Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication, Glass Formation and Corrosion Resistance of the Cu–Hf–Ti–(Mo, Nb, Ta) BMGs
2.1.1. Effects of Additional Elements Mo, Nb and Ta on the Glass Formation and Corrosion Resistance
2.1.2. Fabrication, GFA and Corrosion Resistance of Cu–Hf–Ti–Nb BMGs
2.1.2.1. Fabrication and Thermal Properties of Cu–Hf–Ti–Nb BMGs
2.1.2.2. Corrosion Behavior of Cu–Hf–Ti–Nb Bulk Glassy Alloys
2.1.2.3. XPS Analysis of Surface Film
2.2. Fabrication, Thermal Properties and Corrosion Resistance of Cu–Hf–Ti–Ni–Nb BMGs
2.2.1. The Effects of the Ni and Nb Additions on GFA and Thermal Stability
2.2.2. The Effects of the Ni and Nb Additions on Corrosion Resistance
2.2.3. Surface Characteristics after Immersion
2.3. The Electrochemical and XPS Studies of the Cu–Zr–Ag–Al–(Nb) BMGs
2.3.1. Electrochemical Properties and Surface Characteristics of Cu–Zr–Ag–Al BMGs
2.3.1.1. Corrosion Rates and Electrochemical Properties of the Alloys
2.3.1.2. Chemical Characteristics of the Passive Surface Film
2.3.2. The Enhanced Corrosion Resistance of Cu–Zr–Ag–Al–Nb BMGs
3. Conclusions
Acknowledgments
References
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 2000, 48, 279–306. [Google Scholar]
- Johnson, WL. Bulk glass-forming metallic alloys: Science and technology. MRS Bull 1999, 24, 42–56. [Google Scholar]
- Inoue, A; Kato, A; Zhang, T; Kim, SG; Masumoto, T. Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans. JIM 1991, 32, 609–616. [Google Scholar]
- Peker, A; Johnson, WL. A highly processable metallic glass—Zr41.2Ti13.8Cu12.5Ni10Be22.5 of outstanding interest. Appl. Phys. Lett 1993, 63, 2342–2344. [Google Scholar]
- Inoue, A; Nishiyama, N; Matsuda, T. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Mater. Trans. JIM 1996, 37, 181–184. [Google Scholar]
- Inoue, A; Gook, JS. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans. JIM 1995, 36, 1180–1183. [Google Scholar]
- Itoi, T; Inoue, A. Thermal stability and soft magnetic properties of Co–Fe–M–B (M=Nb, Zr) amorphous alloys with large supercooled liquid region. Mater. Trans. JIM 2000, 41, 1256–1262. [Google Scholar]
- Inoue, A; Nishiyama, N; Amiya, K; Zhang, T; Masumoto, T. Ti-based amorphous alloys with a wide supercooled liquid region. Mater. Lett 1994, 19, 131–135. [Google Scholar]
- Wang, XM; Yoshii, I; Inoue, A. Bulk amorphous Co–Ni-based alloys with a large supercooled liquid region. Mater. Trans. JIM 2000, 41, 539–542. [Google Scholar]
- Inoue, A; Zhang, W; Zhang, T; Kurosaka, K. High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater 2001, 49, 2645–2652. [Google Scholar]
- Inoue, A; Zhang, W. Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans 2002, 43, 2921–2925. [Google Scholar]
- Das, J; Tang, MB; Kim, KB; Theissmann, R; Baier, F; Wang, WH; Eckert, J. “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 2005, 94, 205501:1–205501:4. [Google Scholar]
- Dai, CL; Guo, H; Shen, Y; Li, Y; Ma, E; Xu, J. A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater 2006, 54, 1403–1408. [Google Scholar]
- Zhang, QS; Zhang, W; Inoue, A. New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scr. Mater 2006, 55, 711–713. [Google Scholar]
- Zhang, QS; Zhang, W; Inoue, A. Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans 2007, 48, 629–631. [Google Scholar]
- Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 1997.
- Qin, CL; Asami, K; Zhang, T; Zhang, W; Inoue, A. Effects of additional elements on the glass formation and corrosion behavior of bulk glassy Cu–Hf–Ti alloys. Mater. Trans 2003, 44, 1042–1045. [Google Scholar]
- Qin, CL; Zhang, W; Asami, K; Kimura, H; Inoue, A. Cu–Hf–Ti–(Mo, Nb, Ta) bulk glassy alloys with high corrosion resistance and high strength. J Metast Nanocryst Mater 2005, 24–25, 355–358. [Google Scholar]
- Qin, CL; Zhang, W; Asami, K; Ohtsu, N; Inoue, A. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu–Hf–Ti–Nb alloys. Acta Mater 2005, 53, 3903–3911. [Google Scholar]
- Naka, M; Hashimoto, K; Masumoto, T. Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys. J. Non-Cryst. Solids 1978, 30, 29. [Google Scholar]
- Qin, CL; Zhang, W; Asami, K; Ohtsu, N; Inoue, A. Thermal stability, corrosion resistance, and surface analysis of Cu–Hf–Ti–Ni–Nb bulk metallic glasses. J. Mater. Res 2009, 24, 316–323. [Google Scholar]
- Qin, CL; Zhang, W; Asami, K; Kimura, H; Inoue, A. Influence of alloying elements Ni and Nb on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. J. Mater. Res 2007, 22, 1710–1717. [Google Scholar]
- Qin, CL; Asami, K; Zhang, T; Zhang, W; Inoue, A. Corrosion behavior of Cu–Zr–Ti–Nb bulk glassy alloys. Mater. Trans 2003, 44, 749–753. [Google Scholar]
- Hirota, E; Yoshioka, H; Habazaki, H; Kawashima, A; Asami, K; Hashimoto, K. The corrosion behavior of sputter-deposited amorphous copper-niobium alloys in 12 N HCl. Corros. Sci 1991, 32, 1213–1226. [Google Scholar]
- Lee, HJ; Akiyama, E; Habazaki, H; Kawashima, A; Asami, K; Hashimoto, K. The roles of tantalum and phosphorus in the corrosion behavior of Ni–Ta–P alloys in 12 M HCl. Corros. Sci 1997, 39, 321–332. [Google Scholar]
- Katagiri, H; Meguro, S; Yamasaki, M; Habazaki, H; Sato, T; Kawashima, A; Asami, K; Hashimoto, K. Synergistic effect of three corrosion-resistant elements on corrosion resistance in concentrated hydrochloric acid. Corros. Sci 2001, 43, 171–182. [Google Scholar]
- Qin, CL; Zhang, W; Zhang, QS; Asami, K; Inoue, A. Chemical characteristics of the passive surface films formed on newly developed Cu–Zr–Ag–Al bulk metallic glasses. J. Mater. Res 2008, 23, 2091–2098. [Google Scholar]
- Qin, CL; Zhang, W; Zhang, QS; Asami, K; Inoue, A. Electrochemical properties and surface analysis of Cu–Zr–Ag–Al–Nb bulk metallic glasses. J. Alloys Compd 2009, 483, 317–320. [Google Scholar]
- Nie, XP; Xu, XM; Jiang, QK; Chen, LY; Xu, Y; Fang, YZ; Xie, GQ; Luo, MF; Wu, FM; Wang, XD. Effect of microalloying of Nb on corrosion resistance and thermal stability of ZrCu-based bulk metallic glasses. J. Non-Cryst. Solids 2009, 355, 203–207. [Google Scholar]
- Nie, XP; Yang, XH; Jiang, JZ. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. J. Alloys Compd 2009, 481, 498–502. [Google Scholar]
Alloys | Corrosion rate (mm/year) | ||
---|---|---|---|
1 N HCl | 3 mass% NaCl | 1 N H2SO4 + 0.001 N NaCl | |
Cu60Hf25Ti15 | 0.340 | 0.100 | 0.011 |
(Cu06Hf0.25Ti0.15)98Mo2 | 0.174 | 4.2 × 10−3 | <1 × 10−3 |
(Cu06Hf0.25Ti0.15)98Nb2 | 0.165 | 3.2 × 10−3 | <1 × 10−3 |
(Cu06Hf0.25Ti0.15)98Ta2 | 0.166 | 3.3 × 10−3 | <1 × 10−3 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Qin, C.; Zhao, W.; Inoue, A. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses. Int. J. Mol. Sci. 2011, 12, 2275-2293. https://doi.org/10.3390/ijms12042275
Qin C, Zhao W, Inoue A. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses. International Journal of Molecular Sciences. 2011; 12(4):2275-2293. https://doi.org/10.3390/ijms12042275
Chicago/Turabian StyleQin, Chunling, Weimin Zhao, and Akihisa Inoue. 2011. "Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses" International Journal of Molecular Sciences 12, no. 4: 2275-2293. https://doi.org/10.3390/ijms12042275
APA StyleQin, C., Zhao, W., & Inoue, A. (2011). Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses. International Journal of Molecular Sciences, 12(4), 2275-2293. https://doi.org/10.3390/ijms12042275