Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants
Abstract
:1. Introduction
2. Results
2.1. Biomaterials Characterization
2.2. Adsorption Kinetics
3. Discussion
4. Materials and Methods
4.1. BC Production
4.2. Biosurfactant Production
4.3. Incorporation
4.4. Adsorption Kinetics
4.5. Evaluation of Acetaminophen with a UV-Visible Spectrophotometer
4.6. Evaluation of Ethinylestradiol with High Performance Liquid Chromatography
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llamas-Dios, M.I.; Vadillo, I.; Jiménez-Gavilán, P.; Candela, L.; Corada-Fernández, C. Assessment of a wide array of contaminants of emerging concern in a Mediterranean water basin (Guadalhorce river, Spain): Motivations for an improvement of water management and pollutants surveillance. Sci. Total Environ. 2021, 788, 147822. [Google Scholar] [CrossRef] [PubMed]
- Weerasooriya, R.R.; Liyanage, L.P.K.; Rathnappriya, R.H.K.; Bandara, W.B.M.A.C.; Perera, T.A.N.T.; Gunarathna, M.H.J.P.; Jayasinghe, G.Y. Industrial water conservation by water footprint and sustainable development goals: A review. Environ. Dev. Sustain. 2021, 23, 12661–12709. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Wang, X.; Dionysiou, D.D. Treatment of Contaminants of Emerging Concern and Pathogens Using Electro-photocatalytic Processes: A Review. Curr. Opin. Green Sustain. Chem. 2021, 32, 100527. [Google Scholar] [CrossRef]
- Cantoni, B.; Penserini, L.; Vries, D.; Dingemans, M.M.L.; Bokkers, B.G.H.; Turolla, A.; Smeets, P.W.M.H.; Antonelli, M. Development of a quantitative chemical risk assessment (QCRA) procedure for contaminants of emerging concern in drinking water supply. Water Res. 2021, 194, 116911. [Google Scholar] [CrossRef] [PubMed]
- de Aquino, S.F.; Brandt, E.M.F.; Bottrel, S.E.C.; Gomes, F.B.R.; Silva, S.Q. Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. Int. J. Environ. Res. Public Health 2021, 18, 11765. [Google Scholar] [CrossRef]
- Dzieweczynski, T.L.; Buckman, C.M. Acute exposure to 17α-ethinylestradiol disrupts audience effects on male-male interactions in Siamese fighting fish, Betta splendens. Horm. Behav. 2013, 63, 497–502. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef]
- Moore, R.A.; Moore, N. Paracetamol and pain: The kiloton problem. Eur. J. Hosp. Pharm. 2016, 23, 187–188. [Google Scholar] [CrossRef]
- Jaeschke, H.; Murray, F.J.; Monnot, A.D.; Jacobson-Kram, D.; Cohen, S.M.; Hardisty, J.F.; Atillasoy, E.; Hermanowski-Vosatka, A.; Kuffner, E.; Wikoff, D.; et al. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul. Toxicol. Pharmacol. 2021, 120, 104859. [Google Scholar] [CrossRef]
- McGill, M.R.; Hinson, J.A. The development and hepatotoxicity of acetaminophen: Reviewing over a century of progress. Drug Metab. Rev. 2020, 52, 472–500. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, K.; Jung, J.; Park, S.; Kim, P.G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jiang, W.; Zhang, W.; Lin, D.; Yang, K. Influence of functional groups on desorption of organic compounds from carbon nanotubes into water: Insight into desorption hysteresis. Environ. Sci. Technol. 2013, 47, 8373–8382. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Park, S.K.; Cho, S.Y.; Kim, H.B.; Kang, Y.; Kim, S.D.; Kim, S.J. Adsorption of heavy metals by brewery biomass. Korean J. Chem. Eng. 2005, 22, 91–98. [Google Scholar] [CrossRef]
- Alluri, H.K.; Ronda, S.R.; Settalluri, V.S.; Singh, J.; Bondili, S.V.; Venkateshwar, P. Biosorption: An eco-friendly alternative for heavy metal removal. Afr. J. Biotechnol. 2007, 6, 2924–2931. [Google Scholar]
- Hazaimeh, M.D.; Ahmed, E.S. Bioremediation perspectives and progress in petroleum pollution in the marine environment: A review. Environ. Sci. Pollut. Res. 2012, 28, 54238–54259. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Emtiazi, G.; Cappello, S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar. Pollut. Bull. 2012, 64, 7–12. [Google Scholar] [CrossRef]
- Nuñal, S.N. Bioremediation of oil-contaminated seawater and sediment by an oil-degrading bacterial consortium. Biocontrol Sci. 2014, 19, 11–22. [Google Scholar]
- Zhang, R.; Somasundaran, P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 2006, 123–126, 213–229. [Google Scholar] [CrossRef]
- Qiao, X.; Miller, R.; Schneck, E.; Sun, K. Influence of surfactant charge and concentration on the surface and foaming properties of biocompatible silk fibroin. Mater. Chem. Phys. 2022, 281, 125920. [Google Scholar] [CrossRef]
- Chu, Y.; Khan, M.A.; Zhu, S.; Xia, M.; Lei, W.; Wang, F.; Xu, Y. Microstructural modification of organo-montmorillonite with Gemini surfactant containing four ammonium cations: Molecular dynamics (MD) simulations and adsorption capacity for copper ions. J. Chem. Technol. Biotechnol. 2019, 94, 3585–3594. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Cameotra, S.S.; Makkar, R.S.; Kaur, J.; Mehta, S.K. Synthesis of biosurfactants and their advantages to microorganisms and mankind. Adv. Exp. Med. Biol. 2010, 672, 261–280. [Google Scholar]
- Dos Santos, C.R.; Lebron, Y.A.R.; Moreira, V.R.; Koch, K.; Amaral, M.C.S. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal. Bioresour. Technol. 2022, 343, 126150. [Google Scholar] [CrossRef] [PubMed]
- Vedaraman, N.; Venkatesh, N. Production of surfactin by bacillus subtilis mtcc 2423 from waste frying oils. Braz. J. Chem. Eng. 2011, 28, 175–180. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol. 2008, 104, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Soto, M.; Pagés, P.; Lacorte, T.; Briceño, K.; Carrasco, F. Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites. Compos. Sci. Technol. 2007, 67, 1974–1985. [Google Scholar] [CrossRef]
- Li, Z.; Fredericks, P.M.; Rintoul, R.; Ward, C.R. Application of attenuated total reflectance micro-Fourier transform infrared (ATR-FTIR) spectroscopy to the study of coal macerals: Examples from the Bowen Basin, Australia. Int. J. Coal Geol. 2007, 70, 87–94. [Google Scholar] [CrossRef]
- Çetiner, S.; Karakas, H.; Ciobanu, R.C.; Olariu, M.A.; Kaya, N.U.; Unsal, C.; Kalaoglu, F.; Sarac, A.S. Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIR–ATR and dielectric spectroscopic characterization of composite thin films. Synth. Met. 2010, 160, 1189–1196. [Google Scholar] [CrossRef]
- Schartner, J.; Güldenhaupt, J.; Mei, B.T.; Rögner, M.; Muhler, M.; Gerwert, K.; Kötting, C. Universal method for protein immobilization on chemically functionalized germanium investigated by ATR-FTIR difference spectroscopy. J. Am. Chem. Soc. 2013, 135, 4079–4087. [Google Scholar] [CrossRef]
- Asensio, R.C.; Moya, M.S.A.; de la Roja, J.M.; Gómez, M. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2081–2096. [Google Scholar] [CrossRef]
- Jozala, A.F.; Pértile, R.A.; dos Santos, C.A.; de Carvalho Santos-Ebinuma, V.; Seckler, M.M.; Gama, F.M.; Pessoa, A., Jr. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2015, 99, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Popa, L.; Ghica, M.V.; Tudoroiu, E.E.; Ionescu, D.G.; Dinu-Pîrvu, C.E. Bacterial Cellulose-A Remarkable Polymer as a Source for Biomaterials Tailoring. Materials 2022, 15, 1054. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.C. Modificação In Situ e Ex Situ da Celulose Bacteriana: Efeito da Composição do Meio de Cultura No Seu Rendimento e Propriedades. Master’s Thesis, UMinho, Braga, Portugual, 2013. [Google Scholar]
- Ayoub, S.S. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature 2021, 8, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Van Hamme, J.D.; Ward, O.P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv. 2007, 25, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Pacwa-Płociniczak, M.; Plaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.P.; Hu, Y.Y.; Lin, H.; Ou, X.L. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants. J. Hazard. Mater. 2018, 344, 707–715. [Google Scholar] [CrossRef]
- Żółtowska-Aksamitowska, S.; Bartczak, P.; Zembrzuska, J.; Jesionowski, T. Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. Sci. Total Environ. 2018, 612, 1223–1233. [Google Scholar] [CrossRef]
- Honorio, J.F.; Veit, M.T.; Suzaki, P.Y.R.; Coldebella, P.F.; Rigobello, E.S.; Tavares, C.R.G. Adsorption of naturals hormones estrone, 17β-estradiol, and estriol by rice husk: Monocomponent and multicomponent kinetics and equilibrium. Environ. Technol. 2020, 41, 1075–1092. [Google Scholar] [CrossRef]
- Silva, L.S.; Carvalho, J.; Bezerra, R.D.S.; Silva, M.S.; Ferreira, F.J.L.; Osajima, J.A.; da Silva Filho, E.C. Potential of Cellulose Functionalized with Carboxylic Acid as Biosorbent for the Removal of Cationic Dyes in Aqueous Solution. Molecules 2018, 23, 743. [Google Scholar] [CrossRef]
- Debs, K.B.; da Silva, H.D.T.; de Lourdes Leite de Moraes, M.; Carrilho, E.N.V.M.; Lemos, S.G.; Labuto, G. Biosorption of 17α-ethinylestradiol by yeast biomass from ethanol industry in the presence of estrone. Environ. Sci. Pollut. Res. Int. 2019, 26, 28419–28428. [Google Scholar] [CrossRef]
- Ponte Rocha, M.V.; Barreto, R.V.G.; Melo, V.M.M.; Gonçalves, L.R.B. Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl. Biochem. Biotechnol. 2009, 155, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.B.; Gudiña, E.J.; Costa, R.; Vitorino, R.; Teixeira, J.A.; Coutinho, J.A.P.; Rodrigues, L.R. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 2013, 111, 259–268. [Google Scholar] [CrossRef]
- Shihana, F.; Dissanayake, D.; Dargan, P.; Dawson, A. A modified low-cost colorimetric method for paracetamol (acetaminophen) measurement in plasma. Clin. Toxicol. 2010, 48, 42–46. [Google Scholar] [CrossRef]
Materials | Contaminant | Experimental Effects | References |
---|---|---|---|
Rhamnolipidic biosurfactants | 17α-ethinylestradiol | The concentration of rhamnolipids, a type of biosurfactant, can influence the mobility and dissociation of the contaminant. | Guo et al. (2019) [37] |
Chitin and lignin | Ibuprofen and acetaminophen | The sorption capacity of chitin/lignin increases with the amount of solvent | Żółtowska-Aksamitowska et al. (2018) [38] |
Rice husk biomass | 17 β-estradiol | The biosorbent displayed typical functional groups of cellulose, hemicellulose, lignin, and proteins, with an amorphous, fibrous, and porous surface | Ferandin Honorio et al. (2018) [39] |
Phthalic anhydride-modified cellulose | Crystal Violet and Methylene Blue” dyes | Phthalic anhydride-modified cellulose promotes hydrogen bonding and electrostatic interactions with dyes | Silva et al. (2018) [40] |
East biomass | 17α-ethinylestradiol | Yeast biosorption in the ethanol industry, mentioning the hypothesis that sorption may increase due to electrostatic effects. | Debs et al. (2019) [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castanho, N.R.C.M.; de Marco, N.; Caetano, É.L.A.; Alves, P.L.M.; Pickler, T.B.; Ibanez, N.L.d.A.; Jozala, A.F.; Grotto, D. Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants. Molecules 2024, 29, 448. https://doi.org/10.3390/molecules29020448
Castanho NRCM, de Marco N, Caetano ÉLA, Alves PLM, Pickler TB, Ibanez NLdA, Jozala AF, Grotto D. Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants. Molecules. 2024; 29(2):448. https://doi.org/10.3390/molecules29020448
Chicago/Turabian StyleCastanho, Nathália Roberta Cardoso Mendes, Nathane de Marco, Érika Leão Ajala Caetano, Patrícia Lius Melo Alves, Thaisa Borim Pickler, Natasha Lien de Almeida Ibanez, Angela Faustino Jozala, and Denise Grotto. 2024. "Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants" Molecules 29, no. 2: 448. https://doi.org/10.3390/molecules29020448