Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Subjects and Study Protocol
3.2. Genotyping and Protein Quantification
3.3. Platelet Function Studies
3.4. Statistical and Data Analysis
4. Conclusions
Acknowledgments
Conflict of interest
References
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar]
- May, A.E.; Langer, H.; Seizer, P.; Bigalke, B.; Lindemann, S.; Gawaz, M. Platelet-leukocyte interactions in inflammation and atherothrombosis. Semin. Thromb. Hemost 2007, 33, 123–127. [Google Scholar]
- Harrison, D.G.; Guzik, T.J.; Lob, H.E.; Madhur, M.S.; Marvar, P.J.; Thabet, S.R.; Vinh, A.; Weyand, C.M. Inflammation, immunity, and hypertension. Hypertension 2011, 57, 132–140. [Google Scholar]
- Campbell, W.B.; Fleming, I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 2010, 459, 881–895. [Google Scholar]
- Pfister, S.L.; Gauthier, K.M.; Campbell, W.B. Vascular pharmacology of epoxyeicosatrienoic acids. Adv. Pharmacol 2010, 60, 27–59. [Google Scholar]
- Patti, G.; Grieco, D.; Dicuonzo, G.; Pasceri, V.; Nusca, A.; Di, S.G. High versus standard clopidogrel maintenance dose after percutaneous coronary intervention and effects on platelet inhibition, endothelial function, and inflammation results of the ARMYDA-150 mg (antiplatelet therapy for reduction of myocardial damage during angioplasty) randomized study. J. Am. Coll. Cardiol 2011, 57, 771–778. [Google Scholar]
- Sadanandan, S.; Singh, I.M. Clopidogrel: The data, the experience, and the controversies. Am. J. Cardiovasc. Drugs 2012, 12, 361–374. [Google Scholar]
- Kalantzi, K.I.; Tsoumani, M.E.; Goudevenos, I.A. Pharmacodynamic properties of antiplatelet agents: Current knowledge and future perspectives. Expert Rev. Clin. Pharmacol 2012, 5, 319–336. [Google Scholar]
- Singh, M.; Thapa, B.; Arora, R. Clopidogrel pharmacogenetics and its clinical implications. Am. J. Ther 2010, 17, e66–e73. [Google Scholar]
- Miao, J.; Liu, R.; Li, Z. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med 2009, 360, 2250–2251. [Google Scholar]
- Hulot, J.S.; Bura, A.; Villard, E.; Azizi, M.; Remones, V.; Goyenvalle, C.; Aiach, M.; Lechat, P.; Gaussem, P. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006, 108, 2244–2247. [Google Scholar]
- Fontana, P.; Hulot, J.S.; de Moerloose, P.; Gaussem, P. Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J. Thromb. Haemost 2007, 5, 2153–2155. [Google Scholar]
- Bura, A.; Bachelot-Loza, C.; Ali, F.D.; Aiach, M.; Gaussem, P. Role of the P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects. J. Thromb. Haemost 2006, 4, 2096–2097. [Google Scholar]
- Waehre, T.; Damås, J.K.; Pedersen, T.M.; Gullestad, L.; Yndestad, A.; Andreassen, A.K.; Frøland, S.S.; Semb, A.G.; Hansteen, V.; Gjertsen, E.; et al. Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: Results of a double-blind placebo-controlled study. J. Thromb. Haemost 2006, 4, 2140–2147. [Google Scholar]
- Palmerini, T.; Barozzi, C.; Tomasi, L.; Sangiorgi, D.; Marzocchi, A.; de Servi, S.; Ortolani, P.; Reggiani, L.B.; Alessi, L.; Lauria, G.; et al. A randomised study comparing the antiplatelet and antiinflammatory effect of clopidogrel 150 mg/day versus 75 mg/day in patients with ST-segment elevation acute myocardial infarction and poor responsiveness to clopidogrel: Results from the DOUBLE study. Thromb. Res 2010, 125, 309–314. [Google Scholar]
- Ostad, M.A.; Nick, E.; Paixao-Gatinho, V.; Schnorbus, B.; Schiewe, R.; Tschentscher, P.; Munzel, T.; Warnholtz, A. Lack of evidence for pleiotropic effects of clopidogrel on endothelial function and inflammation in patients with stable coronary artery disease: Results of the double-blind, randomized CASSANDRA study. Clin. Res. Cardiol 2011, 100, 29–36. [Google Scholar]
- Husted, S.; Storey, R.F.; Harrington, R.A.; Emanuelsson, H.; Cannon, C.P. Changes in inflammatory biomarkers in patients treated with ticagrelor or clopidogrel. Clin. Cardiol 2010, 33, 206–212. [Google Scholar]
- Woodward, M.; Lowe, G.D.; Francis, L.M.; Rumley, A.; Cobbe, S.M. A randomized comparison of the effects of aspirin and clopidogrel on thrombotic risk factors and C-reactive protein following myocardial infarction: The CADET trial. J. Thromb. Haemost 2004, 2, 1934–1940. [Google Scholar]
- Muhlestein, J.B. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb. Haemost 2010, 103, 71–82. [Google Scholar]
- Bertrand-Thiébault, C.; Berrahmoune, H.; Thompson, A.; Marie, B.; Droesch, S.; Siest, G.; Foernzler, D.; Visvikis-Siest, S. Genetic polymorphism of CYP2C19 gene in the stanislas cohort. A link with inflammation. Ann. Hum. Genet 2008, 72, 178–183. [Google Scholar]
- Hoffmann, M.M.; Bugert, P.; Seelhorst, U.; Wellnitz, B.; Winkelmann, B.R.; Boehm, B.O.; März, W. The −50G > T polymorphism in the promoter of the CYP2J2 gene in coronary heart disease: The Ludwigshafen Risk and Cardiovascular Health study. Clin. Chem 2007, 53, 539–540. [Google Scholar]
- Kaur-Knudsen, D.; Bojesen, S.E.; Nordestgaard, B.G. Common polymorphisms in CYP2C9, subclinical atherosclerosis and risk of ischemic vascular disease in 52,000 individuals. Pharmacogenomics J 2009, 9, 327–332. [Google Scholar]
- Angiolillo, D.J. Applying platelet function testing in clinical practice: What are the unmet needs? JAMA 2011, 306, 1260–1261. [Google Scholar]
- Angiolillo, D.J.; Fernandez-Ortiz, A.; Bernardo, E.; Ramirez, C.; Bar-rera-Ramirez, C.; Sabate, M.; Hernández, R.; Moreno, R.; Escaned, J.; Alfonso, F. Identification of low responders to a 300-mg clopidogrel loading dose in patients undergoing coronary stenting. Thromb. Res 2005, 115, 101–108. [Google Scholar]
- Gurbel, P.A.; Bliden, K.P.; Hiatt, B.L.; O’connor, C.M. Clopidogrel for coronary stenting: Response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 2003, 107, 2908–2913. [Google Scholar]
- Gurbel, P.A.; Tantry, U.S. Drug insight: Clopidogrel nonresponsiveness. Nat. Clin. Pract. Cardiovasc. Med 2006, 3, 387–395. [Google Scholar]
- Muller, I.; Besta, F.; Schulz, C.; Massberg, S.; Schonig, A.; Gawaz, M. Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled f or elective coronary stent placement. Thromb. Haemost 2003, 89, 783–787. [Google Scholar]
- Gawaz, M.; Langer, H.; May, A.E. Platelets in inflammation and atherogenesis. J. Clin. Invest 2005, 115, 3378–3384. [Google Scholar]
- Müller, K.; Aichele, S.; Herkommer, M.; Bigalke, B.; Stellos, K.; Htun, P.; Fateh-Moghadam, S.; May, A.E.; Flather, M.; Gawaz, M.; et al. Impact of inflammatory markers on platelet inhibition and cardiovascular outcome including stent thrombosis in patients with symptomatic coronary artery disease. Atherosclerosis 2010, 213, 256–262. [Google Scholar]
- Klinkhardt, U.; Graff, J.; Harder, S. Clopidogrel, but not abciximab, reduces platelet leukocyte conjugates and P-selectin expression in a human ex vivo in vitro model. Clin. Pharmacol. Ther 2002, 71, 176–185. [Google Scholar]
- Yerino, P.; Toren, P.; Ogilvie, B.; Parkinson, A. Unlike Gemfibrozil, Clopidogrel Glucuronide is not a Potent Inhibitior of CYP2C8. Available online: http://www.eposters.net/index.aspx?id=920 (accessed on 17 April 2007).
- Hulot, J.S.; Wuerzner, G.; Bachelot-Loza, C.; Azizi, M.; Blanchard, A.; Peyrard, S.; Funck-Brentano, C.; Gaussem, P. Effect of an increased clopidogrel maintenance dose or lansoprazole co-administration on the antiplatelet response to clopidogrel in CYP2C19-genotyped healthy subjects. J. Thromb. Haemost 2010, 8, 610–613. [Google Scholar]
- Fontana, P.; Dupont, A.; Gandrille, S.; Bachelot-Loza, C.; Reny, J.L.; Aiach, M.; Gaussem, P. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 2003, 108, 989–995. [Google Scholar]
Variables | General population (n = 49) |
---|---|
Demographic characteristics | |
Age (year) † | 25.8 ± 3.8 |
Male sex, (%) | 49 (100) |
Body mass index (kg/m2) † | 23.2 ± 2.11 |
Vital signs | |
Pulse rate (n) † | 66.9 ± 9.4 |
Systolic blood pressure (mmHg) † | 121.7 ± 8.4 |
Diastolic blood pressure (mmHg) † | 68.6 ± 6.8 |
Hemogram | |
White blood cells (×103/μL) † | 5.41 ± 1.13 |
Red blood cells (×106/μL) † | 4.72 ± 0.25 |
Hemoglobin (g/L) † | 14.21 ± 0.55 |
Hematocrit (%) † | 41.66 ± 1.60 |
Platelet (×103/μL) † | 220.72 ± 37.32 |
Biochemistry | |
Glucose (mmol/L) † | 4.76 ± 0.38 |
Aspartate aminotransferase (U/L) † | 20.00 ± 5.97 |
Alanine aminotransferase (U/L) † | 25.93 ± 10.19 |
Alkaline phosphatase (U/L) † | 55.37 ± 11.39 |
Gamma-glutamyltransferase (U/L) † | 20.38 ± 8.23 |
Creatinine (μmol/L) † | 83.56 ± 11.05 |
Fibrinogen (g/L) † | 2.28 ± 0.35 |
Allele | Orosomucoid (g/L) | Haptoglobin (g/L) | CRP (mg/L) | CD40 (ng/L) |
---|---|---|---|---|
CYP2C19*2 (681 G > A); rs4244285 | ||||
CYP2C19*1/*1 (n = 30) | 0.58 (0.10) | 0.74 (0.28) | 0.32 (0.16–0.65) | 382 (153) |
CYP2C19*1/*2 (n = 19) | 0.62 (0.13) | 0.85 (0.31) | 0.31 (0.14–0.67) | 323 (66) |
CYP2J2*7 (−50 G > A); rs890293 | ||||
CYP2J2*1/*1 (n = 42) | 0.60 (0.12) | 0.79 (0.31) | 0.38 (0.32–0.44) | 359 (132) |
CYP2J2*1/*7 (n = 7) | 0.57 (0.09) | 0.78 (0.34) | 0.32 (0.15–0.69) | 351 (96) |
CYP2C8*3 (1196 A > G); rs10509681 | ||||
CYP2C8*1/*1 (n = 36) | 0.60 (0.12) | 0.82 (0.31) | 0.33 (0.15–0.72) | 328 (63) |
CYP2C8*1/*3 (n = 13) | 0.58 (0.10) | 0.76 (0.27) | 0.27 (0.17–0.43) | 426 (190) |
CYP2C9*2 (430 C > T); rs1799853 | ||||
CYP2C9*1/*1 (n = 37) | 0.60 (0.12) | 0.80 (0.32) | 0.34 (0.16–0.76) | 341 (97) |
CYP2C9*1/*2 (n = 12) | 0.59 (0.10) | 0.84 (0.26) | 0.26 (0.16–0.41) | 424 (191) |
CYP2C9*3 (1075 A > C); rs1057910 | ||||
CYP2C9*1/*1 (n = 42) | 0.60 (0.12) | 0.80 (0.30) | 0.30 (0.15–0.57) | 361 (133) |
CYP2C9*1/*3 (n = 7) | 0.62 (0.06) | 0.88 (0.37) | 0.73 (0.21–2.48) | 366 (6) |
Orosomucoid (g/L) | Haptoglobin (g/L) | CRP (mg/L) | CD40 (ng/L) | |||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 7 | Day 1 | Day 7 | Day 1 | Day 7 | Day 1 | Day 7 | |
Whole population (n = 49) | 0.61 (0.12) | 0.60 (0.19) | 0.78 (0.29) | 0.79 (0.33) | 0.32 (0.14–0.82) | 0.29 (0.11–0.65) | 358 (126) | 360 (115) |
CYP2C19*2 (681 G > A); rs4244285 | ||||||||
CYP2C19*1/*1 (n = 30) | 0.58 (0.10) | 0.60 (0.12) | 0.74 (0.28) | 0.76 (0.33) | 0.32 (0.16–0.65) | 0.31 (0.17–0.57) | 382 (153) | 382 (133) |
CYP2C19*1/*2 (n = 19) | 0.62 (0.13) | 0.59 (0.19) | 0.85 (0.31) | 0.78 (0.33) | 0.31 (0.14–0.67) | 0.28 (0.14–0.57) | 323 (66) | 331 (78) |
P2Y12 H2 | ||||||||
P2Y12 H1/H1 (n = 33) | 0.61 (0.12) | 0.62 (0.15) | 0.78 (0.31) | 0.79 (0.35) | 0.30 (0.16–0.57) | 0.32 (0.16–0.65) | 376 (150) | 378 (131) |
P2Y12H1/H2 & H2/H2 (n = 16) | 0.58 (0.08) | 0.54 (0.12) | 0.80 (0.26) | 0.70 (0.26) | 0.34 (0.14–0.82) | 0.24 (0.15–0.40) 2 | 323 (49) | 327 (68) |
Platelet aggregation | Orosomucoid (g/L) | Haptoglobin (g/L) | CRP (mg/L) | CD40 (ng/L) | ||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 7 | Day 1 | Day 7 | Day 1 | Day 7 | Day 1 | Day 7 | |
Responders (n = 32) | 0.58 (0.10) | 0.60 (0.12) | 0.74 (0.28) | 0.76 (0.33) | 0.32 (0.16–0.65) | 0.31 (0.17–0.57) | 360 (135) | 379 (132) |
Hypo-responders (n = 17) | 0.65 (0.12) | 0.64 (0.19) | 0.85 (0.31) | 0.78 (0.33) | 0.31 (0.14–0.67) | 0.28 (0.14–0.57) | 366 (132) | 341 (78) |
SNP (allele); db SNPAccession no. | Primers used for sequencing |
---|---|
CYP2C8 | |
*3 (1196 A > G); rs10509681 | F: B-5′-GTGTTCTCCCAGTTTCTGCCC-3′ R: 5′-GACGCAGAGTAGAGTCACCCAC-3′ |
CYP2C9 | |
*2 (430 C > T); rs1799853 | F: 5′-GTATTTTGGCCTGAAACCCATA-3′ R: B-5′-CACCCTTGGTTTTTCTCAACTC-3′ |
*3 (1075 A > C); rs1057910 | F: B-5′-TGCACGAGGTCCAGAGAT-3′ R: 5′-GATACTATGAATTTGGGACTTC-3′ |
CYP2C19 | |
*2 (681 G > A); rs4244285 | F: 5′-CAGAGCTTGGCATATTGTATC-3′ R: 5′-GTAAACACACAAAACTAGTCAATG-3′ |
CYP2J2 | |
*7(−50 G > A); rs890293 | F: 5′-CATAGGAGAGACGGTGATTGAACC-3′ R: 5′-GGCGTCTTCTCGTCCTCCTGCA-3′ |
P2Y12 | |
H2 Haplotype | As described in reference [33] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shahabi, P.; Siest, G.; Herbeth, B.; Lambert, D.; Masson, C.; Hulot, J.-S.; Bertil, S.; Gaussem, P.; Visvikis-Siest, S. Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study. Int. J. Mol. Sci. 2013, 14, 16402-16413. https://doi.org/10.3390/ijms140816402
Shahabi P, Siest G, Herbeth B, Lambert D, Masson C, Hulot J-S, Bertil S, Gaussem P, Visvikis-Siest S. Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study. International Journal of Molecular Sciences. 2013; 14(8):16402-16413. https://doi.org/10.3390/ijms140816402
Chicago/Turabian StyleShahabi, Payman, Gérard Siest, Bernard Herbeth, Daniel Lambert, Christine Masson, Jean-Sébastien Hulot, Sébastien Bertil, Pascale Gaussem, and Sophie Visvikis-Siest. 2013. "Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study" International Journal of Molecular Sciences 14, no. 8: 16402-16413. https://doi.org/10.3390/ijms140816402
APA StyleShahabi, P., Siest, G., Herbeth, B., Lambert, D., Masson, C., Hulot, J. -S., Bertil, S., Gaussem, P., & Visvikis-Siest, S. (2013). Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study. International Journal of Molecular Sciences, 14(8), 16402-16413. https://doi.org/10.3390/ijms140816402