Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared Spectrum
2.2. UV-Vis Spectrum
2.3. Thermogravimetric Analysis
2.4. Structural Description of Ca(II) Complex
2.5. DFT Computation
2.6. Hirshfeld Surface Analysis of Ca(II) Complex
2.7. Photocatalytic CO2 Reduction Activity of Ca(II) Complex
3. Experimental Section
3.1. Materials and Measurements
3.2. Synthesis of Ca(II) Complex
3.3. Crystal Structure Determination
3.4. Photocatalytic CO2 Reduction Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.J.; Chen, T.Q.; Xue, Y.H.; Fan, J.C.; Shen, S.L.; Hossain, M.S.A.; Amin, M.A.; Pan, L.K.; Xu, X.T.; Yamauchi, Y. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord. Chem. Rev. 2022, 459, 214440. [Google Scholar] [CrossRef]
- Li, M.D.; Wang, Z.M.; Qi, J.; Yu, R.B. Progress in the construction of metal oxide heterojunctions and their application in photocatalytic CO2 reduction. Chem. J. Chin. Univ. 2023, 44, 20230196. [Google Scholar] [CrossRef]
- Ross, M.B.; De Luna, P.; Li, Y.; Dinh, C.T.; Kim, D.; Yang, P.; Sargent, E.H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658. [Google Scholar] [CrossRef]
- Gao, X.Q.; Cao, L.L.; Chang, Y.; Yuan, Z.Y.; Zhang, S.X.; Liu, S.J.; Zhang, M.T.; Fan, H.; Jiang, Z.Y. Improving the CO2 Hydrogenation Activity of Photocatalysts via the Synergy between Surface Frustrated Lewis Pairs and the CuPt Alloy. ACS Sustain. Chem. Eng. 2023, 11, 5597–5607. [Google Scholar] [CrossRef]
- Yin, H.B.; Li, J.H. New insight into photocatalytic CO2 conversion with nearly 100% CO selectivity by CuO-Pd/HxMoO3-y hybrids. Appl. Catal. B Environ. 2023, 320, 121927. [Google Scholar] [CrossRef]
- Heng, Q.Q.; Ma, Y.B.; Wang, X.; Wu, Y.F.; Li, Y.Z.; Chen, W. Role of Ag, Pd cocatalysts on layered SrBi2Ta2O9 in enhancing the activity and selectivity of photocatalytic CO2 reaction. Appl. Surf. Sci. 2023, 632, 1257564. [Google Scholar] [CrossRef]
- Shang, X.F.; Li, G.J.; Wang, R.N.; Xie, T.; Ding, J.; Zhong, Q. Precision loading of Pd on Cu species for highly selective CO2 photoreduction to methanol. Chem. Eng. J. 2023, 456, 140805. [Google Scholar] [CrossRef]
- Butburee, T.; Sun, Z.; Centeno, A.; Xie, F.; Zhao, Z.; Wu, D.; Peerakiatkhajohn, P.; Thaweesak, S.; Wang, H.; Wang, L. Improved CO2 photocatalytic reduction using a novel 3-component heterojunction. Nano Energy 2019, 62, 426–433. [Google Scholar] [CrossRef]
- Wang, L.; Wan, J.; Zhao, Y.; Yang, N.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241. [Google Scholar] [CrossRef]
- Jiang, M.P.; Huang, K.K.; Liu, J.H.; Wang, D.; Wang, Y.; Wang, X.; Li, Z.D.; Wang, X.Y.; Geng, Z.B.; Hou, X.Y.; et al. Magnetic-field-regulated TiO2 {100} facets: A strategy for C-C coupling in CO2 photocatalytic conversion. Chem 2020, 6, 2335–2346. [Google Scholar] [CrossRef]
- Qi, M.Y.; Lin, Q.; Tang, Z.R.; Xu, Y.J. Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation. Appl. Catal. B Environ. 2022, 307, 121158. [Google Scholar] [CrossRef]
- Yang, M.; Wang, P.; Li, Y.; Tang, S.; Lin, X.; Zhang, H.; Zhu, Z.; Chen, F. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl. Catal. B Environ. 2022, 306, 121065. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, S.; Gao, C.; Qi, J.; Yin, H.; Wei, D.; Mideksa, M.F.; Wang, X.; Gao, Y.; Tang, Z.; et al. Metallic cobalt–carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762. [Google Scholar] [CrossRef]
- Xia, W.; Ren, Y.Y.; Liu, J.; Deng, B.Y.; Wang, F. Non-synergistic photocatalysis of CO2-to-CO conversion by a binuclear complex of rigidly linking two cobalt catalytic centers. J. Photochem. Photobiol. A Chem. 2022, 426, 113754. [Google Scholar] [CrossRef]
- Jing, H.W.; Zhao, L.; Song, G.Y.; Li, J.Y.; Wang, Z.Y.; Han, Y.; Wang, Z.X. Application of a mixed-ligand metal-organic framework in photocatalytic CO2 reduction, antibacterial activity and dye adsorption. Molecules 2023, 28, 5204. [Google Scholar] [CrossRef]
- Xin, X.; Ma, N.; Hu, C.Y.; Liang, Q.; Bian, Z.Y. Abundant manganese complex-anchored BiOI hybrid photocatalyst for visible light-driven CO2 reduction. NANO 2019, 14, 111–119. [Google Scholar] [CrossRef]
- Yasuomi, Y.; Takayuki, O.; Jun, I.; Shota, F.; Chinatsu, T.; Tomoya, U.; Taro, T. Photocatalytic CO2 reduction using various heteroleptic diimine-diphosphine Cu(I) complexes as photosensitizers. Front. Chem. 2019, 7, 288. [Google Scholar] [CrossRef]
- Fu, Z.C.; Mi, C.; Sun, Y.; Yang, Z.; Xu, Q.Q.; Fu, W.F. An unexpected iron (II)-based homogeneous catalytic system for highly efficient CO2-to-CO conversion under visible-light irradiation. Molecules 2019, 24, 1878. [Google Scholar] [CrossRef]
- Sakakibara, N.; Shizuno, M.; Kanazawa, T.; Kato, K.; Yamakata, A.; Nozawa, S.; Ito, T.; Terashima, K.; Maeda, K.; Tamaki, Y.; et al. Surface-specific modification of graphitic carbon nitride by plasma for enhanced durability and selectivity of photocatalytic CO2 reduction with a supramolecular photocatalyst. ACS Appl. Mater. Interfaces 2023, 15, 13205–13218. [Google Scholar] [CrossRef]
- Tai, X.S.; Wang, Y.F.; Wang, L.H.; Yan, X.H. Synthesis, structural characterization, hirschfeld surface analysis and photocatalytic CO2 reduction of Yb(III) complex with 4-aacetylphenoxyacetic acid and 1,10-phenanthroline ligands. Bull. Chem. React. Eng. Catal. 2023, 18, 285–293. [Google Scholar] [CrossRef]
- Wang, L.H.; Tai, X.S. Synthesis, structural characterization, hirschfeld surface analysis and photocatalytic CO2 reduction activity of a new dinuclear Gd(III) complex with 6-phenylpyridine-2-carboxylic acid and 1,10-phenanthroline ligands. Molecules 2023, 28, 7595. [Google Scholar] [CrossRef]
- Mikuriya, M.; Tsuchimoto, N.; Koyama, Y.; Mitsuhashi, R.; Tsuboi, M. Crystal structure of a hydrolyzed product of the cobalt(III) complex with 1-(3,5-dichlorosalicylideneamino)-3-amino-2-propanol. X-ray Struct. Anal. Online 2022, 38, 9–11. [Google Scholar] [CrossRef]
- Mikuriya, M.; Koyama, Y.; Yoshioka, D.; Mitsuhashi, R. Dinuclear manganese(III) complex with a Schiff-base having a di-μ-acetato-μ-alkoxido-bridged core. X-ray Struct. Anal. Online 2020, 36, 7–9. [Google Scholar] [CrossRef]
- Mikuriya, M.; Naka, Y.; Yoshioka, D.; Handa, M. Synthesis and crystal structures of dinuclear cobalt(III) complexes with 1,3-bis(5-nitrosalicylideneamino)-2-propanol and 1,3-bis(3-nitrosalicylideneamino)-2-propanol. X-ray Struct. Anal. Online 2016, 32, 55–58. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Calmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–593. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer:a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
Bond | d | Angle | (°) |
---|---|---|---|
Ca1-O8 | 2.096(4) | O9-Ca1-O8 | 78.91(14) |
Ca1-O9 | 2.041(4) | O9-Ca1-O11 | 89.54(17) |
Ca1-O11 | 2.058(4) | O11-Ca1-O8 | 88.37(16) |
Ca1-O12 | 2.015(4) | O12-Ca1-O8 | 87.77(16) |
Ca1-N3 | 2.028(5) | O12-Ca1-O9 | 162.15(17) |
Ca1-N4 | 2.005(4) | O12-Ca1-O11 | 78.16(15) |
Ca2-O1 | 2.089(4) | O12-Ca1-N3 | 100.75(18) |
Ca2-O2 | 2.036(4) | N3-Ca1-O8 | 168.99(16) |
Ca2-O4 | 2.072(4) | N3-Ca1-O9 | 91.25(17) |
Ca2-O6 | 2.031(4) | O11-Ca1-N3 | 86.61(17) |
Ca2-N1 | 2.013(4) | N4-Ca1-O8 | 87.43(16) |
Ca2-N2 | 2.024(5) | N4-Ca1-O9 | 97.80(17) |
N4-Ca1-O11 | 170.68(16) | ||
O12-Ca1-N4 | 93.37(17) | ||
N3-Ca1-N4 | 98.90(17) | ||
O1-Ca2-O2 | 78.60(15) | ||
O2-Ca2-O4 | 90.64(16) | ||
O4-Ca2-O1 | 86.44(16) | ||
O6-Ca2-O1 | 88.30(17) | ||
O6-Ca2-O2 | 163.44(17) | ||
O6-Ca2-O4 | 78.35(16) | ||
O1-Ca2-N1 | 89.77(16) | ||
N1-Ca2-O2 | 97.13(18) | ||
N1-Ca2-O4 | 170.52(18) | ||
O6-Ca2-N1 | 92.87(19) | ||
N1-Ca2-N2 | 98.36(18) | ||
N2-Ca2-O1 | 169.29(18) | ||
N2-Ca2-O2 | 93.40(18) | ||
N2-Ca2-O4 | 86.54(18) | ||
N2-Ca2-O6 | 98.18(19) |
Donor-H | Acceptor | D-H (Å) | H…A (Å) | D…A (Å) | D-H…A (°) |
---|---|---|---|---|---|
O7-H7 | O10 | 0.84 | 1.91 | 2.736(6) | 166 |
O14-H14 | O13 #1 | 0.84 | 2.00 | 2.814(7) | 162 |
Complex | Yield of CO/μmol/g | CO Selectivity/% |
---|---|---|
Ca(II) complex | 47.9 | 99.3 |
Gd(III) complex [21] | 22.1 | 78.5 |
Yb(III) complex [20] | 60.3 | 100 |
Empirical formula | C21H20CaN2O7 |
Formula weight | 479.49 |
Temperature/K | 294(2) |
Crystal system | monoclinic |
Space group | P121/n1 |
a/Å | 9.4865(2) |
b/Å | 44.9422(8) |
c/Å | 11.2833(3) |
α/° | 90 |
β/° | 114.772(3) |
γ/° | 90 |
Volume/Å3 | 4367.91(19) |
Z | 8 |
ρcalc, mg/mm3 | 1.458 |
μ/mm−1 | 2.955 |
S | 1.070 |
F(000) | 2008 |
Index ranges | −11 ≤ h ≤ 11, −53 ≤ k ≤ 53, −13 ≤ l ≤ 9 |
Reflections collected | 37,707 |
Independent reflections | 7580 [R(int) = 0.0677] |
Data/restraints/parameters | 7580/0/561 |
Goodness-of-fit on F2 | 1.070 |
Refinement method | Full-matrix least-squares on F2 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0929, wR2 = 0.2590 |
Final R indexes [all data] | R1 = 0.1016, wR2 = 0.2692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, X.; Yan, X.; Wang, L. Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand. Molecules 2024, 29, 1047. https://doi.org/10.3390/molecules29051047
Tai X, Yan X, Wang L. Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand. Molecules. 2024; 29(5):1047. https://doi.org/10.3390/molecules29051047
Chicago/Turabian StyleTai, Xishi, Xihai Yan, and Lihua Wang. 2024. "Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand" Molecules 29, no. 5: 1047. https://doi.org/10.3390/molecules29051047