A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology
Abstract
:1. Introduction
Polymer | Bupivacaine | MAA | EGDMA | AIBN | Toluene | Molar Ratio b |
---|---|---|---|---|---|---|
MIP 0 | 1.39 | 0.00 | 77.4 | 2.00 | 219.8 | 1:0:56 |
MIP 1 | 1.39 | 3.30 | 78.1 | 2.10 | 226.0 | 1:2:56 |
MIP 2 | 1.39 | 7.23 | 74.5 | 2.03 | 221.5 | 1:5:54 |
MIP 3 | 1.39 | 12.51 | 77.4 | 2.18 | 236.4 | 1:9:56 |
MIP 4 | 1.39 | 16.68 | 77.4 | 2.23 | 240.9 | 1:12:56 |
MIP 5 | 1.39 | 20.1 | 82.3 | 2.40 | 259.4 | 1:14:59 |
MIP 6 | 1.39 | 22.24 | 77.4 | 2.30 | 246.9 | 1:16:56 |
MIP 7 | 1.39 | 25.02 | 77.4 | 2.30 | 251.4 | 1:18:56 |
MIP 8 | 1.39 | 30.90 | 82.6 | 2.55 | 274.0 | 1:22:59 |
MIP 9 | 1.39 | 64.20 | 76.2 | 2.80 | 298.4 | 1:46:55 |
Polymer | Bupivacaine | MMA | EGDMA | AIBN | Toluene | Molar Ratio b |
---|---|---|---|---|---|---|
MIP 0 | 1.39 | 0.00 | 77.4 | 2.00 | 219.8 | 1:0:56 |
MIP 10 | 1.39 | 7.23 | 77.4 | 2.18 | 236.4 | 1:7:56 |
MIP 11 | 1.39 | 13.14 | 77.4 | 2.23 | 240.9 | 1:9.5:56 |
MIP 12 | 1.39 | 16.90 | 77.4 | 2.30 | 246.9 | 1:12:56 |
MIP 13 | 1.39 | 19.72 | 77.4 | 2.30 | 251.4 | 1:14:56 |
MIP 14 | 1.39 | 30.86 | 77.4 | 2.40 | 269.5 | 1:22:56 |
MIP 15 | 1.39 | 64.22 | 77.4 | 2.80 | 322.2 | 1:46:56 |
2. Results and Discussion
3. Experimental Section
3.1. Chemicals
3.2. Data Analysis
3.3. Molecular Dynamics (MD) Simulations
3.4. Polymer Synthesis
3.5. Equilibrium Binding Study
3.6. Swelling Studies
3.7. Examination of Gas Accessible Surface Areas and Porosities
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sellergren, B. Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry; Elsevier: Amsterdam, The Netherland, 2001. [Google Scholar]
- Komiyama, M. Molecular Imprinting: From Fundamentals to Applications; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Sellergren, B.; Allender, C.J. Molecularly imprinted polymers: A bridge to advanced drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1733–1741. [Google Scholar] [CrossRef]
- Yan, M.; Ramström, O. Molecularly Imprinted Materials: Science and Technology; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar] [CrossRef]
- Svenson, J.; Nicholls, I.A. On the thermal and chemical stability of molecularly imprinted polymers. Anal. Chim. Acta 2001, 435, 19–24. [Google Scholar] [CrossRef]
- Sellergren, B. Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials. TrAC Trends Anal. Chem. 1997, 16, 310–320. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Plastic antibodies: Developments and applications. Trends Biotechnol. 1998, 16, 468–475. [Google Scholar] [CrossRef]
- Shea, K.J.; Roberts, M.J.; Yan, M. Molecularly Imprinted Materials: Sensors and Other Devices; Materials Research Society: San Francisco, CA, USA, 2002. [Google Scholar]
- Matsui, J.; Higashi, M.; Takeuchi, T. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center. J. Am. Chem. Soc. 2000, 122, 5218–5219. [Google Scholar] [CrossRef]
- Chianella, I.; Piletsky, S.A.; Tothill, I.E.; Chen, B.; Turner, A.P.F. Mip-based solid phase extraction cartridges combined with mip-based sensors for the detection of microcystin-lr. Biosens. Bioelectron. 2003, 18, 119–127. [Google Scholar] [CrossRef]
- Yan, S.; Fang, Y.; Gao, Z. Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element. Biosens. Bioelectron. 2007, 22, 1087–1091. [Google Scholar] [CrossRef]
- Andersson, H.S.; Nicholls, I.A. Spectroscopic evaluation of molecular imprinting polymerization systems. Bioorg. Chem. 1997, 25, 203–211. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Martin, L.; Vulfson, E.N. Predicting the selectivity of imprinted polymers. Chromatographia 1998, 47, 457–464. [Google Scholar] [CrossRef]
- Svenson, J.; Andersson, H.S.; Piletsky, S.A.; Nicholls, I.A. Spectroscopic studies of the molecular imprinting self-assembly process. J. Mol. Recogn. 1998, 11, 83–86. [Google Scholar]
- Ansell, R.J.; Wang, D.; Kuah, J.K.L. Imprinted polymers for chiral resolution of (±)-ephedrine. Part 2: Probing pre-polymerisation equilibria in different solvents by NMR. Analyst 2008, 133, 1673–1683. [Google Scholar]
- Ansell, R.J.; Wang, D. Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and hplc results with alternative functional monomers. Analyst 2009, 134, 564–576. [Google Scholar]
- Nicholls, I.A. Towards the rational design of molecularly imprinted polymers. J. Mol. Recogn. 1998, 11, 79–82. [Google Scholar]
- Subrahmanyam, S.; Piletsky, S.A.; Piletska, E.V.; Chen, B.; Karim, K.; Turner, A.P.F. ‘Bite-and-switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens. Bioelectron. 2001, 16, 631–637. [Google Scholar] [CrossRef]
- Kim, H.; Spivak, D.A. New insight into modeling non-covalently imprinted polymers. J. Am. Chem. Soc. 2003, 125, 11269–11275. [Google Scholar]
- O’Mahony, J.; Wei, S.; Molinelli, A.; Mizaikoff, B. Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers. Anal. Chem. 2006, 78, 6187–6190. [Google Scholar]
- O’Mahony, J.; Karlsson, B.C.G.; Mizaikoff, B.; Nicholls, I.A. Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst 2007, 132, 1161–1168. [Google Scholar]
- Nicholls, I.A.; Andersson, H.S.; Golker, K.; Henschel, H.; Karlsson, B.C.; Olsson, G.D.; Rosengren, A.M.; Shoravi, S.; Wiklander, J.G.; Wikman, S. Rational molecularly imprinted polymer design: Theoretical and computational strategies. In Molecularly Imprinted Polymers in Analytical Science; Sellergren, B., Ed.; Pan Stanford Publishing: London, UK, 2012; Volume 3, pp. 59–68. [Google Scholar]
- Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron. 2009, 25, 543–552. [Google Scholar] [CrossRef]
- Karlsson, B.C.G.; O’Mahony, J.; Mahony, J.; Karlsson, J.G.; Bengtsson, H.; Eriksson, L.A.; Nicholls, I.A. Structure and dynamics of monomer-template complexation: An explanation for molecularly imprinted polymer recognition site heterogeneity. J. Am. Chem. Soc. 2009, 131, 13297–13304. [Google Scholar] [CrossRef]
- Olsson, G.D.; Karlsson, B.C.G.; Shoravi, S.; Wiklander, J.G.; Nicholls, I.A. Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: Resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers. J. Mol. Recognit. 2012, 25, 69–73. [Google Scholar] [CrossRef]
- Golker, K.; Karlsson, B.C.G.; Olsson, G.D.; Rosengren, A.M.; Nicholls, I.A. Influence of composition and morphology on template recognition in molecularly imprinted polymers. Macromolecules 2013, 46, 1408–1414. [Google Scholar] [CrossRef]
- Olsson, G.D.; Karlsson, B.C.G.; Schillinger, E.; Sellergren, B.; Nicholls, I.A. Theoretical studies of 17-β-estradiol-imprinted prepolymerization mixtures: Insights concerning the roles of cross-linking and functional monomers in template complexation and polymerization. Ind. Eng. Chem. Res. 2013, 52, 13965–13970. [Google Scholar] [CrossRef]
- Cleland, D.; Olsson, G.D.; Karlsson, B.C.G.; Nicholls, I.A.; McCluskey, A. Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: Interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene. Org. Biomol. Chem. 2014, 12, 844–853. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Esbensen, K.H. Multivariate Data Analysis in Practice, 5th ed.; Camo Process AS: Oslo, Norway, 2002. [Google Scholar]
- Baggiani, C.; Anfossi, L.; Giovannoli, C.; Tozzi, C. Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer. J. Chromatogr. B 2004, 804, 31–41. [Google Scholar] [CrossRef]
- Kempe, H.; Kempe, M. Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromol. Rapid Commun. 2004, 25, 315–320. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Kubota, L.T. Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Anal. Chim. Acta 2005, 548, 11–19. [Google Scholar] [CrossRef]
- Rosengren, A.M.; Karlsson, J.G.; Andersson, P.A.; Nicholls, I.A. Chemometric models of template-molecularly imprinted polymer binding. Anal. Chem. 2005, 77, 5700–5705. [Google Scholar] [CrossRef]
- Nantasenamat, C.; Naenna, T.; Ayudhya, C.; Prachayasittikul, V. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J. Comput. Aided Mol. Des. 2005, 19, 509–524. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Segatelli, M.G.; Kubota, L.T. Amperometric determination of chloroguaiacol at submicromolar levels after on-line preconcentration with molecularly imprinted polymers. Talanta 2006, 69, 259–266. [Google Scholar] [CrossRef]
- Rossi, C.; Haupt, K. Application of the doehlert experimental design to molecularly imprinted polymers: Surface response optimization of specific template recognition as a function of the type and degree of cross-linking. Anal. Bioanal. Chem. 2007, 389, 455–460. [Google Scholar]
- Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Naenna, T.; Prachayasittikul, V. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosens. Bioelectron. 2007, 22, 3309–3317. [Google Scholar] [CrossRef] [PubMed]
- Koohpaei, A.R.; Shahtaheri, S.J.; Ganjali, M.R.; Forushani, A.R.; Golbabaei, F. Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn. Talanta 2008, 75, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Jesus Rodrigues Santos, W.; Lima, P.; Tarley, C.; Kubota, L. A catalytically active molecularly imprinted polymer that mimics peroxidase based on hemin: Application to the determination of p-aminophenol. Anal. Bioanal. Chem. 2007, 389, 1919–1929. [Google Scholar]
- Rosengren, A.M.; Golker, K.; Karlsson, J.G.; Nicholls, I.A. Dielectric constants are not enough: Principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding. Biosens. Bioelectron. 2009, 25, 553–557. [Google Scholar] [PubMed]
- Santos, W.d.J.R.; Lima, P.R.; Tarley, C.R.T.; Höehr, N.F.; Kubota, L.T. Synthesis and application of a peroxidase-like molecularly imprinted polymer based on hemin for selective determination of serotonin in blood serum. Anal. Chim. Acta 2009, 631, 170–176. [Google Scholar] [CrossRef]
- Koohpaei, A.R.; Shahtaheri, S.J.; Ganjali, M.R.; Forushani, A.R.; Golbabaei, F. Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. J. Hazard. Mater. 2009, 170, 1247–1255. [Google Scholar]
- Valero-Navarro, A.; Damiani, P.C.; Fernández-Sánchez, J.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Chemometric-assisted mip-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters. Talanta 2009, 78, 57–65. [Google Scholar]
- Alizadeh, T.; Ganjali, M.R.; Nourozi, P.; Zare, M. Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples. Anal. Chim. Acta 2009, 638, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Kempe, H.; Kempe, M. QSRR analysis of β-lactam antibiotics on a penicillin G targeted mip stationary phase. Anal. Bioanal. Chem. 2010, 398, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Salimraftar, N.; Noee, S.; Abdouss, M.; Riazi, G.; Khoshhesab, Z. Three-level response surface full-factorial design: Advanced chemometric approach for optimizing diclofenac sodium-imprinted polymer. Polym. Bull. 2014, 71, 19–30. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L., 3rd; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.; Walker, R.C.; Zhang, W.; et al. Amber 10; University of California: San Francisco, CA, USA, 2008. [Google Scholar]
- Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine. Anal. Chim. Acta 2001, 435, 57–64. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glas, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Golker, K.; Karlsson, B.C.G.; Rosengren, A.M.; Nicholls, I.A. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology. Int. J. Mol. Sci. 2014, 15, 20572-20584. https://doi.org/10.3390/ijms151120572
Golker K, Karlsson BCG, Rosengren AM, Nicholls IA. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology. International Journal of Molecular Sciences. 2014; 15(11):20572-20584. https://doi.org/10.3390/ijms151120572
Chicago/Turabian StyleGolker, Kerstin, Björn C. G. Karlsson, Annika M. Rosengren, and Ian A. Nicholls. 2014. "A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology" International Journal of Molecular Sciences 15, no. 11: 20572-20584. https://doi.org/10.3390/ijms151120572
APA StyleGolker, K., Karlsson, B. C. G., Rosengren, A. M., & Nicholls, I. A. (2014). A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology. International Journal of Molecular Sciences, 15(11), 20572-20584. https://doi.org/10.3390/ijms151120572