Novel Molecular Targets for the Treatment of Gastroenteropancreatic Endocrine Tumors: Answers and Unsolved Problems
Abstract
:1. Introduction
2. Targeting Angiogenesis
2.1. Sunitinib
2.2. Other Angiogenesis Inhibitors
3. Targeting the PI3K-mTOR Pathway
3.1. Everolimus
3.2. Novel Inhibitors of the PI3K-AKT-mTOR Pathway
4. Prospect for Src Inhibitors
5. Prospect for Hedgehog Inhibitors
6. Conclusion
- More preclinical studies on cell lines and animal models are needed to provide a stronger preclinical background in this field.
- Only a minority of the drugs showing promising preclinical results have been tested in clinical trials (see Table 1).
- There are no clinical trials specifically comparing one targeted therapy with another (i.e., Everolimus vs. Sunitinib), or evaluating which sequence of treatments yields better results. This lack of knowledge does not permit the establishment of an evidence therapeutic algorithm for these patients.
- There are few studies published up to now on evaluation of the combination of different targeted agents, with several others now still in the process of recruiting patients.
References
- Modlin, I.M.; Oberg, K.; Chung, D.C.; Jensen, R.T.; de Herder, W.W.; Thakker, R.V.; Caplin, M.; Delle Fave, G.; Kaltsas, G.A.; Krenning, E.P.; et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008, 9, 61–72. [Google Scholar]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumours in 35,825 cases in the United States. J. Clin. Oncol 2008, 26, 3063–3072. [Google Scholar]
- Capurso, G.; Bettini, R.; Rinzivillo, M.; Boninsegna, L.; Delle Fave, G.; Falconi, M. Role of resection of the primary pancreatic neuroendocrine tumour only in patients with unresectable metastatic liver disease: A systematic review. Neuroendocrinology 2011, 93, 223–229. [Google Scholar]
- Capurso, G.; Rinzivillo, M.; Bettini, R.; Boninsegna, L.; Delle Fave, G.; Falconi, M. Systematic review of resection of primary midgut carcinoid tumour in patient with unresectable liver metastases. Br. J. Surg 2012, 11, 1480–1486. [Google Scholar]
- Panzuto, F.; Nasoni, S.; Falconi, M.; Corleto, V.D.; Capurso, G.; Cassetta, S.; Di Fonzo, M.; Tornatore, V.; Milione, M.; Angeletti, S.; et al. Prognostic factors and survival in endocrine tumor patients: Comparison between gastrointestinal and pancreatic localization. Endocr.-Relat. Cancer 2005, 12, 1083–1092. [Google Scholar]
- Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID study group. J. Clin. Oncol 2009, 27, 4656–4663. [Google Scholar]
- Kwekkeboom, D.J.; de Herder, W.W.; Kam, B.L.; van Eijck, C.H.; van Essen, M.; Kooij, P.P.; Feelders, R.A.; van Aken, M.O.; Krenning, E.P. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3] octreotate: Toxicity, efficacy, and survival. J. Clin. Oncol 2008, 26, 2124–2130. [Google Scholar]
- Eriksson, B.; Annibale, B.; Bajetta, E.; Mitry, E.; Pavel, M.; Platania, M.; Salazar, R. Plöckinger U and mallorca consensus conference participant, european neuroendocrine tumor Society; enets consensus guidelines for the standard of care in neuroendocrine tumors: Chemotherapy in patients with neuroendcorine tumors. Neuroendocrinology 2009, 2, 214–219. [Google Scholar]
- Panzuto, F.; Boninsegna, L.; Fazio, N.; Campana, D.; Pia Brizzi, M.; Capurso, G.; Scarpa, A.; de Braud, F.; Dogliotti, L.; Tomassetti, P.; et al. Metastatic and locally advanced pancreatic endocrine carcinomas: Analysis of factors associated with disease progression. J. Clin. Oncol 2011, 10, 2372–2377. [Google Scholar]
- Panzuto, F.; Campana, D.; Fazio, N.; Brizzi, M.P.; Boninsegna, L.; Nori, F.; Di Meglio, G.; Capurso, G.; Scarpa, A.; Dogliotti, L.; et al. Risk factors for disease progression in advanced jejunoileal neuroendocrine tumors. Neuroendocrinology 2012, 96, 32–40. [Google Scholar]
- Capurso, G.; Fazio, N.; Festa, S.; Panzuto, F.; de Braud, F.; Delle Fave, G. Molecular target therapy for gastroenteropancreatic endocrine tumours: Biological rationale and clinical perspectives. Crit. Rev. Oncol. Hematol 2009, 72, 110–124. [Google Scholar]
- Grozinsky-Glasberg, S.; Gross, D.J. New drugs in the therapy of neuroendocrine tumors. J. Endocrinol. Invest 2012, 35, 930–936. [Google Scholar]
- Alexandraki, K.I.; Kaltsas, G. Gastroenteropancreatic neuroendocrine tumors: New insights in the diagnosis and therapy. Endocrine 2012, 41, 40–52. [Google Scholar]
- Jensen, R.T.; Delle Fave, G. Promising advances in treatment of malignant pancreatic endocrine tumors. NEJM 2011, 364, 564–565. [Google Scholar]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar]
- Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar]
- Zhang, H.; Bajraszewski, N.; Wu, E. PDGFRs are critical for activation PI3K/Akt and negatively regulated by mTOR. J. Clin. Invest 2007, 117, 730–738. [Google Scholar]
- Rubbia-Brandt, L.; Terris, B.; Giostra, E.; Dousset, B.; Morel, P.; Pepper, M.S. Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin. Cancer Res 2004, 10, 6919–6928. [Google Scholar]
- Couvelard, A.; O’Toole, D.; Turley, H.; Leek, R.; Sauvanet, A.; Degott, C.; Ruszniewski, P.; Belghiti, J.; Harris, A.L.; Gatter, K.; et al. Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: Negative correlation of microvascular density and VEGF expression with tumour progression. Br. J. Cancer 2005, 92, 94–101. [Google Scholar]
- Corbo, V.; Beghelli, S.; Bersani, S.; Antonello, D.; Talamini, G.; Brunelli, M.; Capelli, P.; Falconi, M.; Scarpa, A. Pancreatic endocrine tumours: Mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann. Oncol 2012, 23, 127–134. [Google Scholar]
- Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res 2003, 9, 327–337. [Google Scholar]
- Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol 2006, 24, 25–35. [Google Scholar]
- Kulke, M.H.; Lenz, H.J.; Meropol, N.J.; Posey, J.; Ryan, D.P.; Picus, J.; Bergsland, E.; Stuart, K.; Tye, L.; Huang, X.; et al. Activity of Sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol 2008, 26, 3403–3410. [Google Scholar]
- Raymond, E.; Dahan, L.; Raoul, J.L.; Bang, Y.J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med 2011, 364, 501–513. [Google Scholar]
- Hasskarl, J. Sorafenib. Recent Results Cancer Res 2010, 184, 61–70. [Google Scholar]
- Hobday, T.J.; Rubin, J.; Holen, K.; Picus, J.; Donehower, R.; Marschke, R.; Maples, W.; Lloyd, R.; Mahoney, M.; Erlichman, C. MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J. Clin.Oncol. 2007, 25. Abstract No. 4504. [Google Scholar]
- Chan, J.A.; Stuart, K.; Earle, C.C.; Clark, J.W.; Bhargava, P.; Miksad, R.; Blaszkowsky, L.; Enzinger, P.C.; Meyerhardt, J.A.; Zheng, H.; et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol 2012, 30, 2963–2968. [Google Scholar]
- Yao, J.C.; Phan, A.; Hoff, P.M.; Chen, H.X.; Charnsangavej, C.; Yeung, S.C.; Hess, K.; Ng, C.; Abbruzzese, J.L.; Ajani, J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon a-2b. J. Clin. Oncol 2008, 26, 1316–1323. [Google Scholar]
- Allen, E.; Walters, I.B.; Hanahan, D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin. Can. Res 2011, 17, 5299–5310. [Google Scholar]
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther 2011, 10, 2298–2308. [Google Scholar]
- Pàez-Ribes, M.; Allen, E.; Hudock, J.; Takeda, T.; Okuyama, H.; Viñals, F.; Inoue, M.; Bergers, G.; Hanahan, D.; Casanovas, O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 3, 220–231. [Google Scholar]
- Tijeras-Raballand, A.; Neuzillet, C.; Couvelard, A.; Serova, M.; de Gramont, A.; Hammel, P.; Raymond, E.; Faivre, S. Resistance to targeted therapies in pancreatic neuroendocrine tumors (PNETs): Molecular basis, preclinical data, and counteracting strategies. Target. Oncol 2012, 7, 173–181. [Google Scholar]
- Jiao, Y.; Shi, C.; Edil, B.H.; de Wilde, R.F.; Klimstra, D.S.; Maitra, A.; Schulick, R.D.; Tang, L.H.; Wolfgang, C.L.; Choti, M.A.; et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011, 331, 1199–1203. [Google Scholar]
- Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; della Peruta, M.; Piemonti, L.; Capurso, G.; Di Florio, A.; Delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol 2010, 28, 245–255. [Google Scholar]
- Kasajima, A.; Pavel, M.; Darb-Esfahani, S.; Noske, A.; Stenzinger, A.; Sasano, H.; Dietel, M.; Denkert, C.; Röcken, C.; Wiedenmann, B.; et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr.-Relat. Cancer 2011, 18, 181–192. [Google Scholar]
- Di Florio, A.; Adesso, L.; Pedrotti, S.; Capurso, G.; Pilozzi, E.; Corbo, V.; Scarpa, A.; Geremia, R.; Delle Fave, G.; Sette, C. Src kinase activity coordinates cell adhesion and spreading with activation of mammalian target of rapamycin in pancreatic endocrine tumour cells. Endocr.-Relat. Cancer 2011, 18, 541–554. [Google Scholar]
- Zitzmann, K.; de Toni, E.N.; Brand, S.; Göke, B.; Meinecke, J.; Spöttl, G.; Meyer, H.H.; Auernhammer, C.J. The novel mTOR inhibitor RAD001 (Everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology 2007, 85, 54–60. [Google Scholar]
- Hörsch, D.; Tielke, S.; Schrader, J. Expression and activation of mTOR in neuroendocrine tumors. Effects of mTOR inhibition by RAD001 upon growth, cell cycle regulation and signalling in neuroendocrine cell lines. J. Clin. Oncol. 2007, 25. Abstract No. 10570. [Google Scholar]
- Yao, J.C.; Phan, A.T.; Chang, D.Z.; Wolff, R.A.; Hess, K.; Gupta, S.; Jacobs, C.; Mares, J.E.; Landgraf, A.N. Rashid a efficacy of RAD001 (Everolimus) and octreotide LAR in advanced Low- to Intermediate-Grade neuroendocrine tumors: Results of a phase II study. J. Clin. Oncol 2008, 10, 4311–4318. [Google Scholar]
- Yao, J.C.; Lombard-Bohas, C.; Baudin, E.; Kvols, L.K.; Rougier, P.; Ruszniewski, P.; Hoosen, S.; St Peter, J.; Haas, T.; Lebwohl, D.; et al. Daily oral everolimus activity in patients with metastatic pancreatici neuroendocrine tumors after failure of cytotoxic chemotherapy: A phase II trial. J. Clin. Oncol 2010, 1, 69–76. [Google Scholar]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; Tomassetti, P.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med 2011, 364, 514–523. [Google Scholar]
- Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovsky, J.; Lebwohl, D.; Jehl, V.; Wolin, E.M.; et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 10, 2005–2012. [Google Scholar]
- Chiu, C.W.; Nozawa, H.; Hanahan, D. Survival benefefit with proapoptotic molecular and pathologic response from dual targeting of mammalian target of repamycin and epidermal growth factor receptor in a preclinical model of pancreatici neuroendocrine carcinogenesis. J. Clin. Oncol 2010, 28, 4425–4433. [Google Scholar]
- Meric-Bernstam, F.; Akcakanat, A.; Chen, H.; Do, K.A.; Sangai, T.; Adkins, F.; Gonzalez-Angulo, A.M.; Rashid, A.; Crosby, K.; Dong, M.; et al. PIK3CA/PTEN mutations and Akt activation as marker of sensitivity to allosteric mTOR inhibitors. Clin. Cancer Res 2012, 18, 1777–1789. [Google Scholar]
- Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; de Pover, A.; Schoemaker, K.; et al. Identification and development of NVP-BEZ235, a new orally available dual PI3K/mTOR inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther 2008, 7, 1851–1863. [Google Scholar]
- Voliva, C.F.; Pecchi, S.; Burger, M.; Knapp, M.; Sterker, D.; Schnell, C.; Guthy, D.; Nagel, T.; Wiesmann, M.; Brachmann, S.; et al. Biological characterization of NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in Phase I/II clinical trials. Cancer Res. 2010, 70. [Google Scholar] [CrossRef]
- Naing, A.; Aghajanian, C.; Raymond, E.; Olmos, D.; Schwartz, G.; Oelmann, E.; Grinsted, L.; Burke, W.; Taylor, R.; Kaye, S.; et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br. J. Cancer 2012, 107, 1093–1099. [Google Scholar]
- Zhan, H.X.; Cong, L.; Zhao, Y.P.; Zhang, T.P.; Chen, G.; Zhou, L.; Guo, J.C. Activated mTOR/P70S6K signaling pathway is involved in insulinoma tumorigenesis. J. Surg. Oncol 2012, 106, 972–980. [Google Scholar]
- Johnson, F.M.; Gallick, G.R. SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anti-Cancer Agents Med. Chem 2007, 7, 651–659. [Google Scholar]
- Summy, J.M.; Gallick, G.E. Treatment for advanced tumors: SRC reclaims center stage. Clin. Cancer Res 2006, 12, 1398–1401. [Google Scholar]
- Martin, G.S. The hunting of the Src. Nat. Rev. Mol. Cell. Biol 2001, 2, 467–475. [Google Scholar]
- Rabbani, S.A.; Valentino, M.L.; Arakelian, A.; Ali, S.; Boschelli, F. SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol. Cancer Ther 2010, 9, 1147–1157. [Google Scholar]
- Daud, A.I.; Krishnamurthi, S.S.; Saleh, M.N.; Gitlitz, B.J.; Borad, M.J.; Gold, P.J.; Chiorean, E.G.; Springett, G.M.; Abbas, R.; Agarwal, S.; et al. Phase I study of bosutinib, a src/abl tyrosine kinase inhibitor, administered to patients with advanced solid tumors. Clin. Cancer Res 2012, 15, 1092–1100. [Google Scholar]
- Finn, R.S.; Bengala, C.; Ibrahim, N.; Roché, H.; Sparano, J.; Strauss, L.C.; Fairchild, J.; Sy, O.; Goldstein, L.J. Dasatinib as a single agent in triple-negative breast cancer: Results of an open-label phase 2 study. Clin. Cancer Res 2011, 17, 6905–6913. [Google Scholar]
- Capurso, G.; Di Florio, A.; Sette, C.; Delle Fave, G. Signalling pathways passing Src in pancreatic endocrine tumours: Relevance for possible combined targeted therapies. Neuroendocrinology 2012. [Google Scholar] [CrossRef]
- Allington, T.M.; Galliher-Beckley, A.J.; Schiemann, W.P. Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 2009, 23, 4231–4243. [Google Scholar]
- Capurso, G.; Lattimore, S.; Crnogorac-Jurcevic, T.; Panzuto, F.; Milione, M.; Bhakta, V.; Campanini, N.; Swift, S.M.; Bordi, C.; Delle Fave, G.; et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr.-Relat. Cancer 2006, 13, 541–558. [Google Scholar]
- Di Florio, A.; Capurso, G.; Milione, M.; Panzuto, F.; Geremia, R.; Delle Fave, G.; Sette, C. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells. Endocr.-Relat. Cancer 2007, 14, 111–124. [Google Scholar]
- Gaur, P.; Sceusi, E.L.; Samuel, S.; Xia, L.; Fan, F.; Zhou, Y.; Lu, J.; Tozzi, F.; Lopez-Berestein, G.; Vivas-Mejia, P.; et al. Identification of cancer stem cells in human gastrointestinal carcinoid and neuroendocrine tumors. Gastroenterology 2011, 141, 1728–1737. [Google Scholar]
- Parkin, C.A.; Ingham, P.W. The adventures of Sonic Hedgehog in development and repair. I. Hedgehog signaling in gastrointestinal development and disease. Am. J. Physiol.-Gastrointest. Liver. Physiol 2008, 294, 363–367. [Google Scholar]
- Stone, D.M.; Hynes, M.; Armanini, M.; Swanson, T.A.; Gu, Q.; Johnson, R.L.; Scott, M.P.; Pennica, D.; Goddard, A.; Phillips, H.; et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996, 384, 129–134. [Google Scholar]
- Sasaki, H.; Hui, C.; Nakafuku, M.; Kondoh, H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997, 124, 1313–1322. [Google Scholar]
- Feldmann, G.; Dhara, S.; Fendrich, V.; Bedja, D.; Beaty, R.; Mullendore, M.; Karikari, C.; Alvarez, H.; Iacobuzio-Donahue, C.; Jimeno, A.; et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res 2007, 67, 2187–2196. [Google Scholar]
- Feldmann, G.; Fendrich, V.; McGovern, K.; Bedja, D.; Bisht, S.; Alvarez, H.; Koorstra, J.B.; Habbe, N.; Karikari, C.; Mullendore, M.; et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol. Cancer Ther 2008, 7, 2725–2735. [Google Scholar]
- Berman, D.M.; Karhadkar, S.S.; Maitra, A.; Montes de Oca, R.; Gerstenblith, M.R.; Briggs, K.; Parker, A.R.; Shimada, Y.; Eshleman, J.R.; Watkins, D.N.; et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003, 425, 846–851. [Google Scholar]
- Thayer, S.P.; di Magliano, M.P.; Heiser, P.W.; Nielsen, C.M.; Roberts, D.J.; Lauwers, G.Y.; Qi, Y.P.; Gysin, S.; Fernández-del Castillo, C.; Yajnik, V.; et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003, 425, 851–856. [Google Scholar]
- Karhadkar, S.S.; Bova, G.S.; Abdallah, N.; Dhara, S.; Gardner, D.; Maitra, A.; Isaacs, J.T.; Berman, D.M.; Beachy, P.A. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004, 431, 707–712. [Google Scholar]
- Fendrich, V.; Rehm, J.; Maschuw, K.; Waldmann, J.; Bucholz, M.; Christofori, G.; Slater, E.P.; Bartsch, D.K. Hedgehog inhibition with cyclopamine represses tumor growth and prolongs survival in a transgenic mouse model of islet cell tumors. Ann. Surg 2011, 253, 546–552. [Google Scholar]
- Chen, J.K.; Taipale, J.; Cooper, M.K.; Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002, 16, 2743–2748. [Google Scholar]
- Pan, S.F.; Wu, X.; Jiang, J.Q.; Gao, W.Q.; Wan, Y.Q.; Cheng, D.; Han, D.; Liu, J.; Englund, N.P.; Wang, Y.; et al. Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med. Chem. Lett 2010, 1, 130–134. [Google Scholar]
- Hebrok, M.; Kim, S.K.; St Jacques, B.; McMahon, A.P.; Melton, D.A. Regulation of pancreas development by hedgehog signaling. Development 2000, 127, 4905–4913. [Google Scholar]
- Thomas, M.K.; Rastalsky, N.; Lee, J.H.; Habener, J.F. Hedgehog signaling regulation of insulin production by pancreatic β-cells. Diabetes 2000, 49, 2039–2047. [Google Scholar]
- Kayed, H.; Kleeff, J.; Keleg, S.; Buchler, M.W.; Friess, H. Distribution of Indian hedgehog and its receptors patched and smoothened in human chronic pancreatitis. J. Endocrinol 2003, 178, 467–478. [Google Scholar]
- Kayed, H.; Kleeff, J.; Keleg, S.; Guo, J.; Ketterer, K.; Berberat, P.O.; Giese, N.; Esposito, I.; Giese, T.; Büchler, M.W.; et al. Indian hedgehog signaling pathway: Expression and regulation in pancreatic cancer. Int. J. Cancer 2004, 110, 668–676. [Google Scholar]
- Fendrich, V.; Wiese, D.; Waldmann, J.; Lauth, M.; Heverhagen, A.E.; Rehm, J.; Bartsch, D.K. Hedgehog inhibition with the orally bioavailable Smo antagonist LDE225 represses tumor growth and prolongs survival in a transgenic mouse model of islet cell neoplasms. Ann. Surg 2011, 254, 818–823. [Google Scholar]
- Lindholm, D.P.; Oberg, K. Biomarkers and molecular imaging in gastroenteropancreatic neuroendocrine tumors. Horm. Metab. Res 2011, 43, 832–837. [Google Scholar]
- Chiu, CW.; Nozawa, H.; Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses form dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol. 2010, 10, 4425–4433. [Google Scholar]
Compound | Target(s) | Published Preclinical studies (References) | Published Clinical Trials (References) | Approval | Ongoing Clinical Trials (Identifier) | Combination(s) Already Tested in Clinical Trials |
---|---|---|---|---|---|---|
Everolimus | mTOR | Yes [34,35,37,38] | Yes [34–42] | Yes (PETs) | Yes (NCT00688623 NCT01524783) | Yes (somatostatin analogues) |
Sunitinib | VEGFR (1-2-3) PDGFRα, c-kit, Flt-3, RET | Yes [16–19] | Yes [22–24] | Yes (PETs) | Yes (SUNLAND STUDY) | No |
Bevacizumab | VEGF | Yes [17] | Yes [26,27] | No | Yes (NCT00609765) | Yes (temozolamide, somatostatin analogues) |
Brivanib | FGF, VEGF | Yes [29] | No | No | No | No |
Cabozantinib | MET, VEGFR2 | Yes [30] | No | No | Yes (NCT01466036) | No |
BEZ235 | Pan-I-PI3K | Yes [45] | No | No | Yes (NCT01658436) | No |
Sorafenib | VEGFR2, PDGFR, FGFR1, FLT3 | Yes [17–19,22] | No | No | Yes (NCT00942682) | No |
Erlotinib | EGFR | Yes [77] | No | No | Yes (NCT00947167) | No |
Vatalanib | VEGFR2, c-kit, PDGFR | Yes [17–19,22] | No | No | Yes (NCT00590343) | No |
Src Inhibitors | SFKs | Yes [36,58] | No | No | No | No |
LDE225 | Hedgehog | Yes [63–67] | No | No | No | No |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Capurso, G.; Fendrich, V.; Rinzivillo, M.; Panzuto, F.; Bartsch, D.K.; Fave, G.D. Novel Molecular Targets for the Treatment of Gastroenteropancreatic Endocrine Tumors: Answers and Unsolved Problems. Int. J. Mol. Sci. 2013, 14, 30-45. https://doi.org/10.3390/ijms14010030
Capurso G, Fendrich V, Rinzivillo M, Panzuto F, Bartsch DK, Fave GD. Novel Molecular Targets for the Treatment of Gastroenteropancreatic Endocrine Tumors: Answers and Unsolved Problems. International Journal of Molecular Sciences. 2013; 14(1):30-45. https://doi.org/10.3390/ijms14010030
Chicago/Turabian StyleCapurso, Gabriele, Volker Fendrich, Maria Rinzivillo, Francesco Panzuto, Detlef K. Bartsch, and Gianfranco Delle Fave. 2013. "Novel Molecular Targets for the Treatment of Gastroenteropancreatic Endocrine Tumors: Answers and Unsolved Problems" International Journal of Molecular Sciences 14, no. 1: 30-45. https://doi.org/10.3390/ijms14010030
APA StyleCapurso, G., Fendrich, V., Rinzivillo, M., Panzuto, F., Bartsch, D. K., & Fave, G. D. (2013). Novel Molecular Targets for the Treatment of Gastroenteropancreatic Endocrine Tumors: Answers and Unsolved Problems. International Journal of Molecular Sciences, 14(1), 30-45. https://doi.org/10.3390/ijms14010030