Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection
Abstract
:1. Introduction
2. Methylated DNA as Biomarker
2.1. Overview of DNA Methylation
2.2. Methods to Detect DNA Methylation
2.3. Detection of DNA Methylation in the Blood and Other Body Fluids
2.4. Standardization of Methylation Analysis
3. MiRNAs as Biomarkers
3.1. Overview of miRNAs
3.2. Methods to Detect miRNAs
3.3. Detection of miRNA in Bloods and Other Body Fluids
4. Conclusions and Perspectives
Acknowledgments
Conflict of Interest
References
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev 2009, 23, 781–783. [Google Scholar]
- Holliday, R. Epigenetics: A historical overview. Epigenetics 2006, 1, 76–80. [Google Scholar]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457–463. [Google Scholar]
- Baylin, S.B.; Herman, J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet 2000, 16, 168–174. [Google Scholar]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet 2002, 3, 415–428. [Google Scholar]
- Belinsky, S.A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 2004, 4, 707–717. [Google Scholar]
- Deng, D.; Liu, Z.; Du, Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv. Genet 2010, 71, 125–176. [Google Scholar]
- Jia, D.; Jurkowska, R.Z.; Zhang, X.; Jeltsch, A.; Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007, 449, 248–251. [Google Scholar]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16, 6–21. [Google Scholar]
- Takai, D.; Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 2002, 99, 3740–3745. [Google Scholar]
- Van Vlodrop, I.J.H.; Niessen, H.E.C.; Derks, S.; Baldewijns, M.M.L.L.; van Criekinge, W.; Herman, J.G.; van Engeland, M. Analysis of promoter CpG island hypermethylation in cancer: Location, location, location! Clin. Cancer Res 2011, 17, 4225–4231. [Google Scholar]
- Rodriguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med 2011, 17, 330–339. [Google Scholar]
- Walsh, C.P.; Chaillet, J.R.; Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet 1998, 20, 116–117. [Google Scholar]
- Gaudet, F.; Hodgson, J.G.; Eden, A.; Jackson-Grusby, L.; Dausman, J.; Gray, J.W.; Leonhardt, H.; Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science 2003, 300, 489–492. [Google Scholar]
- Esteller, M.; Almouzni, G. How epigenetics integrates nuclear functions. EMBO Rep 2005, 6, 624–628. [Google Scholar]
- Wang, Y.; Leung, F.C.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004, 20, 1170–1177. [Google Scholar]
- Suzuki, M.M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet 2008, 9, 465–476. [Google Scholar]
- Prendergast, G.C.; Ziff, E.B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 1991, 251, 186–189. [Google Scholar]
- Watt, F.; Molloy, P.L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 1988, 2, 1136–1143. [Google Scholar]
- Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393, 386–389. [Google Scholar]
- Jones, P.L.; Veenstra, G.J.; Wade, P.A.; Vermaak, D.; Kass, S.U.; Landsberger, N.; Strouboulis, J.; Wolffe, A.P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet 1998, 19, 187–191. [Google Scholar]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med 2008, 358, 1148–1159. [Google Scholar]
- Hernandez-Vargas, H.; Lambert, M.P.; Le Calvez-Kelm, F.; Gouysse, G.; McKay-Chopin, S.; Tavtigian, S.V.; Scoazec, J.Y.; Herceg, Z. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 2010, 5, e9749. [Google Scholar]
- Martinez, R.; Martin-Subero, J.I.; Rohde, V.; Kirsch, M.; Alaminos, M.; Fernandez, A.F.; Ropero, S.; Schackert, G.; Esteller, M. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 2009, 4, 255–264. [Google Scholar]
- Rauch, T.A.; Zhong, X.; Wu, X.; Wang, M.; Kernstine, K.H.; Wang, Z.; Riggs, A.D.; Pfeifer, G.P. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 252–257. [Google Scholar]
- Clark, S.J.; Harrison, J.; Paul, C.L.; Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994, 22, 2990–2997. [Google Scholar]
- Gobel, G.; Auer, D.; Gaugg, I.; Schneitter, A.; Lesche, R.; Muller-Holzner, E.; Marth, C.; Daxenbichler, G. Prognostic significance of methylated RASSF1A and PITX2 genes in bloodand bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat 2011, 130, 109–117. [Google Scholar]
- Sunami, E.; Shinozaki, M.; Higano, C.S.; Wollman, R.; Dorff, T.B.; Tucker, S.J.; Martinez, S.R.; Mizuno, R.; Singer, F.R.; Hoon, D.S. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem 2009, 55, 559–567. [Google Scholar]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.H. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res 2009, 15, 6185–6191. [Google Scholar]
- Nikolaidis, G.; Raji, O.Y.; Markopoulou, S.; Gosney, J.R.; Bryan, J.; Warburton, C.; Walshaw, M.; Sheard, J.; Field, J.K.; Liloglou, T. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer. Cancer Res 2012, 72, 5692–5701. [Google Scholar]
- Warnecke, P.M.; Stirzaker, C.; Song, J.; Grunau, C.; Melki, J.R.; Clark, S.J. Identification and resolution of artifacts in bisulfite sequencing. Methods 2002, 27, 101–107. [Google Scholar]
- Taylor, K.H.; Kramer, R.S.; Davis, J.W.; Guo, J.; Duff, D.J.; Xu, D.; Caldwell, C.W.; Shi, H. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 2007, 67, 8511–8518. [Google Scholar]
- Bailey, V.J.; Easwaran, H.; Zhang, Y.; Griffiths, E.; Belinsky, S.A.; Herman, J.G.; Baylin, S.B.; Carraway, H.E.; Wang, T.H. MS-qFRET: A quantum dot-based method for analysis of DNA methylation. Genome Res 2009, 19, 1455–1461. [Google Scholar]
- Ehrich, M.; Turner, J.; Gibbs, P.; Lipton, L.; Giovanneti, M.; Cantor, C.; van den Boom, D. Cytosine methylation profiling of cancer cell lines. Proc. Natl. Acad. Sci. USA 2008, 105, 4844–4849. [Google Scholar]
- Ehrich, M.; Nelson, M.R.; Stanssens, P.; Zabeau, M.; Liloglou, T.; Xinarianos, G.; Cantor, C.R.; Field, J.K.; van den Boom, D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA 2005, 102, 15785–15790. [Google Scholar]
- Jeuken, J.W.; Cornelissen, S.J.; Vriezen, M.; Dekkers, M.M.; Errami, A.; Sijben, A.; Boots-Sprenger, S.H.; Wesseling, P. MS-MLPA: An attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab. Invest 2007, 87, 1055–1065. [Google Scholar]
- Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet 2005, 37, 853–862. [Google Scholar]
- Mandel, P. Les acides nucleiques du plasma sanguin chez l’homme. CR Acad. Sci. Paris 1948, 142, 241–243. [Google Scholar]
- Zhu, W.; Qin, W.; Hewett, J.E.; Sauter, E.R. Quantitative evaluation of DNA hypermethylation in malignant and benign breast tissue and fluids. Int. J. Cancer 2010, 126, 474–482. [Google Scholar]
- Klein, P.M.; Lawrence, J.A. Lavage and nipple aspiration of breast ductal fluids: A source of biomarkers for environmental mutagenesis. Environ. Mol. Mutagen 2002, 39, 127–133. [Google Scholar]
- Cairns, P.; Esteller, M.; Herman, J.G.; Schoenberg, M.; Jeronimo, C.; Sanchez-Cespedes, M.; Chow, N.H.; Grasso, M.; Wu, L.; Westra, W.B.; et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer. Res 2001, 7, 2727–2730. [Google Scholar]
- Shi, H.; Wang, M.X.; Caldwell, C.W. CpG islands: Their potential as biomarkers for cancer. Expert Rev. Mol. Diagn 2007, 7, 519–531. [Google Scholar]
- Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 1998, 95, 11891–11896. [Google Scholar]
- Ahrendt, S.A.; Chow, J.T.; Xu, L.H.; Yang, S.C.; Eisenberger, C.F.; Esteller, M.; Herman, J.G.; Wu, L.; Decker, P.A.; Jen, J.; et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl. Cancer Inst 1999, 91, 332–339. [Google Scholar]
- Silva, J.; Dominguez, G.; Villanueva, M.; Gonzalez, R.; Garcia, J.; Corbacho, C.; Provencio, M.; Espana, P.; Bonilla, F. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br. J. Cancer 1999, 80, 1262–1264. [Google Scholar]
- Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer 2012, 131, 1153–1157. [Google Scholar]
- Radpour, R.; Barekati, Z.; Kohler, C.; Lv, Q.; Burki, N.; Diesch, C.; Bitzer, J.; Zheng, H.; Schmid, S.; Zhong, X.Y. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 2011, 6, e16080. [Google Scholar]
- Lange, C.P.; Campan, M.; Hinoue, T.; Schmitz, R.F.; van der Meulen-de Jong, A.E.; Slingerland, H.; Kok, P.J.; van Dijk, C.M.; Weisenberger, D.J.; Shen, H.; et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS One 2012, 7, e50266. [Google Scholar]
- Shapiro, B.; Chakrabarty, M.; Cohn, E.M.; Leon, S.A. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 1983, 51, 2116–2120. [Google Scholar]
- Martinez-Galan, J.; Torres, B.; Del Moral, R.; Munoz-Gamez, J.A.; Martin-Oliva, D.; Villalobos, M.; Nunez, M.I.; Luna Jde, D.; Oliver, F.J.; Ruiz de Almodovar, J.M. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol. Ther 2008, 7, 958–965. [Google Scholar]
- Ng, E.K.; Leung, C.P.; Shin, V.Y.; Wong, C.L.; Ma, E.S.; Jin, H.C.; Chu, K.M.; Kwong, A. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS One 2011, 6, e22233. [Google Scholar]
- Hoque, M.O.; Feng, Q.; Toure, P.; Dem, A.; Critchlow, C.W.; Hawes, S.E.; Wood, T.; Jeronimo, C.; Rosenbaum, E.; Stern, J.; et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol 2006, 24, 4262–4269. [Google Scholar]
- Chimonidou, M.; Strati, A.; Malamos, N.; Georgoulias, V.; Lianidou, E.S. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem 2013, 59, 270–279. [Google Scholar]
- Kloten, V.; Becker, B.; Winner, K.; Schrauder, M.G.; Fasching, P.A.; Anzeneder, T.; Veeck, J.; Hartmann, A.; Knuchel, R.; Dahl, E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 2013, 15, R4. [Google Scholar] [Green Version]
- Ebert, M.P.; Model, F.; Mooney, S.; Hale, K.; Lograsso, J.; Tonnes-Priddy, L.; Hoffmann, J.; Csepregi, A.; Rocken, C.; Molnar, B.; et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 2006, 131, 1418–1430. [Google Scholar]
- Miotto, E.; Sabbioni, S.; Veronese, A.; Calin, G.A.; Gullini, S.; Liboni, A.; Gramantieri, L.; Bolondi, L.; Ferrazzi, E.; Gafa, R.; et al. Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res 2004, 64, 8156–8159. [Google Scholar]
- Lofton-Day, C.; Model, F.; Devos, T.; Tetzner, R.; Distler, J.; Schuster, M.; Song, X.; Lesche, R.; Liebenberg, V.; Ebert, M.; et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem 2008, 54, 414–423. [Google Scholar]
- DeVos, T.; Tetzner, R.; Model, F.; Weiss, G.; Schuster, M.; Distler, J.; Steiger, K.V.; Grutzmann, R.; Pilarsky, C.; Habermann, J.K.; et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem 2009, 55, 1337–1346. [Google Scholar]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castanos-Velez, E.; Blumenstein, B.A.; Rosch, T.; Osborn, N.; et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2013. [Google Scholar] [CrossRef]
- Kneip, C.; Schmidt, B.; Seegebarth, A.; Weickmann, S.; Fleischhacker, M.; Liebenberg, V.; Field, J.K.; Dietrich, D. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J. Thorac. Oncol 2011, 6, 1632–1638. [Google Scholar]
- Zhang, Y.; Wang, R.; Song, H.; Huang, G.; Yi, J.; Zheng, Y.; Wang, J.; Chen, L. Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer. Cancer Lett 2011, 303, 21–28. [Google Scholar]
- Zhang, Y.; Miao, Y.; Yi, J.; Wang, R.; Chen, L. Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer. Clin. Lung Cancer 2010, 11, 264–270. [Google Scholar]
- Schmiemann, V.; Bocking, A.; Kazimirek, M.; Onofre, A.S.; Gabbert, H.E.; Kappes, R.; Gerharz, C.D.; Grote, H.J. Methylation assay for the diagnosis of lung cancer on bronchial aspirates: A cohort study. Clin. Cancer Res 2005, 11, 7728–7734. [Google Scholar]
- Begum, S.; Brait, M.; Dasgupta, S.; Ostrow, K.L.; Zahurak, M.; Carvalho, A.L.; Califano, J.A.; Goodman, S.N.; Westra, W.H.; Hoque, M.O.; et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin. Cancer Res 2011, 17, 4494–4503. [Google Scholar]
- Hsu, H.S.; Chen, T.P.; Hung, C.H.; Wen, C.K.; Lin, R.K.; Lee, H.C.; Wang, Y.C. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 2007, 110, 2019–2026. [Google Scholar]
- Zheng, Y.; Chen, L.; Li, J.; Yu, B.; Su, L.; Chen, X.; Yu, Y.; Yan, M.; Liu, B.; Zhu, Z. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis. Clin. Biochem 2011, 44, 1405–1411. [Google Scholar]
- Huang, Z.H.; Hu, Y.; Hua, D.; Wu, Y.Y.; Song, M.X.; Cheng, Z.H. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp. Mol. Pathol 2011, 91, 702–707. [Google Scholar]
- Sun, F.K.; Fan, Y.C.; Zhao, J.; Zhang, F.; Gao, S.; Zhao, Z.H.; Sun, Q.; Wang, K. Detection of TFPI2 methylation in the serum of hepatocellular carcinoma patients. Dig. Dis. Sci 2012, 58, 1010–1015. [Google Scholar]
- Carvalho, A.L.; Jeronimo, C.; Kim, M.M.; Henrique, R.; Zhang, Z.; Hoque, M.O.; Chang, S.; Brait, M.; Nayak, C.S.; Jiang, W.W.; et al. Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin. Cancer Res 2008, 14, 97–107. [Google Scholar]
- Melnikov, A.; Scholtens, D.; Godwin, A.; Levenson, V. Differential methylation profile of ovarian cancer in tissues and plasma. J. Mol. Diagn 2009, 11, 60–65. [Google Scholar]
- Liggett, T.E.; Melnikov, A.; Yi, Q.; Replogle, C.; Hu, W.; Rotmensch, J.; Kamat, A.; Sood, A.K.; Levenson, V. Distinctive DNA methylation patterns of cell-free plasma DNA in women with malignant ovarian tumors. Gynecol. Oncol 2011, 120, 113–120. [Google Scholar]
- Melnikov, A.A.; Scholtens, D.; Talamonti, M.S.; Bentrem, D.J.; Levenson, V.V. Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J. Surg. Oncol 2009, 99, 119–122. [Google Scholar]
- Park, J.K.; Ryu, J.K.; Yoon, W.J.; Lee, S.H.; Lee, G.Y.; Jeong, K.S.; Kim, Y.T.; Yoon, Y.B. The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 2012, 41, 95–101. [Google Scholar]
- Jiao, L.; Zhu, J.; Hassan, M.M.; Evans, D.B.; Abbruzzese, J.L.; Li, D. K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: In relation to cigarette smoking. Pancreas 2007, 34, 55–62. [Google Scholar]
- Hauser, S.; Kogej, M.; Fechner, G.; VONP, J.; Vorreuther, R.; Lummen, G.; Muller, S.C.; Ellinger, J. Serum DNA hypermethylation in patients with bladder cancer: Results of a prospective multicenter study. Anticancer Res 2013, 33, 779–784. [Google Scholar]
- Ellinger, J.; El Kassem, N.; Heukamp, L.C.; Matthews, S.; Cubukluoz, F.; Kahl, P.; Perabo, F.G.; Muller, S.C.; von Ruecker, A.; Bastian, P.J. Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J. Urol 2008, 179, 346–352. [Google Scholar]
- Bastian, P.J.; Palapattu, G.S.; Yegnasubramanian, S.; Rogers, C.G.; Lin, X.; Mangold, L.A.; Trock, B.; Eisenberger, M.A.; Partin, A.W.; Nelson, W.G. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol 2008, 179, 529–534, ; discussion 534–525.. [Google Scholar]
- Ellinger, J.; Bastian, P.J.; Jurgan, T.; Biermann, K.; Kahl, P.; Heukamp, L.C.; Wernert, N.; Muller, S.C.; von Ruecker, A. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 2008, 71, 161–167. [Google Scholar]
- Leng, S.; Do, K.; Yingling, C.M.; Picchi, M.A.; Wolf, H.J.; Kennedy, T.C.; Feser, W.J.; Baron, A.E.; Franklin, W.A.; Brock, M.V.; et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin. Cancer Res 2012, 18, 3387–3395. [Google Scholar]
- Belinsky, S.A.; Liechty, K.C.; Gentry, F.D.; Wolf, H.J.; Rogers, J.; Vu, K.; Haney, J.; Kennedy, T.C.; Hirsch, F.R.; Miller, Y.; et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006, 66, 3338–3344. [Google Scholar]
- Carvalho, A.L.; Henrique, R.; Jeronimo, C.; Nayak, C.S.; Reddy, A.N.; Hoque, M.O.; Chang, S.; Brait, M.; Jiang, W.W.; Kim, M.M.; et al. Detection of promoter hypermethylation in salivary rinses as a biomarker for head and neck squamous cell carcinoma surveillance. Clin. Cancer Res 2011, 17, 4782–4789. [Google Scholar]
- Payne, S.R.; Serth, J.; Schostak, M.; Kamradt, J.; Strauss, A.; Thelen, P.; Model, F.; Day, J.K.; Liebenberg, V.; Morotti, A.; et al. DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 2009, 69, 1257–1269. [Google Scholar]
- Roupret, M.; Hupertan, V.; Yates, D.R.; Catto, J.W.; Rehman, I.; Meuth, M.; Ricci, S.; Lacave, R.; Cancel-Tassin, G.; de la Taille, A.; et al. Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin. Cancer Res 2007, 13, 1720–1725. [Google Scholar]
- Costa, V.L.; Henrique, R.; Danielsen, S.A.; Eknaes, M.; Patricio, P.; Morais, A.; Oliveira, J.; Lothe, R.A.; Teixeira, M.R.; Lind, G.E.; et al. TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 2011, 6, 1120–1130. [Google Scholar]
- Glockner, S.C.; Dhir, M.; Yi, J.M.; McGarvey, K.E.; Van Neste, L.; Louwagie, J.; Chan, T.A.; Kleeberger, W.; de Bruine, A.P.; Smits, K.M.; et al. Methylation of TFPI2 in stool DNA: A potential novel biomarker for the detection of colorectal cancer. Cancer Res 2009, 69, 4691–4699. [Google Scholar]
- Hellebrekers, D.M.; Lentjes, M.H.; van den Bosch, S.M.; Melotte, V.; Wouters, K.A.; Daenen, K.L.; Smits, K.M.; Akiyama, Y.; Yuasa, Y.; Sanduleanu, S.; et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res 2009, 15, 3990–3997. [Google Scholar]
- Melotte, V.; Lentjes, M.H.; van den Bosch, S.M.; Hellebrekers, D.M.; de Hoon, J.P.; Wouters, K.A.; Daenen, K.L.; Partouns-Hendriks, I.E.; Stessels, F.; Louwagie, J.; et al. N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst 2009, 101, 916–927. [Google Scholar]
- Chen, W.D.; Han, Z.J.; Skoletsky, J.; Olson, J.; Sah, J.; Myeroff, L.; Platzer, P.; Lu, S.; Dawson, D.; Willis, J.; et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl. Cancer Inst 2005, 97, 1124–1132. [Google Scholar]
- Costa, V.L.; Henrique, R.; Danielsen, S.A.; Duarte-Pereira, S.; Eknaes, M.; Skotheim, R.I.; Rodrigues, A.; Magalhaes, J.S.; Oliveira, J.; Lothe, R.A.; et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin. Cancer Res 2010, 16, 5842–5851. [Google Scholar]
- Zhao, Y.; Guo, S.; Sun, J.; Huang, Z.; Zhu, T.; Zhang, H.; Gu, J.; He, Y.; Wang, W.; Ma, K.; et al. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One 2012, 7, e35175. [Google Scholar]
- Reinert, T.; Modin, C.; Castano, F.M.; Lamy, P.; Wojdacz, T.K.; Hansen, L.L.; Wiuf, C.; Borre, M.; Dyrskjot, L.; Orntoft, T.F. Comprehensive genome methylation analysis in bladder cancer: Identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin. Cancer Res 2011, 17, 5582–5592. [Google Scholar]
- Yu, J.; Zhu, T.; Wang, Z.; Zhang, H.; Qian, Z.; Xu, H.; Gao, B.; Wang, W.; Gu, L.; Meng, J.; et al. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin. Cancer Res 2007, 13, 7296–7304. [Google Scholar]
- Skvortsova, T.E.; Rykova, E.Y.; Tamkovich, S.N.; Bryzgunova, O.E.; Starikov, A.V.; Kuznetsova, N.P.; Vlassov, V.V.; Laktionov, P.P. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br. J. Cancer 2006, 94, 1492–1495. [Google Scholar]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Jeronimo, C.; Mambo, E.; Westra, W.H.; Califano, J.A.; Sidransky, D. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 2004, 64, 5511–5517. [Google Scholar]
- Goessl, C.; Krause, H.; Muller, M.; Heicappell, R.; Schrader, M.; Sachsinger, J.; Miller, K. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 2000, 60, 5941–5945. [Google Scholar]
- Goessl, C.; Muller, M.; Heicappell, R.; Krause, H.; Straub, B.; Schrader, M.; Miller, K. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 2001, 58, 335–338. [Google Scholar]
- Jeronimo, C.; Usadel, H.; Henrique, R.; Silva, C.; Oliveira, J.; Lopes, C.; Sidransky, D. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 2002, 60, 1131–1135. [Google Scholar]
- Kagan, J.; Srivastava, S.; Barker, P.E.; Belinsky, S.A.; Cairns, P. Towards clinical application of methylated DNA sequences as cancer biomarkers: A joint NCI’s EDRN and NIST workshop on standards, methods, assays, reagents and tools. Cancer Res 2007, 67, 4545–4549. [Google Scholar]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar]
- Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell 2010, 38, 323–332. [Google Scholar]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet 2008, 9, 102–114. [Google Scholar]
- Plasterk, R.H. Micro rnas in animal development. Cell 2006, 124, 877–881. [Google Scholar]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar]
- He, L.; Hannon, G.J. MicroRNAs: Small rnas with a big role in gene regulation. Nat. Rev. Genet 2004, 5, 522–531. [Google Scholar]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar]
- Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.; et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar]
- Liu, N.; Chen, N.Y.; Cui, R.X.; Li, W.F.; Li, Y.; Wei, R.R.; Zhang, M.Y.; Sun, Y.; Huang, B.J.; Chen, M.; et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: A microRNA expression analysis. Lancet Oncol 2012, 13, 633–641. [Google Scholar]
- Rotkrua, P.; Shimada, S.; Mogushi, K.; Akiyama, Y.; Tanaka, H.; Yuasa, Y. Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model. Br. J. Cancer 2013, 108, 932–940. [Google Scholar]
- Cho, W.C. MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol 2010, 42, 1273–1281. [Google Scholar]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33, e179. [Google Scholar]
- Mestdagh, P.; Feys, T.; Bernard, N.; Guenther, S.; Chen, C.; Speleman, F.; Vandesompele, J. High-throughput stem-loop RT-qPCR mirna expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008, 36, e143. [Google Scholar]
- Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010, 50, 298–30, 1.. [Google Scholar]
- Baker, M. MicroRNA profiling: Separating signal from noise. Nat Methods 2010, 7, 687–692. [Google Scholar]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009, 10, R64. [Google Scholar]
- Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012, 7, e30679. [Google Scholar]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. (Phila) 2012, 5, 492–497. [Google Scholar]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem 2011, 57, 833–840. [Google Scholar]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011, 6, e24145. [Google Scholar]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18, 997–1006. [Google Scholar]
- Keller, A.; Leidinger, P.; Gislefoss, R.; Haugen, A.; Langseth, H.; Staehler, P.; Lenhof, H.P.; Meese, E. Stable serum mirna profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol 2011, 8, 506–516. [Google Scholar]
- Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol 2008, 141, 672–675. [Google Scholar]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar]
- Gonzales, J.C.; Fink, L.M.; Goodman, O.B., Jr.; Symanowski, J.T.; Vogelzang, N.J.; Ward, D.C. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin. Genitourin. Cancer 2011, 9, 39–45. [Google Scholar]
- Zhu, W.; Qin, W.; Atasoy, U.; Sauter, E.R. Circulating microRNAs in breast cancer and healthy subjects. BMC Res. Notes 2009, 2, 89. [Google Scholar]
- Heneghan, H.M.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg 2010, 251, 499–505. [Google Scholar]
- Roth, C.; Rack, B.; Muller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 2010, 12, R90. [Google Scholar]
- Heneghan, H.M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 2010, 15, 673–682. [Google Scholar]
- Wu, Q.; Lu, Z.; Li, H.; Lu, J.; Guo, L.; Ge, Q. Next-generation sequencing of microRNAs for breast cancer detection. J. Biomed. Biotechnol 2011, 2011, 597145. [Google Scholar]
- Hu, Z.; Dong, J.; Wang, L.E.; Ma, H.; Liu, J.; Zhao, Y.; Tang, J.; Chen, X.; Dai, J.; Wei, Q.; et al. Serum microRNA profiling and breast cancer risk: The use of miR-484/191 as endogenous controls. Carcinogenesis 2012, 33, 828–834. [Google Scholar]
- Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar]
- Pu, X.X.; Huang, G.L.; Guo, H.Q.; Guo, C.C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T.Y. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J. Gastroenterol. Hepatol 2010, 25, 1674–1680. [Google Scholar]
- Wang, L.G.; Gu, J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 2012, 36, e61–e67. [Google Scholar]
- Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W. Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 2011, 6, e17745. [Google Scholar]
- Nugent, M.; Miller, N.; Kerin, M.J. Circulating miR-34a levels are reduced in colorectal cancer. J. Surg. Oncol 2012, 106, 947–952. [Google Scholar]
- Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 2010, 102, 1174–1179. [Google Scholar]
- Zhou, H.; Guo, J.M.; Lou, Y.R.; Zhang, X.J.; Zhong, F.D.; Jiang, Z.; Cheng, J.; Xiao, B.X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med. (Berl) 2010, 88, 709–717. [Google Scholar]
- Liu, H.; Zhu, L.; Liu, B.; Yang, L.; Meng, X.; Zhang, W.; Ma, Y.; Xiao, H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 2012, 316, 196–203. [Google Scholar]
- Tsai, K.W.; Liao, Y.L.; Wu, C.W.; Hu, L.Y.; Li, S.C.; Chan, W.C.; Ho, M.R.; Lai, C.H.; Kao, H.W.; Fang, W.L.; et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosom. Cancer 2012, 51, 394–401. [Google Scholar]
- Valladares-Ayerbes, M.; Reboredo, M.; Medina-Villaamil, V.; Iglesias-Diaz, P.; Lorenzo-Patino, M.J.; Haz, M.; Santamarina, I.; Blanco, M.; Fernandez-Tajes, J.; Quindos, M.; et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med 2012, 10, 186. [Google Scholar]
- Wang, M.; Gu, H.; Wang, S.; Qian, H.; Zhu, W.; Zhang, L.; Zhao, C.; Tao, Y.; Xu, W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep 2012, 5, 1514–1520. [Google Scholar]
- Zheng, Y.; Cui, L.; Sun, W.; Zhou, H.; Yuan, X.; Huo, M.; Chen, J.; Lou, Y.; Guo, J. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark 2011, 10, 71–77. [Google Scholar]
- Gorur, A.; Balci Fidanci, S.; Dogruer Unal, N.; Ayaz, L.; Akbayir, S.; Yildirim Yaroglu, H.; Dirlik, M.; Serin, M.S.; Tamer, L. Determination of plasma microRNA for early detection of gastric cancer. Mol. Biol. Rep 2012, 40, 2091–1096. [Google Scholar]
- Rabinowits, G.; Gercel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar]
- Hu, Z.; Chen, X.; Zhao, Y.; Tian, T.; Jin, G.; Shu, Y.; Chen, Y.; Xu, L.; Zen, K.; Zhang, C.; et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol 2010, 28, 1721–1726. [Google Scholar]
- Heegaard, N.H.; Schetter, A.J.; Welsh, J.A.; Yoneda, M.; Bowman, E.D.; Harris, C.C. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int. J. Cancer 2012, 130, 1378–1386. [Google Scholar]
- Le, H.B.; Zhu, W.Y.; Chen, D.D.; He, J.Y.; Huang, Y.Y.; Liu, X.G.; Zhang, Y.K. Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med. Oncol 2012, 29, 3190–3197. [Google Scholar]
- Wang, J.; Chen, J.; Chang, P.; LeBlanc, A.; Li, D.; Abbruzzesse, J.L.; Frazier, M.L.; Killary, A.M.; Sen, S. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2009, 2, 807–813. [Google Scholar]
- Ho, A.S.; Huang, X.; Cao, H.; Christman-Skieller, C.; Bennewith, K.; Le, Q.T.; Koong, A.C. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol 2010, 3, 109–113. [Google Scholar]
- Li, A.; Omura, N.; Hong, S.M.; Vincent, A.; Walter, K.; Griffith, M.; Borges, M.; Goggins, M. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 2010, 70, 5226–5237. [Google Scholar]
- Morimura, R.; Komatsu, S.; Ichikawa, D.; Takeshita, H.; Tsujiura, M.; Nagata, H.; Konishi, H.; Shiozaki, A.; Ikoma, H.; Okamoto, K.; et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br. J. Cancer 2011, 105, 1733–1740. [Google Scholar]
- Yamamoto, Y.; Kosaka, N.; Tanaka, M.; Koizumi, F.; Kanai, Y.; Mizutani, T.; Murakami, Y.; Kuroda, M.; Miyajima, A.; Kato, T.; et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 2009, 14, 529–538. [Google Scholar]
- Li, L.M.; Hu, Z.B.; Zhou, Z.X.; Chen, X.; Liu, F.Y.; Zhang, J.F.; Shen, H.B.; Zhang, C.Y.; Zen, K. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 2010, 70, 9798–9807. [Google Scholar]
- Qi, P.; Cheng, S.Q.; Wang, H.; Li, N.; Chen, Y.F.; Gao, C.F. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 2011, 6, e28486. [Google Scholar]
- Liu, A.M.; Yao, T.J.; Wang, W.; Wong, K.F.; Lee, N.P.; Fan, S.T.; Poon, R.T.; Gao, C.; Luk, J.M. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: A retrospective cohort study. BMJ Open 2012, 2, e000825. [Google Scholar]
- Sukata, T.; Sumida, K.; Kushida, M.; Ogata, K.; Miyata, K.; Yabushita, S.; Uwagawa, S. Circulating microRNAs, possible indicators of progress of rat hepatocarcinogenesis from early stages. Toxicol. Lett 2011, 200, 46–52. [Google Scholar]
- Xu, J.; Wu, C.; Che, X.; Wang, L.; Yu, D.; Zhang, T.; Huang, L.; Li, H.; Tan, W.; Wang, C.; et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog 2011, 50, 136–142. [Google Scholar]
- Hsu, C.M.; Lin, P.M.; Wang, Y.M.; Chen, Z.J.; Lin, S.F.; Yang, M.Y. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour. Biol 2012, 33, 1933–1942. [Google Scholar]
- Wong, T.S.; Ho, W.K.; Chan, J.Y.; Ng, R.W.; Wei, W.I. Mature miR-184 and squamous cell carcinoma of the tongue. Sci. World J 2009, 9, 130–132. [Google Scholar]
- Liu, C.J.; Kao, S.Y.; Tu, H.F.; Tsai, M.M.; Chang, K.W.; Lin, S.C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 2010, 16, 360–364. [Google Scholar]
- Lin, S.C.; Liu, C.J.; Lin, J.A.; Chiang, W.F.; Hung, P.S.; Chang, K.W. MiR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis. Oral Oncol 2010, 46, 204–208. [Google Scholar]
- Hussein, F.K.; Nizar, B.; Mehdi, N.; Philippe, L.; Mohammad, F.K.; Rabih, B.; Eva, H.; Ahmad, D.; Nader, H.; Rim, E.D.; et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J. Transl. Med 2013, 11, 31. [Google Scholar]
- Jones, C.I.; Zabolotskaya, M.V.; King, A.J.; Stewart, H.J.; Horne, G.A.; Chevassut, T.J.; Newbury, S.F. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br. J. Cancer 2012, 107, 1987–1996. [Google Scholar]
- Lodes, M.J.; Caraballo, M.; Suciu, D.; Munro, S.; Kumar, A.; Anderson, B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009, 4, e6229. [Google Scholar]
- Zheng, C.; Yinghao, S.; Li, J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med. Oncol 2012, 29, 815–822. [Google Scholar]
- Yaman Agaoglu, F.; Kovancilar, M.; Dizdar, Y.; Darendeliler, E.; Holdenrieder, S.; Dalay, N.; Gezer, U. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour. Biol 2011, 32, 583–588. [Google Scholar]
- Moltzahn, F.; Olshen, A.B.; Baehner, L.; Peek, A.; Fong, L.; Stoppler, H.; Simko, J.; Hilton, J.F.; Carroll, P.; Blelloch, R. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 2011, 71, 550–560. [Google Scholar]
- Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol 2009, 112, 55–59. [Google Scholar]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol 2008, 110, 13–21. [Google Scholar]
- Kan, C.W.; Hahn, M.A.; Gard, G.B.; Maidens, J.; Huh, J.Y.; Marsh, D.J.; Howell, V.M. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 2012, 12, 627. [Google Scholar]
- Skog, J.; Wurdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol 2008, 10, 1470–1476. [Google Scholar]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem 2010, 56, 1733–1741. [Google Scholar]
- Ge, Y.; Xiao, L.; Chen, X.; Peng, Y.; Sun, L.; Liu, F. Micrornas in peritoneal dialysis effluent are promising biomarkers for peritoneal fibrosis in peritoneal dialysis patients. Med. Hypotheses 2012, 78, 155–156. [Google Scholar]
- Yamada, Y.; Enokida, H.; Kojima, S.; Kawakami, K.; Chiyomaru, T.; Tatarano, S.; Yoshino, H.; Kawahara, K.; Nishiyama, K.; Seki, N.; et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: Correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 2011, 102, 522–529. [Google Scholar]
- Xing, L.; Todd, N.W.; Yu, L.; Fang, H.; Jiang, F. Early detection of squamous cell lung cancer in sputum by a panel of microrna markers. Mod. Pathol 2010, 23, 1157–1164. [Google Scholar]
- Park, N.J.; Zhou, H.; Elashoff, D.; Henson, B.S.; Kastratovic, D.A.; Abemayor, E.; Wong, D.T. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res 2009, 15, 5473–5477. [Google Scholar]
- Han, H.S.; Yun, J.; Lim, S.N.; Han, J.H.; Lee, K.H.; Kim, S.T.; Kang, M.H.; Son, S.M.; Lee, Y.M.; Choi, S.Y.; et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int. J. Cancer 2013. [Google Scholar] [CrossRef]
- Cho, W.C. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Front. Genet 2011, 2, 7. [Google Scholar]
- Meyer, S.U.; Pfaffl, M.W.; Ulbrich, S.E. Normalization strategies for microRNA profiling experiments: A “normal” way to a hidden layer of complexity? Biotechnol. Lett 2010, 32, 1777–1788. [Google Scholar]
- Sturgeon, C.M.; Hoffman, B.R.; Chan, D.W.; Ch’ng, S.L.; Hammond, E.; Hayes, D.F.; Liotta, L.A.; Petricoin, E.F.; Schmitt, M.; Semmes, O.J. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in clinical practice: Quality requirements. Clin. Chem 2008, 54, e1–e10. [Google Scholar]
Markers | Source | Sample number | Sensitivity | Specitivity | Technology | Ref. |
---|---|---|---|---|---|---|
Breast cancer | ||||||
ESR1,14–3-3-r | Serum | 274 | 81% | 88% | qMSP | [50] |
SLC19A3 | Plasma | 78 | 90% | 85% | qMSP | [51] |
GSTP1,RARB, RASSF1, APC | Plasma | 169 | 62% | 87% | qMSP | [52] |
SOX17 | Plasma | 139 | 37% | 98% | MSP | [53] |
DKK3, ITIH5 | Serum | 243 | 40% | 93% | MSP | [54] |
RASSF1A,DKK3, ITIH5 | Serum | 243 | 67% | 69% | MSP | [5] |
APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P16, P21 and TIMP3 | Plasma | 126 | >90% | >90% | EpiTYPER | [47] |
Colorectal cancer | ||||||
ALX4 | Serum | 82 | 83% | 70% | qMSP | [55] |
CDH4 | Peripheral Blood | 63 | 70% | 100% | MSP | [56] |
NGFR | Plasma | 312 | 51% | 84% | qMSP | [57] |
SEPT9 | Plasma | 312 | 69% | 86% | qMSP | [57] |
TMEFF2 | Plasma | 312 | 65% | 69% | qMSP | [57] |
RUNX3 | Serum | 75 | 68% | 89% | MSP | [58] |
SEPT9 | Plasma | 1510 | 77% | 91% | qMSP | [59] |
MGMT | plasma | 583 | 39% | 96% | MSP | [29] |
RARβ2 | Plasma | 583 | 24% | 100% | MSP | [29] |
RASSF2A | Plasma | 583 | 58% | 100% | MSP | [29] |
Wif-1 | plasma | 583 | 74% | 98% | MSP | [29] |
Lung cancer(NSCLC) | ||||||
SHOX2 | Plasma | 411 | 60% | 90% | qMSP | [60] |
APC, RASSF1A, CDH13, KLK10 and DLEC1 | Plasma | 160 | 83% | 70% | MSP | [61] |
DLEC1 | Plasma | 128 | 36% | 98% | MSP | [62] |
RARβ2 | Plasma | 141 | 28% | 48% | MSP | [63] |
CDH1 | Serum | 106 | 62% | 70% | qMSP | [64] |
APC, AIM1, CDH1, DCC, MGMT, RASSF1A | Serum | 106 | 84% | 57% | qMSP | [64] |
CDH13 | Plasma | 99 | 33% | 83% | MSP | [65] |
Gastric cancer | ||||||
KCNA4, CYP26B1 | Serum | 92 | 91% | 92% | MSP | [66] |
Hepatocellular carcinoma | ||||||
APC, GSTP1, RASSF1A, SFRP1 | Plasma | 150 | 93% | 82% | MSRE-qPCR | [67] |
TFPI2 | Serum | 93 | 46% | 72% | MSP | [68] |
Head and neck squamous cell carcinoma | ||||||
CDH1, TIMP3, HIC1, PGP9.5 | Serum | 251 | 81 | 43 | qMSP | [69] |
Ovarian cancer | ||||||
BRCA1, HIC1, PAX5, PGR, THBS1 | Plasma | 66 | 85% | 61% | MethDet test | [70] |
RASSF1A, CALCA, EP300 | Plasma | 60 | 90% | 87% | MethDet test | [71] |
Pancreatic cancer | ||||||
CCND2, PLAU, SOCS1, THBS, VHL | Plasma | 60 | 76% | 59% | MethDet test | [72] |
NPTX2 | Plasma | 169 | 80% | 76% | qMSP | [73] |
p16 | Plasma | 83 | 24% | N/A | MSP | [74] |
Bladder cancer | ||||||
TIMP3, APC, RARB, TIG1, GSTP1, p14, p16, PTGS2, RASSF1A | Serum | 148 | 62% | 89% | MSRE-qPCR | [75] |
APC, GSTP1, TIG1 | Serum | 90 | 80% | 93% | qMSP | [76] |
Prostate cancer | ||||||
GSTP1, RASSF1, RARβ2 | Serum | 123 | 63% | N/A | MSP | [28] |
GSTP1, MDR1 | Serum | 227 | 32% | 100% | qMSP | [77] |
GSTP1, TIG1, PTGS2, RPRM | Serum | 210 | 47% | 93% | qMSP | [78] |
Markers | Source | Sample number | Sensitivity | Specitivity | Technology | Ref. |
---|---|---|---|---|---|---|
Lung cancer | ||||||
CDKN2A/p16, TERT, WT1, RASSF1 | Bronchial washings | 248 | 82% | 91% | qMSP | [30] |
DAPK, PAX5b, PAX5a, Dal1, GATA5, SULF2, CXCL14 | Sputum | 130 | 75% | 68% | Nest qMSP | [79] |
Non small cell lung cancer (NSCLC) | ||||||
CDH13 | Sputum | 190 | 27% | 75% | Nest MSP | [80] |
CDKN2A/p16 | Sputum | 190 | 40% | 73% | Nest MSP | [80] |
DAPK | Sputum | 190 | 43% | 67% | Nest MSP | [80] |
GATA4 | Sputum | 190 | 49% | 54% | Nest MSP | [80] |
IGFBP3 | Sputum | 190 | 25% | 54% | Nest MSP | [80] |
Head and neck squamous cell carcinoma (HNSCC) | ||||||
MINT31, MGMT, CCNA1, p16 | Salivary rinse | 391 | 35% | 90% | qMSP | [69] |
DAPK, DCC, MINT-31, TIMP-3, p16, MGMT, CCNA1 | Salivary | 61 | 54% | N/A | qMSP | [81] |
Prostate cancer | ||||||
GSTP1 | Urine | 192 | 81% | 94% | qMSP | [82] |
RASSF2 | Urine | 192 | 59% | 63% | qMSP | [82] |
HIST1H4K | Urine | 192 | 92% | 86% | qMSP | [82] |
TFAP2E | Urine | 192 | 100% | 18% | qMSP | [82] |
GSTP1, RASSF1A, ECDH1, APC, DAPK, MGMT, p14, p16 | Urine post massage | 95 | 93% | N/A | MSP | [83] |
PCDH17,TCF21 | Urine | 77 | 26% | 100% | qMSP | [84] |
Colorectal cancer | ||||||
TFPI2 | Stool | 197 | 76%–89% | 79%–93% | qMSP | [85] |
GATA4 | Stool | 58 | 71% | 93% | MSP | [86] |
NDRG4 | Stool | 58 | 77% | 100% | qMSP | [87] |
Vimentin exon-1 | Stool | 292 | 46% | 90% | MSP | [88] |
Bladder cancer | ||||||
PCDH17,TCF21 | Urine | 98 | 60% | 100% | qMSP | [84] |
GDF15 | Urine | 71 | 47% | 100% | qMSP | [89] |
HSPA2 | Urine | 71 | 59% | 100% | qMSP | [89] |
TMEFF2 | Urine | 71 | 63% | 100% | qMSP | [89] |
VIM | Urine | 71 | 78% | 100% | qMSP | [89] |
VIM, TMEFF2, GDF15, HSPA2 | Urine | 71 | 94% | 100% | qMSP | [89] |
VAX1, KCNV1, TAL1, PPOX1, CFTR | urine | 212 | 86% | 87% | MSP | [90] |
ZNF154, POU4F2, HOXA9, EOMES | Urine | 174 | 84% | 96% | MSP | [91] |
SALL3, CFTR, ABCC6, HPR1, RASSF1A, MT1A, RUNX3, ITGA4, BCL2, ALX4, MYOD1, DRM, CDH13, BMP3B, CCNA1, RPRM, MINT1, BRCA1 | urine sediments | 168 | 92% | 87% | MSP | [92] |
Renal cell cancer | ||||||
PCDH17, TCF21 | Urine | 98 | 32% | 100% | qMSP | [84] |
Disease | Expression level | Markers | Ref. |
---|---|---|---|
Breast cancer | Up-regulated | miR-155 | [126] |
miR-195 | [127] | ||
miR-10b, miR -34a | [128] | ||
let7a, miR-195 | [129] | ||
miR-29a, miR-21 | [130] | ||
miR-16, miR-25, miR-222, miR-324–3p | [131] | ||
Colorectal cancer | Up-regulated | miR-17–3p,miR-92 | [132] |
miR-29a, miR-92a | [133] | ||
miR-221 | [134] | ||
miR-29a | [135] | ||
miR-141 | [136] | ||
Down-regulated | miR-34a | [137] | |
Gastric cancer | Up-regulated | miR-17–5p, miR-21, miR-106a, miR-106b | [138] |
miR-106a, miR-17 | [139] | ||
miR-378 | [140] | ||
miR-196a | [141] | ||
miR-200c | [142] | ||
miR-17–5p,miR-20a | [143] | ||
miR-21 | [144] | ||
Down-regulated | let7a | [138] | |
miR-195–5p | [145] | ||
Non-small cell lung carcinoma (NSCLC) | Up-regulated | miR-25,miR-223 | [121] |
miR-17–3p, miR-21,miR-106a, miR-146, miR-155, miR-191, miR-192, miR-203, miR-205, miR-210,miR-212, miR-214 | [146] | ||
miR-1, miR-30d,miR-486, miR-499 | [147] | ||
miR-29c | [148] | ||
miR-21, miR-205, miR-30d, miR-24 | [149] | ||
Down-regulated | miR-146b, miR-221, let-7a, miR-155, miR-17–5p, miR-27a, miR-106a | [148] | |
Pancreatic cancer | Up-regulated | miR-21, miR-155, miR-196a | [150] |
miR-210 | [151] | ||
miR-200a,miR-200b | [152] | ||
miR-18a | [153] | ||
Hepatocellular carcinoma (HCC) | Up-regulated | miR-500 | [154] |
miR-375 | [155] | ||
miR-122 | [156] | ||
miR-15b, miR-21, miR-130b, miR-183 | [157] | ||
let-7a, let-7f, miR-98 | [158] | ||
miR-21, miR-122, miR-223 | [159] | ||
Head and neck squamous cell carcinoma (HNSCC) | Up-regulated | miR-21, miR-26b | [160] |
Oral squamous cell carcinoma (OSCC) | Up-regulated | miR-184 | [161] |
miR-31,miR-21 | [162] | ||
miR-24 | [163] | ||
Diffuse large B-cell lymphoma (DLBCL) | Up-regulated | miR-21,miR-155, miR-210 | [123] |
Acute myeloid/leukemia (AML), Acute lymphoblastic leukemia (ALL) | Up-regulated | let-7b, miR-523 | [164] |
Multiple myeloma | Up-regulated | miR-720 | [165] |
Down-regulated | miR-1308 | ||
Prostate cancer | Up-regulated | miR-141, miR-200b | [124] |
miR-16, miR-34b, miR-92a, miR-92b, miR-103, miR-107, miR-197, miR-328, miR-485–3p, miR-486–5p, miR-574–3p, miR-636, miR-640,miR-766, miR-885–5p | [166] | ||
miR-221 | [167] | ||
miR-21, miR-221 | [168] | ||
miR-93, miR-106a, miR-874, miR-1207–5p, miR-1274a | [169] | ||
Down-regulated | miR-145,miR-155 | [129] | |
miR-24, miR-26b, miR-30c, miR-223 | [169] | ||
Ovarian cancer | Up-regulated | miR-21, miR-92, miR-93, miR-126, miR-29a | [170] |
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, miR-214 | [171] | ||
Down-regulated | miR -155, miR- 127,miR 99b | [170] | |
Serous epithelial ovarian cancer (SEOC) | Up-regulated | miR200a, miR200b, miR200c | [172] |
Glioblastoma | Up-regulated | miR-21 | [173] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ma, Y.; Wang, X.; Jin, H. Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. Int. J. Mol. Sci. 2013, 14, 10307-10331. https://doi.org/10.3390/ijms140510307
Ma Y, Wang X, Jin H. Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. International Journal of Molecular Sciences. 2013; 14(5):10307-10331. https://doi.org/10.3390/ijms140510307
Chicago/Turabian StyleMa, Yanning, Xian Wang, and Hongchuan Jin. 2013. "Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection" International Journal of Molecular Sciences 14, no. 5: 10307-10331. https://doi.org/10.3390/ijms140510307
APA StyleMa, Y., Wang, X., & Jin, H. (2013). Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. International Journal of Molecular Sciences, 14(5), 10307-10331. https://doi.org/10.3390/ijms140510307