretty much as a magnetically isolated mononuclear Ru(III) complex with S = 1/2, 2 exhibits the behavior of an antiferromagnetically coupled system with S = 0 and a maximum in the magnetic susceptibility curve at approximately 3.0 K. Full article
(This article belongs to the Special Issue Synthesis and Applications of Transition Metal Complexes)
Show Figures

Graphical abstract

14 pages, 3718 KiB  
Article
In Situ Synthesis of Doped Bio-Graphenes as Effective Metal-Free Catalysts in Removal of Antibiotics: Effect of Natural Precursor on Doping, Morphology, and Catalytic Activity
by Maryam Afsharpour, Lugain Radmanesh and Chuanxi Yang
Molecules 2023, 28(20), 7212; https://doi.org/10.3390/molecules28207212 - 22 Oct 2023
Viewed by 828
Abstract
Wastewater contaminated with antibiotics is a major environmental challenge. The oxidation process is one of the most common and effective ways to remove these pollutants. The use of metal-free, green, and inexpensive catalysts can be a good alternative to metal-containing photocatalysts in environmental [...] Read more.
Wastewater contaminated with antibiotics is a major environmental challenge. The oxidation process is one of the most common and effective ways to remove these pollutants. The use of metal-free, green, and inexpensive catalysts can be a good alternative to metal-containing photocatalysts in environmental applications. We developed here the green synthesis of bio-graphenes by using natural precursors (Xanthan, Chitosan, Boswellia, Tragacanth). The use of these precursors can act as templates to create 3D doped graphene structures with special morphology. Also, this method is a simple method for in situ synthesis of doped graphenes. The elements present in the natural biopolymers (N) and other elements in the natural composition (P, S) are easily placed in the graphene structure and improve the catalytic activity due to the structural defects, surface charges, increased electron transfers, and high absorption. The results have shown that the hollow cubic Chitosan-derived graphene has shown the best performance due to the doping of N, S, and P. The Boswellia-derived graphene shows the highest surface area but a lower catalytic performance, which indicates the more effective role of doping in the catalytic activity. In this mechanism, O2 dissolved in water absorbs onto the positively charged C adjacent to N dopants to create oxygenated radicals, which enables the degradation of antibiotic molecules. Light irradiation increases the amount of radicals and rate of antibiotic removal. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Degradation of Antibiotics in Water)
Show Figures

Graphical abstract

19 pages, 815 KiB  
Article
Chemical Composition, Antibacterial Properties, and Anti-Enzymatic Effects of Eucalyptus Essential Oils Sourced from Tunisia
by Sana Khedhri, Flavio Polito, Lucia Caputo, Vincenzo De Feo, Marwa Khamassi, Oumayama Kochti, Lamia Hamrouni, Yassine Mabrouk, Filomena Nazzaro, Florinda Fratianni and Ismail Amri
Molecules 2023, 28(20), 7211; https://doi.org/10.3390/molecules28207211 - 21 Oct 2023
Cited by 7 | Viewed by 1934
Abstract
This study was conducted to examine the chemical composition of the essential oils (EOs) from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities. The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using GC/MS. The main [...] Read more.
This study was conducted to examine the chemical composition of the essential oils (EOs) from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities. The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using GC/MS. The main class of compounds was constituted by oxygenated monoterpenes, particularly prominent in E. brevifolia (75.7%), E. lehmannii (72.8%), and E. woollsiana (67%). Anti-enzymatic activities against cholinesterases, α-amylase, and α-glucosidase were evaluated using spectrophotometric methods. Notably, the E. brevifolia, E. extensa, E. leptophylla, E. patellaris, and E. woollsiana EOs displayed potent acetylcholinesterase (AChE) inhibition (IC50: 0.25–0.60 mg/mL), with E. lehmannii exhibiting lower activity (IC50: 1.2 mg/mL). E. leptophylla and E. brevifolia showed remarkable α-amylase inhibition (IC50: 0.88 mg/mL), while E. brevifolia and E. leptophylla significantly hindered α-glucosidase (IC50 < 30 mg/mL), distinguishing them from other EOs with limited effects. Additionally, the EOs were assessed for their anti-biofilm properties of Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The E. extensa EO demonstrated the main antibiofilm effect against E. coli and L. monocytogenes with an inhibition > 80% at 10 mg/mL. These findings could represent a basis for possible further use of Eucalyptus EOs in the treatment of human microbial infections and/or as a coadjutant in preventing and treating Alzheimer’s disease and/or diabetes mellitus. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

13 pages, 4523 KiB  
Article
Preparation and Characterization of a Novel Morphosis of Dextran and Its Derivatization with Polyethyleneimine
by Zhiming Jiang, Kaifeng Sun, Hao Wu, Weiliang Dong, Jiangfeng Ma and Min Jiang
Molecules 2023, 28(20), 7210; https://doi.org/10.3390/molecules28207210 - 21 Oct 2023
Viewed by 811
Abstract
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and [...] Read more.
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties. Additionally, the potential for positively ionizing IS-dextran with polyethyleneimine was explored, with the ultimate objective of utilizing IS-dextran-PEI as a promising support for enzyme immobilization. As a result, IS-dextran was obtained by the process of slow evaporation with an average molecular weight of 6555 Da and a yield exceeding 60%. The calculated crystallinity of IS-dextran, which reaches 93.62%, is indicative of its irregular and dense structure, thereby accounting for its water insolubility. Furthermore, positive charge modification of IS-dextran, coupled with the incorporation of epichlorohydrin, resulted in all zeta potentials of IS-dextran-PEIs exceeding 30 mV, making it a promising supporting factor for enzyme immobilization. Full article
(This article belongs to the Special Issue Activity and Structural Characteristics of Polysaccharides)
Show Figures

Figure 1

29 pages, 1600 KiB  
Review
Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes
by Arman Arabshomali, Shadi Bazzazzadehgan, Fakhri Mahdi and Zia Shariat-Madar
Molecules 2023, 28(20), 7209; https://doi.org/10.3390/molecules28207209 - 21 Oct 2023
Cited by 3 | Viewed by 1989
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, [...] Read more.
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials. Full article
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling
by Ida Boček Pavlinac, Mirna Dragić, Leentje Persoons, Dirk Daelemans and Marijana Hranjec
Molecules 2023, 28(20), 7208; https://doi.org/10.3390/molecules28207208 - 21 Oct 2023
Viewed by 1020
Abstract
A series of novel 2,6-diphenyl substituted imidazo[4,5-b]pyridines was designed and synthesized using optimized Suzuki cross coupling to evaluate their biological activity in vitro. The conditions of the Suzuki coupling were evaluated and optimized using a model reaction. To study the [...] Read more.
A series of novel 2,6-diphenyl substituted imidazo[4,5-b]pyridines was designed and synthesized using optimized Suzuki cross coupling to evaluate their biological activity in vitro. The conditions of the Suzuki coupling were evaluated and optimized using a model reaction. To study the influence of the substituents on the biological activity, we prepared N-unsubstituted and N-methyl substituted imidazo[4,5-b]pyridines with different substituents at the para position on the phenyl ring placed at position 6 on the heterocyclic scaffold. Antiproliferative activity was determined on diverse human cancer cell lines, and the selectivity of compounds with promising antiproliferative activity was determined on normal peripheral blood mononuclear cells (PBMC). Pronounced antiproliferative activity was observed for p-hydroxy substituted derivatives 13 and 19, both displaying strong activity against most of the tested cell lines (IC50 1.45–4.25 μM). The unsubstituted N-methyl derivative 19 proved to be the most active derivative. There was a dose-dependent accumulation of G2/M arrested cells in several cancer cell lines after exposure to compound 19, implying a cell cycle-phase-specific mechanism of action. Additionally, the novel series of derivatives was evaluated for antiviral activity against a broad panel of viruses, yet the majority of tested compounds did not show antiviral activity. Full article
Show Figures

Figure 1

25 pages, 4868 KiB  
Article
Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves
by Antonietta Maoloni, Federica Cardinali, Vesna Milanović, Anna Reale, Floriana Boscaino, Tiziana Di Renzo, Ilario Ferrocino, Giorgia Rampanti, Cristiana Garofalo, Andrea Osimani and Lucia Aquilanti
Molecules 2023, 28(20), 7207; https://doi.org/10.3390/molecules28207207 - 21 Oct 2023
Viewed by 1016
Abstract
Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel [...] Read more.
Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel spices produced using room-temperature drying, oven drying, microwave drying, and freeze drying. All the assayed methods were able to remove moisture up until water activity values below 0.6 were reached; however, except for microwave drying, none of the assayed methods were effective in reducing the loads of contaminating microorganisms. The metataxonomic analysis highlighted the presence of phytopathogens and even human pathogens, including members of the genera Bacillus, Pseudomonas, Alternaria, and Cryptococcus. When compared to fresh leaves, dried leaves showed increased L* (lightness) and c* (chroma, saturation) values and reduced hue angle. Dried leaves were also characterized by decreased levels of terpene hydrocarbons and increased levels of aldehydes, alcohols, and esters. For the sensory test, the microwave-dried samples obtained the highest appreciation by the trained panel. Overall, the collected data indicated microwave drying as the best option for producing sea fennel spices with low microbial loads, brilliant green color, and high-quality sensory traits. Full article
Show Figures

Figure 1

24 pages, 5935 KiB  
Article
Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of (R)- and (S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation
by Lukas Corbinian Harps, Annika Lisa Jendretzki, Clemens Alexander Wolf, Ulrich Girreser, Gerhard Wolber and Maria Kristina Parr
Molecules 2023, 28(20), 7206; https://doi.org/10.3390/molecules28207206 - 21 Oct 2023
Viewed by 959
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4′-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes [...] Read more.
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4′-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings. Full article
(This article belongs to the Special Issue Advances in Chiral Analysis)
Show Figures

Figure 1

Previous Issue
Back to TopTop