Next Article in Journal
Impact of Notch Signaling on Inflammatory Responses in Cardiovascular Disorders
Previous Article in Journal
Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants
Article Menu

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2013, 14(4), 6848-6862; doi:10.3390/ijms14046848

Effects of Dietary Conjugated Linoleic Acid and Biopolymer Encapsulation on Lipid Metabolism in Mice

Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea
*
Author to whom correspondence should be addressed.
Received: 17 January 2013 / Revised: 11 March 2013 / Accepted: 19 March 2013 / Published: 26 March 2013
(This article belongs to the Section Biochemistry, Molecular Biology and Biophysics)
View Full-Text   |   Download PDF [315 KB, uploaded 19 June 2014]   |  

Abstract

Forty mice were randomly divided into four groups on the basis of the diet to be fed as follows: 5% (low) fat diet (T1: LF); 20% (high) fat diet (T2: HF); 20% fat containing 1% conjugated linoleic acid (CLA) (T3: HFC); and 20% fat containing 1% CLA with 0.5% biopolymers (T4: HFCB). The high-fat with CLA diet groups (HFC and HFCB) and the low-fat diet group (LF) tended to have lower body weights and total adipose tissue weights than those of the high-fat diet group (HF). Serum leptin and triglyceride were significantly lower in the high fat with CLA-fed groups (HFC and HFCB) and the low-fat diet group (LF) than those in the high-fat diet group (HF). It is noteworthy that the high-fat with CLA and biopolymers group (HFCB) showed the lowest serum triglyceride and cholesterol concentrations. In the high-fat-fed group (HF), voluntary travel distance as a measure of physical activity decreased after three weeks of feeding. However, the CLA-fed groups showed increased physical activity. The groups fed high-fat diets supplemented with CLA alone and with CLA and biopolymers had higher viscosity of small intestinal contents than that in the low- and high-fat dietary groups. View Full-Text
Keywords: conjugated linoleic acid; biopolymers encapsulation; energy expenditure; adipose tissue; lipid metabolism conjugated linoleic acid; biopolymers encapsulation; energy expenditure; adipose tissue; lipid metabolism
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hur, S.J.; Kim, D.H.; Chun, S.C.; Lee, S.K. Effects of Dietary Conjugated Linoleic Acid and Biopolymer Encapsulation on Lipid Metabolism in Mice. Int. J. Mol. Sci. 2013, 14, 6848-6862.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top