Next Article in Journal
Association between Toll-Like Receptor 4 Expression and Neural Stem Cell Proliferation in the Hippocampus Following Traumatic Brain Injury in Mice
Previous Article in Journal
Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Alzheimer’s Disease—A Panorama Glimpse

1
School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore
2
School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
3
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2014, 15(7), 12631-12650; https://doi.org/10.3390/ijms150712631
Submission received: 21 May 2014 / Revised: 26 June 2014 / Accepted: 10 July 2014 / Published: 16 July 2014
(This article belongs to the Section Biochemistry)

Abstract

:
The single-mutation of genes associated with Alzheimer’s disease (AD) increases the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein. We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles. We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We then show the possible links between Aβ and tau pathology. Furthermore, we summarize the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance (NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal truncated Aβ variants. We wish to draw reader’s attention to two predominant and toxic Aβ species, namely Aβ4−42/ and pyroglutamate amyloid-beta peptides, which have been neglected for more than a decade and may be crucial in Aβ pathogenesis due to their dominant presence in the AD brain.

1. Introduction

Alzheimer’s disease was first recognized by Alois Alzheimer as presenile dementia in 1906. It is mainly diagnosed in people whose ages are over 65 with the prevalence of Alzheimer’s Disease (AD) being shown to grow exponentially with age. It is prevalent among 10% of elderly people, which makes AD an emerging social health issue with the rise of an aging population in the coming decades. Specially, at the age of 85, 50% of the people face the risk of developing AD [1,2]. However, AD is not exactly an aging-related disease [3]. In fact, it has been classified into two types. One is the gene-related heritable AD, known as the early onset familial Alzheimer’s disease (fAD). The clinical symptoms can appear in a very young age and it accounts for 25% of all AD cases [4]. Another type is the sporadic Alzheimer’s disease (sAD), which constitutes the vast majority of AD cases and is also apparently influenced by genetic contributions besides non-genetic environmental factors [5,6,7]. Several genes have been identified to increase the chance of developing fAD and sAD. However, the pathological role of the only identified є4 lipoprotein E (APOE) gene in sAD is still unclear. In addition, the mutation of APOE є4 is not necessary to increase the risk of developing sAD [8,9]. Thus, the late-onset AD degenerative process has been speculated to be polygenic with the involvement of multiple risk factors [6].
It is well known that the early symptoms of AD include loss of short-term memory, difficulties in executing daily life activities, and withdrawal from social life. The behavioral symptoms include progressive decline in memory, spatial reasoning, attention, and languages. AD is mainly characterized by two pathological hallmarks: the intracellular neurofibrillary tangle (NFT) formed by hyperphosphorylated tau proteins, and the extracellular amyloid plaque consisting of amyloid β peptides. Significant selective neuronal degeneration and loss, with neurotransmitter deficits and inflammations are also evident [10]. In the following section, we first delve into the root of AD by giving a short review on genetic risk factors. After which, we shall discuss on two focal areas of current AD research. One involves the intracellular accumulation of tau protein while the other is on extracellular amyloid aggregation. The former is covered in Section 3 and the latter is addressed in Section 4, Section 5 and Section 6. In Section 7, we connect these two aspects of AD research to provide a panoramic view of the generative mechanism of AD. We briefly discuss on the progression pathway of AD and the possible therapeutic approaches in Section 8. Finally, we conclude our review in Section 9.

2. Genetic Revelation of AD

With the higher level of gene expression in the brain, the cumulative DNA damage may have a cascading effect on the transcriptional effectivity and fidelity, and the alteration of DNA conformation in the hippocampus region has been observed in the brain of AD patients [11,12]. For the two types of Alzheimer’s—early onset (a.k.s. familial AD) and later onset (a.k.s. sporadic AD), both have a genetic connection. Familial AD involves a number of single-gene mutations on chromosomes 1, 14 and 21, which corresponds to the abnormal presenilin 2, presenilin 1 and amyloid precursor protein production respectively [13,14,15,16,17], and each of these mutations is believed to play a very important role in the cleavage of APP and thus affect Aβ production. The late-onset AD accounts for the major cases of AD, notwithstanding a lack of full understanding, the genetic risk factors, such as the definitively identified apolipoprotein E (APOE) gene on chromosome 19 [18] and the methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) gene on chromosome 6 [19] as well as some other loci [20,21,22,23], are likely to affect the predisposition of AD. Additionally, the genome-wide study of AD cases also revealed new novel variants, which may modify the age of the AD onset or show gender-linked susceptibility [24,25].

3. Tau Protein and Tau Accumulation

Tau protein arises from the alternative splicing of the microtubule-associated protein tau (MAPT) gene, and is abundant within the central and peripheral nervous systems. It is one of the intrinsically unstructured proteins (IUPs), which exhibit as random coils under physiological conditions, and are capable of folding into well-defined stable structures, e.g., the neurofibrillary tangles in AD. Normally, it is the phosphorylation-modified tau protein that stabilizes the axonal microtubules in the central nervous system (CNS). Moreover, tau protein with actin cytoskeleton and plasma membrane serve as enzyme anchors, and they are also believed to help in the neurite outgrowth and the transport of axoplasm. However, under certain circumstances, tau protein may undergo abnormal phoshorylation, hyperphosphorylation and some other modifications -nitration, ubiquitination, truncation, shift, prolyl isomerization, which may reduce the binding affinity of tau towards microtube, and thus lead to either intraneuronal accumulation of tau protein or its binding to other macromolecules [26,27,28,29].
The mislocalization and accumulation of tau proteins in dendrites and dendritic spines brings about a disruption of neuronal cell communication, which precedes neurodegeneration and causes a loss of memory [30]. Tau self-assemblies of tau proteins forming straight filaments (SFs) and/or paired helical filaments (PHF) may further aggregate into NFT, which is significantly correlated with the severity of AD. Electron microscopy of PHFs showed the appearance of two strands twisting around each other with a cross-over repeat of 75–80 nm and a width of 10–22 nm [31,32]. It has also been further revealed that β-sheet is the most dominant structure in the PHFs.

4. Amyloid Plaque and Aβ Peptide

4.1. Amyloid Precursor Protein

The amyloid β plaques results from the aggregation of the amyloid β (Aβ) peptides, which is cleaved by the β-and γ-secreastase from the amyloid precursor protein (APP). The precise biological function of APP is as yet not well defined even though lots of studies have revealed its biological and physiological importance in the neurite outgrowth modulation [33], copper homeostasis regulation [34], synaptic transmission and formation, and synaptic function and activity [35,36]. On the other hand, it has been shown that the absence of APP in a mouse model did not cause a significant impairment of cognitive abilities, but instead led to a decrease in locomotion activity [37].

4.2. Aβ Aggregation Pathway

Neuronal impairment is observed in patients even before Aβ plaque formation during the early onset AD. It is generally believed that Aβ oligomer is the main culprit of neurotoxicity [38,39,40,41]. Due to these oligomers being easily attached to the membrane or other macromolecules and hard to be isolated from these structures, conventional experimental studies on them are very difficult [42]. A progress has been made recently which shows that Aβ dimers can be measured and strongly associated with dementia [43]. Besides the experimental methods, molecular dynamic simulation is a complementary approach for atomic-level studies of the unstructured monomer aggregation process, structural evolution and toxicity.

4.3. Structural Evolution during Aggregation

In recent decades, Nuclear Magnetic Resonance (NMR) and X-ray have been carried out to determine the structures of Aβ in water and membrane mimic environment (see Table 1). One general observation is that Aβ peptides exhibit great polymorphism.
Table 1. Structural data of amyloid beta peptide obtained from experiments.
Table 1. Structural data of amyloid beta peptide obtained from experiments.
PDB ID Experimental Technique Resolution Release Date Residue DOI
1AMB [44]SOLUTION NMR-1994-12-201–28-
1AMC [44]SOLUTION NMR-1995-01-261–28-
1AML [45]SOLUTION NMR-1996-01-291–40-
1BA4 [46]SOLUTION NMR-1998-06-171–40-
1BA6 [47]SOLUTION NMR-1998-06-171–4010.1021/bi972979f
1BJB [48]SOLUTION NMR-1998-11-041–2810.1006/jsbi.2000.4267
1BJC [48]SOLUTION NMR-1998-11-181–2810.1006/jsbi.2000.4267
1HZ3 [49]SOLUTION NMR-2001-01-311–2610.1002/pro.5560060902
1IYT [50]SOLUTION NMR-2003-02-111–4210.1006/jsbi.2000.4288
1NMJ [51]SOLUTION NMR-2003-01-281–2810.1038/7562
1QWP [52]SOLUTION NMR-1997-07-0725–3510.1021/bi961598j
1QXC [52]SOLUTION NMR-2004-09-1425–35-
1QYT [52]SOLUTION NMR-2004-12-1425–3510.1021/jm040773o
1ZE7 [53]SOLUTION NMR-2005-05-031–1610.1074/jbc.M504454200
2BP4 [53]SOLUTION NMR-2005-04-211–1610.1074/jbc.M504454200
2LI9 [54] SOLUTION NMR -2011-07-201–1610.1016/j.bbrc.2011.06.133
2LI9 [54]SOLUTION NMR -2012-01-18 1–16 -
2M9S [55]SOLUTION NMR --1–4010.1016/j.bbagen.2013.06.031
2Y2A [56] X-RAY DIFFRACTION-2011-10-2616–2110.1073/pnas.1112600108
2Y3J [56]X-RAY DIFFRACTION1.91 -30–3510.1073/pnas.1112600108
2Y3L [56] X-RAY DIFFRACTION2.12011-11-02 35–4210.1073/pnas.1112600108
2Y3K [56]X-RAY DIFFRACTION 2.1 2011-11-02 35–42 10.1073/pnas.1112600108
3Q2X [56]X-RAY DIFFRACTION2.1 2011-11-02 27–32 10.1073/pnas.1112600108
3PZZ [56] X-RAY DIFFRACTION2.1 2011-11-02 29–3410.1073/pnas.1112600108
3OVJ [57]X-RAY DIFFRACTION 1.8 2011-07-0616–2110.1016/j.molcel.2004.06.037
3OW9 [56]X-RAY DIFFRACTION 1.8 2011-08-3116–2110.1371/journal.pbio.1001080
SOLUTION NMR - 2004-09-14 25–35 10.1021/jm040773o
SOLUTION NMR - 2012-01-18 1–16 10.1016/j.bpj.2011.11.4006
2OTK [58] 3D NMR - 2013-09-11 1–4010.1016/j.bbagen.2013.06.031
In many situations, Aβ is found to easily attach to other protein, or self-assemble into large oligomers or fibrils. These complex involving Aβ peptides, such as APP, Aβ binding copper ions, Aβ segments with enzymes as observed in experiment, are cataloged in Table 2.
Table 2. Experimental data of amyloid beta oligomers, fibrills and binding proteins.
Table 2. Experimental data of amyloid beta oligomers, fibrills and binding proteins.
PDB ID Experimental Technique Resolution Release Date Residues Count DOI
1AAP [59]X-RAY DIFFRACTION1.51991-10-15116-
1BRC [60]X-RAY DIFFRACTION2.51994-05-3127910.1006/jmbi.1993.1211
1TAW [61]X-RAY DIFFRACTION1.81997-06-2428110.1002/pro.5560060902
1CA0 [61]X-RAY DIFFRACTION2.11997-07-2359010.1002/pro.5560060902
1X11 [62]X-RAY DIFFRACTION2.51998-01-1437010.1093/emboj/16.20.6141
1MWP [63]X-RAY DIFFRACTION1.82000-03-159610.1038/7562
1OQN [64]X-RAY DIFFRACTION2.32003-08-0533610.1074/jbc.M304384200
1OWT [65]SOLUTION NMR-2003-05-136610.1074/jbc.M300629200
1TKN [66]SOLUTION NMR-2004-08-0311010.1021/bi049041o
1ZJD [67]X-RAY DIFFRACTION2.62005-08-0929410.1074/jbc.M504990200
2BEG [68]SOLUTION NMR-2005-11-2221010.1073/pnas.0506723102
2G47 [69]X-RAY DIFFRACTION2.12006-10-24206010.1038/nature05143
2FJZ [70]X-RAY DIFFRACTION1.612007-01-165910.1016/j.jmb.2006.12.041
2FK1 [70]X-RAY DIFFRACTION1.62007-01-165910.1016/j.jmb.2006.12.041
2FK2 [70]X-RAY DIFFRACTION1.652007-01-165910.1016/j.jmb.2006.12.041
2FK3 [70]X-RAY DIFFRACTION2.42007-01-1647210.1016/j.jmb.2006.12.041
2FKL [70]X-RAY DIFFRACTION2.52007-01-1613210.1016/j.jmb.2006.12.041
2FMA [71]X-RAY DIFFRACTION0.852007-01-165910.1107/S1744309107041139
2IPU [72]X-RAY DIFFRACTION1.652007-10-0990610.1073/pnas.0705888104
2R0W [72]X-RAY DIFFRACTION2.52007-10-1645010.1073/pnas.0705888104
2OTK [58]SOLUTION NMR-2008-02-1218210.1073/pnas.0711731105
2ROZ [73]SOLUTION NMR-2008-07-2216810.1074/jbc.M803892200
3BAE [74]X-RAY DIFFRACTION1.592008-04-1547410.1016/j.jmb.2007.12.036
3BKJ [74]X-RAY DIFFRACTION1.592008-04-1549210.1016/j.jmb.2007.12.036
3DXC [75]X-RAY DIFFRACTION2.12008-09-1635010.1038/embor.2008.188
3DXD [75]X-RAY DIFFRACTION2.22008-09-1635010.1038/embor.2008.188
3DXE [75]X-RAY DIFFRACTION2.02008-09-1635010.1038/embor.2008.188
3GCI [76]X-RAY DIFFRACTION2.042009-03-10126-
3IFL [77]X-RAY DIFFRACTION1.52009-11-1744810.1074/jbc.M109.045187
3IFN [77]X-RAY DIFFRACTION1.52009-11-1748110.1074/jbc.M109.045187
3IFO [77]X-RAY DIFFRACTION2.152009-11-1790410.1074/jbc.M109.045187
3IFP [77]X-RAY DIFFRACTION2.952009-11-17180810.1074/jbc.M109.045187
3JQ5 [76]X-RAY DIFFRACTION2.032009-09-29127-
3JQL [76]X-RAY DIFFRACTION1.22009-09-29125-
2WK3 [78]X-RAY DIFFRACTION2.592009-11-03212210.1016/j.jmb.2009.10.072
3KTM [79]X-RAY DIFFRACTION2.72010-02-23152810.1073/pnas.0911326107
3L81 [80]X-RAY DIFFRACTION1.62010-06-0230810.1016/j.devcel.2010.01.015
3JTI [81]X-RAY DIFFRACTION1.82010-07-21127-
3L33 [82]X-RAY DIFFRACTION2.482010-09-22110410.1074/jbc.M110.171348
3MOQ [83]X-RAY DIFFRACTION2.052011-02-1650410.1523/JNEUROSCI.4259-10.2011
3MXC [84]X-RAY DIFFRACTION2.02011-05-1111010.1016/j.jmb.2011.09.046
3NYJ [85]X-RAY DIFFRACTION3.22011-06-0120710.1021/bi101846x
3NYL [86]X-RAY DIFFRACTION2.82011-07-1321010.1016/j.molcel.2004.06.037
2Y3J [87]X-RAY DIFFRACTION1.992011-11-024810.1073/pnas.1112600108
2Y3K [87]X-RAY DIFFRACTION1.92011-11-026410.1073/pnas.1112600108
3AYU [88]X-RAY DIFFRACTION2.02011-08-0317710.1074/jbc.M111.264176
2LMN [89]SOLID-STATE NMR-2011-12-2848010.1021/bi051952q
2LMO [89]SOLID-STATE NMR-2011-12-2848010.1021/bi051952q
2LMP [90]SOLID-STATE NMR-2011-12-2872010.1073/pnas.0806270105
2LMQ [90]SOLID-STATE NMR-2011-12-2872010.1073/pnas.0806270105
2LNQ [91]SOLID-STATE NMR-2012-02-0832010.1073/pnas.1111305109
2LOH [92]SOLUTION NMR-2012-05-238610.1016/j.febslet.2012.04.062
2LP1 [93]SOLUTION NMR-2012-06-0612210.1126/science.1219988
2LLM [94]SOLUTION NMR-2012-06-2043PMCID: PMC3347594
3U0T [95]X-RAY DIFFRACTION2.52012-01-1189410.1016/j.jmb.2011.11.047
3UMH [96]X-RAY DIFFRACTION2.02012-01-2521110.1016/j.jmb.2011.12.057
3UMI [96]X-RAY DIFFRACTION2.42012-01-2521110.1016/j.jmb.2011.12.057
3UMK [96]X-RAY DIFFRACTION2.62012-01-2521110.1016/j.jmb.2011.12.057
3SV1 [97]X-RAY DIFFRACTION3.32012-07-1161210.1093/jmcb/mjs033
4HIX [98]X-RAY DIFFRACTION2.22013-03-1347510.1038/srep01302
2M4J [99]SOLUTION NMR-2013-09-2536010.1016/j.cell.2013.08.035
2LZ3 [100]SOLUTION NMR-2013-10-0256-
2LZ4 [100]SOLUTION NMR-2013-10-0256-
The central amyloidogenic step of the oligomerization process is the transition from α-helix rich (starting from the conformation of APP before being cleavaged) to β-sheet rich structures. All atom simulation of Aβ37−42 reveals the polymorphism of Aβ oligomers [101]. Replica exchange molecular dynamics simulations were conducted to study the short peptide Aβ10−35 [102] and Aβ16−22 [103] dimer and trimer formations as well as the Aβ16−35 monomer and dimer structure and thermodynamics properties [104]. A coarse-grained model of Aβ1−42 was used to study the structural diversity of the dimer [105] in aqueous environment. A single Aβ40 peptide was used to study its structural diversity [106] and the relevant effects of insertion depth and ionic strength in the DPPC membrane environment [107]. Further study shows that the thermodynamics and dynamics of Aβ oligomerization are sequence dependent [108].
Aβ has two alloforms: one is Aβ1−40, the other is Aβ1−42. Both have distinct effects and pathways during oligomerization [109,110]. It is generally believed that Aβ1−40 peptides are non-amyloidogentic while Aβ1−42 are amyloidogentic. Recent studies have shown that Aβ peptides produced in the area with elevated level of cholesterol pose a great risk of Alzheimer’s disease [111] and those genes associated with the cholesterol regulation play a significant role in the predisposition of AD. Here, it raises the question on the effect of cholesterol binding to Aβ peptide and the associated mechanisms of Aβ aggregation in the membrane environment. Recent studies done by our group show that cholesterol molecules compete with the intra-action of Aβ oligomers by binding directly with Aβ peptides. This implies that monomeric Aβ and/or small Aβ aggregations prefer to locate within cholesterol-rich membranes [111,112,113]. Furthermore, Aβ structure evolution in the presence of small and macro-molecules, such as curcumin [114,115], heme [116], resveratrol [115,117], mitoxantrone and pixantrone [118], derivatives of Congo Red [119], 1,4-naphthoquinon-2-yl-L-tryptophan inhibitor [120], EGCG [115,121], NqTrp [115], and inflammation protein complex [122], are also studied. In these studies, Aβ aggregation behaviour is found to be either inhibited or promoted.
The single mutation of Aβ are also performed to study the mutation effect on Aβ oligomerization process. A2V mutation in Aβ1−28 shows that the intrinsic disorder are reduced with a completely different free energy landscape [123]. D7N mutation on the Aβ40 and Aβ42 exhibits a notable change in secondary structure, final topology and salt bridge compared with wild type [124]. D23N mutation also causes a distinct dimerization pathways compared with wild type in Aβ1−42 and Aβ1−40 [110].
The detailed fibril nucleation and oligomerization are further probed from kinetics and thermodynamics aspect via computational method [125].

5. Amyloid Fibril Formation and Polymorphism

Since the end of the 20th century, much effort has been made to understand the structure of amyloid fibrils and the mechanism of its formation. With the development of measurement techniques, such as NMR and X-ray crystallography, the polymorphic structures of amyloid fibril have been revealed. The main contribution to the distinct structures of the fibril is the sensitivity of the fibril growth towards the surrounding conditions [126,127,128]. Despite the multiple differences in their overall structures, there exists a common a well-characterized antiparallel β-sheets within the fibrils [127]. Molecular dynamics simulations have been employed to investigate the detailed mechanisms of the Aβ fibril formation by adding monomers into the structured oligomers [129]. It was found that the incorporation of the monomers into the oligomers occurs in two distinct stages: the first stage is a rapid conformational change of the monomers from a disordered structure to one with a significant amount of beta-strand content. The second stage is a relatively slow process, namely the docking of the monomer which has adjusted itself into a well-registered antiparallel structure.

6. Aβ Isoforms — Variants of Aβ

The amyloid-cascade hypothesis holds a stronghold in the research of AD. It posits that the process of Aβ aggregation into oligomers and final deposition as plaques is the central pathological events in AD. As stated earlier, Aβ40 and Aβ42 are two well-recognized isoforms of Aβ being produced. Meanwhile, with the conduct of intensive research in this area, several C-terminal truncated isoforms, such as Aβ43 [130,131], Aβ1−15/16 [132], and carboxyterminally truncated Aβ peptides 1 − 37/38/39 [133], have been revealed and they are suggested to play a crucial role in the AD pathogenesis. In particular, experimental data obtained from both sporadic and familial AD shows that Aβ43 is more prevalent than Aβ40 in plaque core [130].
Interestingly, in AD brains there are a significant proportion of N-terminal truncated Aβ variants, such as Aβ2−17,Aβ3−17 [134], Aβn−40/42 with n ranges from 2 to 11 [135], pyroglutamate-modified amyloid beta (Aβ3(pE)−42) and Aβ11(pE)−42 peptides [136]. Among them the pyroglutamate-modified amyloid beta appears to be the predominant components [137,138,139]. The earliest report of the pyroglutamate-modified amyloid beta-peptides dates back to 1997 and earlier [140,141]. After a decade of inactivity following 1997 and only within the recent five years have some researchers begun to understand their formation [142], structure [143], oligomerization [144], intracellular accumulation [145], and its potential as therapeutic target [138]. At the same time, the first reported peptide in Aβ plaque, the Aβ4−42 peptide, has received no attention even though it is as toxic as pyroglutamate-modified amyloid beta peptides and Aβ42 [135].

7. Aβ Oligomers and Tau Protein: Relationship and Link

There are various means by which Aβ oligomers are distributed among cells. These are: diffusion or spread within extracellular parenchymas as oligomers or deposited plaques; adsorption on membrane surface or incorporation into membrane structure forming pores or channels; and accumulation within the neuronal structure. On the other hand, the tau protein is mainly distributed within the intracellular neuron. One possible direct link between the intraneuronal Aβ and tau protein involves the modulation effect between Aβ and tau pathologies [146].
Studies have shown that intracellular accumulation appears earlier than amyloid plaque and NFT, and have suggested that intraneuronal Aβ accumulation initiates the caspase-cleavage of tau and precedes the Aβ plaque and NFT formation [147,148]. Meanwhile, tau hyperphosphorylation signal transduction pathways may also be linked indirectly to Aβ oligomers. Recent reviews on the relationship between Aβ pathway and tau pathology can be accessed from references [146,149].

8. AD Progression Pathway and Current Therapeutic Strategies

Mild cognitive impairment (MCI) has been used to prescribe the transitional stage between healthy brain and dementia. One impairment subtype is amnesic mild cognitive impairment (aMCI), which may increase the risk of progression to AD. Due to a variation in definitions of MCI based on different clinical criteria, the pathology of aMCI still lacks a strong characteristic profile. In terms of the intermediate stages towards AD, MCI shares a lot of similarity with AD, i.e., an increase of NFT in the medial temporal lobe (namely, hippocampus) amygdala.
In the last few years, donepezil, rivastigmine, and galantamine are prescribed drugs for AD patients to target acetylcholinesterase that inhibits the breaking down of acetylcholine. Another drug memantine has been used to block glutamate receptors against excitotoxicity as a means to cure AD. To date, the acetylcholinesterase inhibitors are the most widely used AD drug and have been to some extent successful in slowing down the process of cognitive impairment [150].

9. Conclusions

Alzheimer’s disease is a complex and progressive neuro-degenerative disease. There are numerous studies from different points of view on the pathology of AD, such as those mentioned in this review, which involve genetic and environmental factors, tau protein and neurofibrillary tangles, the variety of its isoforms as well as amyloid beta peptides and oligomers. However, all of these issues are not isolated. In all likelihood, the actions among extracellular amyloid β peptides and intracellular tau proteins are closely related to each other through a series of complicated, but essentially important, processes and events. Despite the strong links between Aβ and tau protein that have been reported so far, a panorama study of these deeply connected roadmap is still missing. In order to explore the whole landscape of AD, a step by step strategy is of paramount importance, such as the uncovering of the mechanism of Aβ peptide aggregation, which will help to decipher the whole story on the pathogenesis of AD.

Acknowledgments

The authors would like to thank Philippe Derreumaux for his suggestions on the manuscript. This work was supported by NTU Tier 1 grant RG 23/11 and a start-up grant of Lanyuan Lu from Nanyang Technological University, Singapore.

Author Contributions

L. N. Z. gleaned the materials and wrote the preliminary draft. L. L. reviewed and helped to revise the manuscript. L. Y. C. and Y. M. revised every single details of the manuscript and provided overall supervision, direction and leadship to this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duthey, B. Background paper 6.11: Alzheimer disease and other dementias. A Public Health Approach to Innovation. Update on 2004 Background Paper. 2013, pp. 1–74. Available online: http://www.who.int/medicines/areas/priority_medicines/BP6 11Alzheimer.pdf (accessed on 8 June 2014).
  2. Weuve, J.; Hebert, L.E.; Scherr, P.A.; Evans, D.A. Deaths in the United States among persons with Alzheimer’s disease (2010–2050). Alzheimer’s Dement.: J. Alzheimer’s Assoc. 2014, 10, e40–e46. [Google Scholar]
  3. Ritchie, K.; Kildea, D.; Robine, J.M. The relationship between age and the prevalence of senile dementia: A meta-analysis of recent data. Int. J. Epidemiol. 1992, 21, 763–769. [Google Scholar] [CrossRef] [PubMed]
  4. Bird, T.D. Alzheimer disease overview. In GeneReviewsTM [Internet]; Pagon, R.A., Bird, T.D., Dolan, C.R., et al., Eds.; University of Washington: Seattle, WA, USA, 1998. [Google Scholar]
  5. Duara, R.; Alberola, R.F.; Barker, W.W.; Loewenstein, D.A.; Zatinsky, M.; Eisdorfer, C.E.; Weinberg, G.B. A comparison of familial and sporadic Alzheimer’s disease. Neurobiology 1993, 43, 1377–1384. [Google Scholar]
  6. Bird, T.D. Genetic aspects of Alzheimer disease. Genet. Med. 2008, 10, 231–239. [Google Scholar] [CrossRef] [PubMed]
  7. Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef] [PubMed]
  8. Minati, L.; Edginton, T.; Bruzzone, M.G.; Giaccone, G. Current concepts in Alzheimer’s disease: A multidisciplinary review. Am. J. Aszheimers Dis. Other Dement. 2009, 24, 95–121. [Google Scholar] [CrossRef]
  9. Combarros, O.; Arcaya, A.; Guerra, M.; Infante, J.; Berciano, J. Candidate gene association studies in sporadic Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2002, 14, 41–54. [Google Scholar] [CrossRef] [PubMed]
  10. Mucke, L. Neuroscience: Alzheimer’s disease. Nature 2009, 461, 895–897. [Google Scholar] [CrossRef] [PubMed]
  11. Anitha, S. Studies on DNA Topology and DNA-Amyloid Beta (Aβ) Peptides Interaction in Relevance to Alzheimer’s Disease. Ph.D. Thesis, University of Mysore, Mysore, India, 2005. [Google Scholar]
  12. Suberbielle, E.; Sanchez, P.E.; Kravitz, A.V.; Wang, X.; Ho, K.; Eilertson, K.; Devidze, N.; Kreitzer, A.C.; Mucke, L. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 2013, 16, 613–621. [Google Scholar] [CrossRef] [PubMed]
  13. Schellenberg, G.D.; Bird, T.D.; Wijsman, E.M.; Orr, H.T.; Anderson, L.; Nemens, E.; White, J.A.; Bonnycastle, L.; Weber, J.L.; Alonso, M.E. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992, 258, 668–671. [Google Scholar] [CrossRef] [PubMed]
  14. Cruts, M.; Hendriks, L.; Broeckhoven, C.V. The presenilin genes: A new gene family involved in Alzheimer disease pathology. Hum. Mol. Genet. 1996, 5, 1449–1465. [Google Scholar] [PubMed]
  15. Schellenberg, G.D.; Pericak-Vance, M.A.; Wijsman, E.M.; Moore, D.K.; Gaskell, P.C.; Yamaoka, L.A.; Bebout, J.L.; Anderson, L.; Welsh, K.A.; Clark, C.M.; et al. Linkage analysis of familial Alzheimer disease, using chromosome 21 markers. Am. J. Hum. Genet. 1991, 48, 563–583. [Google Scholar] [PubMed]
  16. Bird, T.D.; Levy-Lahad, E.; Poorkaj, P.; Sharma, V.; Nemens, E.; Lahad, A.; Lampe, T.H.; Schellenberg, G.D. Wide range in age of onset for chromosome 1-related familial Alzheimer’s disease. Ann. Neurol. 1996, 40, 932–936. [Google Scholar] [CrossRef] [PubMed]
  17. George-Hyslop, P.H.S.; Tanzi, R.E.; Polinsky, R.J.; Haines, J.L.; Nee, L.; Watkins, P.C.; Myers, R.H.; Feldman, R.G.; Pollen, D.; Drachman, D. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 1987, 235, 885–890. [Google Scholar] [CrossRef] [PubMed]
  18. Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.S.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; et al. Association of apolipoprotein E allele epsilon4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43, 1467–1472. [Google Scholar]
  19. Naj, A.C.; Beecham, G.W.; Martin, E.R.; Gallins, P.J.; Powell, E.H.; Konidari, I.; Whitehead, P.L.; Cai, G.; Haroutunian, V.; Scott, W.K.; et al. Dementia revealed: Novel chromosome 6 locus for late-onset alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet. 2010, 6, e1001130. [Google Scholar] [CrossRef] [PubMed]
  20. Poduslo, S.E.; Yin, X. A new locus on chromosome 19 linked with late-onset Alzheimer’s disease. Neuroreport 2001, 12, 3759–3761. [Google Scholar] [CrossRef] [PubMed]
  21. Wijsman, E.M.; Daw, E.W.; Yu, C.; Payami, H.; Steinbart, E.J.; Nochlin, D.; Conlon, E.M.; Bird, T.D.; Schellenberg, G.D. Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am. J. Hum. Genet. 2004, 75, 398–409. [Google Scholar] [CrossRef]
  22. Scott, W.K.; Grubber, J.M.; Conneally, P.M.; Small, G.W.; Hulette, C.M.; Rosenberg, C.K.; Saunders, A.M.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Fine mapping of the chromosome 12 late-onset alzheimer disease locus: Potential genetic and phenotypic heterogeneity. Am. J. Hum. Genet. 2000, 66, 922–932. [Google Scholar] [CrossRef] [PubMed]
  23. Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, k.; Williams, A.; et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Heinzen, E.L.; Need, A.C.; Hayden, K.M.; Chiba-Falek, O.; Roses, A.D.; Strittmatter, W.J.; Burke, J.R.; Hulette, C.M.; Welsh-Bohmer, K.A.; Goldstein, D.B. Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J. Alzheimers Dis. 2010, 19, 69–77. [Google Scholar] [PubMed]
  25. Swaminathan, S.; Shen, L.; Kim, S.; Inlow, M.; West, J.D.; Faber, K.M.; Foroud, T.; Mayeux, R.; Saykin, A.J. Analysis of copy number variation in Alzheimer’s disease: The NIALOAD/ NCRAD family study. Curr. Alzheimer Res. 2012, 9, 801–814. [Google Scholar] [CrossRef] [PubMed]
  26. Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992, 42, 631–639. [Google Scholar] [CrossRef] [PubMed]
  27. Chen, F.; David, D.; Ferrari, A.; Gotz, J. Posttranslational modifications of tau—Role in human tauopathies and modeling in transgenic animals. Curr. Drug Targets 2004, 13, 503–515. [Google Scholar] [CrossRef]
  28. Flaherty, D.B.; Soria, J.P.; Tomasiewicz, H.G.; Wood, J.G. Phosphorylation of human tau protein by microtubule-associated kinases: GSK3b and cdk5 are key participants. J. Neurosci. Res. 2000, 62, 463–472. [Google Scholar] [CrossRef] [PubMed]
  29. Avila, J.; Lucas, J.J.; Pérez, M.; Herández, F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev. 2004, 84, 361–384. [Google Scholar]
  30. Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010, 68, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
  31. Crowther, R.A.; Wischik, C.M. Image reconstruction of the Alzheimer paired helical filament. EMBO J. 1985, 4, 3661–3665. [Google Scholar] [PubMed]
  32. Friedhoff, P.; von Bergen, M.; Mandelkow, E.M.; Mandelkow, E. Structure of tau protein and assembly into paired helical filaments. BBA—Protein Proteom. 2000, 1502, 122–132. [Google Scholar]
  33. Hoe, H.S.; Lee, K.J.; Carney, R.S.; Lee, J.; Markova, A.; Lee, J.Y.; Howell, B.W.; Hyman, B.T.; Pak, D.T.; Bu, G.; et al. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J. Neurosci. 2009, 29, 7459–7473. [Google Scholar]
  34. Bellingham, S.A.; Ciccotosto, G.D.; Needham, B.E.; Fodero, L.R.; White, A.R.; Masters, C.L.; Cappai, R.; Camakaris, J. Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J. Neurochem. 2004, 91, 423–428. [Google Scholar] [CrossRef] [PubMed]
  35. Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H.A.; Herms, J. Synapse formation and function is modulated by the amyloid precursor protein. Neurobiol. Dis. 2006, 26, 7212–7221. [Google Scholar]
  36. H’erard, A.S.; Besret, L.; Dubois, A.; Dauguet, J.; Delzescaux, T.; Hantraye, P.; Bonvento, G.; Moya, K.L. siRNA targeted against amyloid precursor protein impairs synaptic activity in vivo. Neurobiol. Aging 2006, 27, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
  37. Zheng, H.; Jiang, M.; Trumbauer, M.E.; Sirinathsinghji, D.J.S.; Hopkins, R.; Smith, D.W.; Heavens, R.P.; Dawson, G.R.; Boyce, S.; Conner, M.W.; et al. β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995, 81, 525–531. [Google Scholar] [CrossRef] [PubMed]
  38. Kirkitadze, M.D.; Bitan, G.; Teplow, D.B. Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. J. Neurosci. Res. 2002, 69, 567–577. [Google Scholar] [CrossRef] [PubMed]
  39. Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511. [Google Scholar] [CrossRef] [PubMed]
  40. Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Cullen, W.K.; Anwyl, R.; Wolfe, M.S.; Rowan, M.J.; Selkoe, D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002, 416, 535–539. [Google Scholar] [CrossRef] [PubMed]
  41. Resende, R.; Ferreiro, E.; Pereira, C.; de Oliveira, C.R. Neurotoxic effect of oligomeric and fibrillar species of amyloid β peptide 1-42: Involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 2008, 155, 725–737. [Google Scholar] [CrossRef] [PubMed]
  42. Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. [Google Scholar] [CrossRef] [PubMed]
  43. Donald, J.M.M.; Savva, G.M.; Brayne, C.; Welzel, A.T.; Forster, G.; Shankar, G.M.; Selkoe, D.J.; Ince, P.G.; Walsh, D.M. The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 2010, 133, 1328–1341. [Google Scholar] [CrossRef] [PubMed]
  44. Talafous, J.; Marcinowski, K.J.; Klopman, G.; Zagorski, M.G. Solution structure of residues 1–28 of the amyloid beta-peptide. Biochemistry 1994, 33, 7788–7796. [Google Scholar] [CrossRef] [PubMed]
  45. Sticht, H.; Bayer, P.; Willbold, D.; Dames, S.; Hilbich, C.; Beyreuther, K.; Frank, R.W.; Rosch, P. Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease. Eur. J. Biochem. 1995, 233, 293–298. [Google Scholar] [CrossRef] [PubMed]
  46. Coles, M.; Bicknell, W.; Watson, A.A.; Fairlie, D.P.; Craik, D.J. Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 1998, 37, 11064–11077. [Google Scholar] [CrossRef] [PubMed]
  47. Watson, A.A.; Fairlie, D.P.; Craik, D.J. Solution structure of methionine-oxidized amyloid beta-peptide (1-40). Does oxidation affect conformational switching? Biochemistry 1998, 37, 12700–12706. [Google Scholar] [CrossRef] [PubMed]
  48. Poulsen, S.A.; Watson, A.A.; Craik, D.J. Solution structures in aqueous SDS micelles of two amyloid beta peptides of A β(1-28) mutated at the α-secretase cleavage site (K16E, K16F). J. Struct. Biol. 2000, 130, 142–152. [Google Scholar] [CrossRef] [PubMed]
  49. Zhang, S.; Iwata, K.; Lachenmann, M.J.; Peng, J.W.; Li, S.; Stimson, E.R.; Lu, Y.; Felix, A.M.; Maggio, J.E.; Lee, J.P. The Alzheimer’s peptide a beta adopts a collapsed coil structure in water. J. Struct. Biol. 2000, 130, 130–141. [Google Scholar] [CrossRef] [PubMed]
  50. Crescenzi, O.; Tomaselli, S.; Guerrini, R.; Salvadori, S.; D’Ursi, A.M.; Temussi, P.A.; Picone, D. Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 2002, 269, 5642–5648. [Google Scholar]
  51. Huang, J.; Yao, Y.; Lin, J.; Ye, Y.H.; Sun, W.Y.; Tang, W.X. The solution structure of rat Abeta-(1-28) and its interaction with zinc ion: Insights into the scarcity of amyloid deposition in aged rat brain. J. Biol. Inorg. Chem. 2004, 9, 627–635. [Google Scholar] [CrossRef] [PubMed]
  52. D’Ursi, A.M.; Armenante, M.R.; Guerrini, R.; Salvadori, S.; Sorrentino, G.; Picone, D. Solution structure of amyloid beta-peptide (25-35) in different media. J. Med. Chem. 2004, 47, 4231–4238. [Google Scholar] [CrossRef] [PubMed]
  53. Zirah, S.; Kozin, S.A.; Mazur, A.K.; Blond, A.; Cheminant, M.; Segalas-Milazzo, I.; Debey, P.; Rebuffat, S. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 2006, 281, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
  54. Istrate, A.N.; Tsvetkov, P.O.; Mantsyzov, A.B.; Kulikova, A.A.; Kozin, S.A.; Makarov, A.A.; Polshakov, V.I. NMR solution structure of rat Abeta(1-16): Toward understanding the mechanism of rats’ resistance to Alzheimer’s disease. Biophys. J. 2012, 102, 136–143. [Google Scholar] [CrossRef] [PubMed]
  55. Richard, T.; Papastamoulis, Y.; Pierre, W.T.; Monti, J.P. 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol epsilon-viniferin glucoside: Implications in Alzheimer’s disease. Biochim. Biophys. Acta 2013, 1830, 5068–5074. [Google Scholar]
  56. Colletier, J.; Laganowsky, A.; Landau, M.; Zhao, M.; Soriaga, A.B.; Goldschmidt, L.; Flot, D.; Cascio, D.; Sawaya, M.R.; Eisenberg, D. Molecular basis for Amyloid-β polymorphism. Proc. Natl. Acad. Sci. USA 2011, 108, 16938–16943. [Google Scholar] [CrossRef] [PubMed]
  57. Landau, M.; Sawaya, M.R.; Faull, K.F.; Laganowsky, A.; Jiang, L.; Sievers, S.A.; Liu, J.; Barrio, J.R.; Eisenberg, D. Towards a pharmacophore for amyloid. PLoS Biol. 2011, 9, e1001080. [Google Scholar] [CrossRef] [PubMed]
  58. Hoyer, W.; Gronwall, C.; Jonsson, A.; Stahl, S.; Hard, T. Stabilization of a beta-hairpin in monomeric Alzheimer’s amyloid-beta peptide inhibits amyloid formation. Proc. Natl. Acad. Sci. USA 2008, 105, 5099–5104. [Google Scholar] [CrossRef] [PubMed]
  59. Hynes, T.R.; Randal, M.; Kennedy, L.A.; Eigenbrot, C.; Kossiakoff, A.A. X-ray crystal structure of the protease inhibitor domain of Alzheimer’s amyloid beta-protein precursor. Biochemistry 1990, 29, 10018–10022. [Google Scholar] [CrossRef] [PubMed]
  60. Perona, J.J.; Tsu, C.A.; McGrath, M.E.; Craik, C.S.; Fletterick, R.J. Relocating a negative charge in the binding pocket of trypsin. J. Mol. Biol. 1993, 230, 934–949. [Google Scholar] [CrossRef] [PubMed]
  61. Scheidig, A.J.; Hynes, T.R.; Pelletier, L.A.; Wells, J.A.; Kossiakoff, A.A. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer’s amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): Engineering of inhibitors with altered specificities. Protein Sci. 1997, 6, 1806–1824. [Google Scholar] [CrossRef] [PubMed]
  62. Zhang, Z.; Lee, C.H.; Mandiyan, V.; Borg, J.P.; Margolis, B.; Schlessinger, J.; Kuriyan, J. Sequence-specific recognition of the internalization motif of the Alzheimer’s amyloid precursor protein by the X11 PTB domain. EMBO J. 1997, 16, 6141–6150. [Google Scholar] [CrossRef] [PubMed]
  63. Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry, A.; McKinstry, W.J.; Galatis, D.; Hesse, L.; Multhaup, G.; Beyreuther, K.; Masters, C.L.; et al. Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat. Struct. Mol. Biol. 1999, 6, 327–331. [Google Scholar] [CrossRef]
  64. Yun, M.; Keshvara, L.; Park, C.G.; Zhang, Y.M.; Dickerson, J.B.; Zheng, J.; Rock, C.O.; Curran, T.; Park, H.W. Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 2003, 278, 36572–36581. [Google Scholar] [CrossRef] [PubMed]
  65. Barnham, K.J.; McKinstry, W.J.; Multhaup, G.; Galatis, D.; Morton, C.J.; Curtain, C.C.; Williamson, N.A.; White, A.R.; Hinds, M.G.; Norton, R.S.; et al. Structure of the Alzheimer’s disease amyloid precursor protein copper binding Domain: A regulator of neuronal copper homeostasis. J. Biol. Chem. 2003, 278, 17401–17407. [Google Scholar] [CrossRef] [PubMed]
  66. Dulubova, I.; Ho, A.; Huryeva, I.; Sudhof, T.C.; Rizo, J. Three-dimensional structure of an independently folded extracellular domain of human amyloid-beta precursor protein. Biochemistry 2004, 43, 9583–9588. [Google Scholar] [CrossRef] [PubMed]
  67. Navaneetham, D.; Jin, L.; Pandey, P.; Strickler, J.E.; Babine, R.E.; Abdel-Meguid, S.S.; Walsh, P.N. Structural and mutational analyses of the molecular interactions between the catalytic domain of factor XIa and the kunitz protease inhibitor domain of protease nexin 2. J. Biol. Chem. 2005, 280, 36165–36175. [Google Scholar] [CrossRef] [PubMed]
  68. Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Dobeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef] [PubMed]
  69. Shen, Y.; Joachimiak, A.; Rosner, M.R.; Tang, W.J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006, 443, 870–874. [Google Scholar] [CrossRef] [PubMed]
  70. Kong, G.K.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Masters, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; et al. Structural studies of the Alzheimer’s amyloid precursor protein copper-binding domain reveal how it binds copper ions. J. Mol. Biol. 2007, 367, 148–161. [Google Scholar] [CrossRef] [PubMed]
  71. Kong, G.K.; Adams, J.J.; Cappai, R.; Parker, M.W. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallogr. Sect. F 2007, 63, 819–824. [Google Scholar] [CrossRef]
  72. Gardberg, A.S.; Dice, L.T.; Ou, S.; Rich, R.L.; Helmbrecht, E.; Ko, J.; Wetzel, R.; Myszka, D.G.; Patterson, P.H.; Dealwis, C. Molecular basis for passive immunotherapy of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2007, 104, 15659–15664. [Google Scholar] [CrossRef] [PubMed]
  73. Li, H.; Koshiba, S.; Hayashi, F.; Tochio, N.; Tomizawa, T.; Kasai, T.; Yabuki, T.; Motoda, Y.; Harada, T.; Watanabe, S.; et al. Structure of the C-terminal phosphotyrosine interaction domain of Fe65L1 complexed with the cytoplasmic tail of amyloid precursor protein reveals a novel peptide binding mode. J. Biol. Chem. 2008, 283, 27165–27178. [Google Scholar] [CrossRef] [PubMed]
  74. Miles, L.A.; Wun, K.S.; Crespi, G.A.; Fodero-Tavoletti, M.T.; Galatis, D.; Bagley, C.J.; Beyreuther, K.; Masters, C.L.; Cappai, R.; McKinstry, W.J.; et al. Amyloid-beta-anti-amyloid-beta complex structure reveals an extended conformation in the immunodominant B-cell epitope. J. Mol. Biol. 2008, 377, 181–192. [Google Scholar] [CrossRef] [PubMed]
  75. Radzimanowski, J.; Simon, B.; Sattler, M.; Beyreuther, K.; Sinning, I.; Wild, K. Structure of the intracellular domain of the amyloid precursor protein in complex with Fe65-PTB2. Embo Rep. 2008, 9, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
  76. Mirza, Z.; Vikram, G.; Singh, N.; Sinha, M.; Bhushan, A.; Sharma, S.; Srinivasan, A.; Kaur, P.; Singh, T.P. Phospholipase A2 prevents the aggregation of Amyloid beta peptides: Crystal structure of the complex of phospholipase A2 with octapeptide fragment of Amyloid beta peptide, Asp-Ala-Glu-Phe-Arg-His-Asp-Ser at 2 Å resolution. Available online: http://www.metalife.com/PDB/3JQ5_67427 (accessed on 6 June 2014).
  77. Basi, G.S.; Feinberg, H.; Oshidari, F.; Anderson, J.; Barbour, R.; Baker, J.; Comery, T.A.; Diep, L.; Gill, D.; Johnson-Wood, K.; et al. Structural correlates of antibodies associated with acute reversal of amyloid beta-related behavioral deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 2010, 285, 3417–3427. [Google Scholar] [CrossRef] [PubMed]
  78. Guo, Q.; Manolopoulou, M.; Bian, Y.; Schilling, A.B.; Tang, W.J. Molecular basis for the recognition and cleavages of Igf-II, Tgf-Alpha, and amylin by human insulin degrading enzyme. J. Mol. Biol. 2010, 395, 430–443. [Google Scholar] [CrossRef] [PubMed]
  79. Dahms, S.O.; Hoefgen, S.; Roeser, D.; Schlott, B.; Guhrs, K.H.; Than, M.E. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 2010, 107, 5381–5386. [Google Scholar] [CrossRef] [PubMed]
  80. Burgos, P.V.; Mardones, G.A.; Rojas, A.L.; daSilva, L.L.; Prabhu, Y.; Hurley, J.H.; Bonifacino, J.S. Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev. Cell 2010, 18, 425–436. [Google Scholar] [CrossRef] [PubMed]
  81. Pandey, N.; Mirza, Z.; Vikram, G.; Singh, N.; Bhushan, A.; Kaur, P.; Srinivasan, A.; Sharma, S.; Singh, T.P. Crystal structure of the complex formed between Phospholipase A2 with beta-amyloid fragment, Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met at 1.8 Å resolution. Available online: http://www.metalife.com/PDB/3JTI 67538 (accessed on 10 June 2014).
  82. Salameh, M.A.; Soares, A.S.; Navaneetham, D.; Sinha, D.; Walsh, P.N.; Radisky, E.S. Determinants of affinity and proteolytic stability in interactions of Kunitz family protease inhibitors with mesotrypsin. J. Biol. Chem. 2010, 285, 36884–36896. [Google Scholar] [CrossRef] [PubMed]
  83. Streltsov, V.A.; Varghese, J.N.; Masters, C.L.; Nuttall, S.D. Crystal structure of the amyloid-beta p3 fragment provides a model for oligomer formation in Alzheimer’s disease. J. Neurosci. 2011, 31, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
  84. Das, S.; Raychaudhuri, M.; Sen, U.; Mukhopadhyay, D. Functional implications of the conformational switch in AICD peptide upon binding to Grb2-SH2 domain. J. Mol. Biol. 2011, 414, 217–230. [Google Scholar] [CrossRef] [PubMed]
  85. Lee, S.; Xue, Y.; Hu, J.; Wang, Y.; Liu, X.; Demeler, B.; Ha, Y. The E2 domains of APP and APLP1 share a conserved mode of dimerization. Biochemistry 2011, 50, 5453–5464. [Google Scholar] [CrossRef] [PubMed]
  86. Wang, Y.; Ha, Y. The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol. Cell 2004, 15, 343–353. [Google Scholar] [CrossRef] [PubMed]
  87. Colletier, J.; Laganowsky, A.; Landau, M.; Zhao, M.; Soriaga, A.B.; Goldschmidt, L.; Flot, D.; Cascio, D.; Sawaya, M.R.; Eisenberg, D. Molecular basis for amyloid-beta polymorphism. Proc. Natl. Acad. Sci. USA 2011. [CrossRef]
  88. Hashimoto, H.; Takeuchi, T.; Komatsu, K.; Miyazaki, K.; Sato, M.; Higashi, S. Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of beta-amyloid precursor protein-derived inhibitor. J. Biol. Chem. 2011, 286, 33236–33243. [Google Scholar] [CrossRef] [PubMed]
  89. Petkova, A.; Yau, W.; Tycko, R. Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 2006, 45, 498–512. [Google Scholar] [CrossRef] [PubMed]
  90. Paravastu, A.; Leapman, R.; Yau, W.; Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc. Natl. Acad. Sci. USA 2008, 105, 18349–18354. [Google Scholar] [CrossRef] [PubMed]
  91. Qiang, W.; Yau, W.M.; Luo, Y.; Mattson, M.P.; Tycko, R. Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils. Proc. Natl. Acad. Sci. USA 2012, 109, 4443–4448. [Google Scholar] [CrossRef] [PubMed]
  92. Nadezhdin, K.D.; Bocharova, O.V.; Bocharov, E.V.; Arseniev, A.S. Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment. Febs Lett. 2012, 586, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
  93. Barrett, P.J.; Song, Y.; Horn, W.D.V.; Hustedt, E.J.; Schafer, J.M.; Hadziselimovic, A.; Beel, A.J.; Sanders, C.R. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012, 336, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
  94. Nadezhdin, K.D.; Bocharova, O.V.; Bocharov, E.V.; Arseniev, A.S. Structural and dynamic study of the transmembrane domain of the amyloid precursor protein. Acta Nat. 2011, 3, 69–76. [Google Scholar]
  95. Porte, S.L.L.; Bollini, S.S.; Lanz, T.A.; Abdiche, Y.N.; Rusnak, A.S.; Ho, W.H.; Kobayashi, D.; Harrabi, O.; Pappas, D.; Mina, E.W.; et al. Structural basis of C-terminal beta-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer’s disease. J. Mol. Biol. 2012, 421, 525–536. [Google Scholar] [CrossRef] [PubMed]
  96. Dahms, S.O.; Konnig, I.; Roeser, D.; Guhrs, K.H.; Mayer, M.C.; Kaden, D.; Multhaup, G.; Than, M.E. Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2 domain. J. Mol. Biol. 2012, 416, 438–452. [Google Scholar] [CrossRef] [PubMed]
  97. Xie, X.; Yan, X.; Wang, Z.; Zhou, H.; Diao, W.; Zhou, W.; Long, J.; Shen, Y. Open-closed motion of Mint2 regulates APP metabolism. J. Mol. Cell Biol. 2013, 5, 48–56. [Google Scholar] [CrossRef] [PubMed]
  98. Miles, L.A.; Crespi, G.A.; Doughty, L.; Parker, M.W. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci. Rep. 2013. [CrossRef]
  99. Lu, J.X.; Qiang, W.; Yau, W.M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 2013, 154, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
  100. Chen, W.; Lopez, M.; Gamache, E.; Li, Y.; Wang, C. Familial Alzheimer’s mutation V44M promotes helical unwinding at the ε-cleavage site for Abeta42 production. Nat. Commun. 2014, 5, 3037. [Google Scholar] [PubMed]
  101. Nguyen, P.H.; Derreumaux, P. Conformational ensemble and polymorphism of the all-atom Alzheimer’s Abeta(37-42) amyloid peptide oligomers. J. Phys. Chem. B 2013, 117, 5831–5840. [Google Scholar] [CrossRef] [PubMed]
  102. Jang, S.; Shin, S. Amyloid β-peptide oligomerization in silico: Dimer and trimer. J. Phys. Chem. B 2006, 110, 1955–1958. [Google Scholar] [CrossRef] [PubMed]
  103. Nguyen, P.H.; Li, M.S.; Derreumaux, P. Effects of all-atom force fields on amyloid oligomerization: Replica exchange molecular dynamics simulations of the Abeta(16-22) dimer and trimer. Phys. Chem. Chem. Phys. 2011, 13, 9778–9788. [Google Scholar] [CrossRef] [PubMed]
  104. Chebaro, Y.; Mousseau, N.; Derreumaux, P. Structures and thermodynamics of Alzheimer’s amyloid-beta Abeta(16-35) monomer and dimer by replica exchange molecular dynamics simulations: Implication for full-length Abeta fibrillation. J. Phys. Chem. B 2009, 113, 7668–7675. [Google Scholar] [CrossRef] [PubMed]
  105. Urbanc, B.; Cruz, L.; Ding, F.; Sammond, D.; Khare, S.; Buldyrev, S.V.; Stanley, H.E.; Dokholyan, N.V. Molecular dynamics simulation of amyloid β dimer formation. Biophys. J. 2004, 87, 2310–2321. [Google Scholar] [CrossRef] [PubMed]
  106. Xu, Y.; Shen, J.; Luo, X.; Zhu, W.; Chen, K.; Ma, J.; Jiang, H. Conformational transition of amyloid β-peptide. Proc. Natl. Acad. Sci. USA 2005, 102, 5403–5407. [Google Scholar] [CrossRef] [PubMed]
  107. Lemkul, J.A.; Bevan, D.R. A comparative molecular dynamics analysis of the amyloid β-peptide in a lipid bilayer. Arch. Biochem. Biophys. 2008, 470, 54–63. [Google Scholar] [CrossRef] [PubMed]
  108. Lu, Y.; Derreumaux, P.; Guo, Z.; Mousseau, N.; Wei, G. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 2009, 75, 954–963. [Google Scholar] [CrossRef] [PubMed]
  109. Bitan, G.; Kirkitadze, M.D.; Lomakin, A.; Vollers, S.S.; Benedek, G.B.; Teplow, D.B. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 2003, 100, 330–335. [Google Scholar] [CrossRef] [PubMed]
  110. Cote, S.; Laghaei, R.; Derreumaux, P.; Mousseau, N. Distinct dimerization for various alloforms of the amyloid-beta protein: Abeta(1-40), Abeta(1-42), and Abeta(1-40)(D23N). J. Phys. Chem. B 2012, 116, 4043–4055. [Google Scholar] [CrossRef] [PubMed]
  111. Leoni, V.; Solomon, A.; Kivipelto, M. Links between ApoE brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochem. Soc. Trans. 2010, 38, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
  112. Zhao, L.N.; Chiu, S.W.; Benoit, J.; Chew, L.Y.; Mu, Y. Amyloid β peptide aggregation in a mixed membrane bilayer: A molecule dynamic study. J. Phys. Chem. B 2011, 115, 12247–12256. [Google Scholar] [CrossRef] [PubMed]
  113. Friedrich, R.P.; Tepper, K.; Rönicke, R.; Soom, M.; Westermann, M.; Reymann, K.; Kaether, C.; Fändrich, M. Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
  114. Zhao, L.N.; Chiu, S.W.; Benoit, J.; Chew, L.Y.; Mu, Y. The effect of curcumin on the stability of Aβ dimers. J. Phys. Chem. B 2012, 116, 7428–7435. [Google Scholar] [CrossRef] [PubMed]
  115. Chebaro, Y.; Jiang, P.; Zang, T.; Mu, Y.; Nguyen, P.H.; Mousseau, N.; Derreumaux, P. Structures of Abeta17-42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure. J. Phys. Chem. B 2012, 116, 8412–8422. [Google Scholar] [CrossRef] [PubMed]
  116. Zhao, L.N.; Mu, Y.; Chew, L.Y. Heme prevents amyloid beta peptides aggregation through hydrophobic interaction based on molecular dynamics simulation. Phys. Chem. Chem. Phys. 2013, 15, 14098–14106. [Google Scholar] [CrossRef] [PubMed]
  117. Jiang, P.; Li, W.F.; Shea, J.E.; Mu, Y. Resveratrol inhibits the formation of multiple-layered β-sheet oligomers of the human islet amyloid polypeptide segment 22-27. Biophys. J. 2011, 100, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
  118. Colombo, R.; Carotti, A.; Catto, M.; Racchi, M.; Lanni, C.; Verga, L.; Caccialanza, G.; Lorenzi, E.D. CE can identify small molecules that selectively target soluble oligomers of amyloid β protein and display antifibrillogenic activity. Electrophoresis 2009, 30, 1418–1429. [Google Scholar] [CrossRef] [PubMed]
  119. Cohen, A.D.; Ikonomovic, M.D.; Abrahamson, E.E.; Paljug, W.R.; DeKosky, S.T.; Lefterov, I.M.; Koldamova, R.P.; Shao, L.; Debnath, M.L.; Mason, N.S.; et al. Anti-amyloid effects of small molecule Aβ-binding agents in PS1/APP mice. Lett. Drug. Des. Discov. 2009, 6, 437. [Google Scholar] [CrossRef] [PubMed]
  120. Zhang, T.; Xu, W.; Mu, Y.; Derreumaux, P. Atomic and dynamic insights into the beneficial effect of the 1,4-naphthoquinon-2-yl-l-tryptophan inhibitor on Alzheimer’s Abeta1-42 dimer in terms of aggregation and toxicity. ACS Chem. Neurosci. 2014, 5, 148–159. [Google Scholar] [CrossRef] [PubMed]
  121. Zhang, T.; Zhang, J.; Derreumaux, P.; Mu, Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Abeta(1-42) dimer. J. Phys. Chem. B 2013, 117, 3993–4002. [Google Scholar] [CrossRef] [PubMed]
  122. Zhao, L.N.; Zhang, T.; Zhang, C.; Wang, C.; Morozova-Roche, L.A.; Chew, L.Y.; Mu, Y. S100A9 induces aggregation-prone conformation in Abeta peptides: A combined experimental and simulation study. RSC Adv. 2013, 3, 24081–24089. [Google Scholar] [CrossRef]
  123. Nguyen, P.H.; Tarus, B.; Derreumaux, P. Familial Alzheimer A2V mutation reduces the intrinsic disorder and completely changes the free energy landscape of the Abeta1-28 monomer. J. Phys. Chem. B 2014, 118, 501–510. [Google Scholar] [CrossRef] [PubMed]
  124. Viet, M.H.; Nguyen, P.H.; Ngo, S.T.; Li, M.S.; Derreumaux, P. Effect of the Tottori familial disease mutation (D7N) on the monomers and dimers of Abeta40 and Abeta42. ACS Chem.Neurosci. 2013, 4, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
  125. Nguyen, P.; Derreumaux, P. Understanding amyloid fibril nucleation and abeta oligomer/drug interactions from computer simulations. Acc. Chem. Res. 2014, 47, 603–611. [Google Scholar] [CrossRef] [PubMed]
  126. Kodalia, R.; Williams, A.D.; Chemuru, S.; Wetzel, R. Aβ(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J. Mol. Biol. 2010, 401, 503–517. [Google Scholar] [CrossRef] [PubMed]
  127. Tycko, R. β-Amyloid fibril structures, in vitro and in vivo. In Proteopathic Seeds and Neurodegenerative Diseases, Research and Perspectives in Alzheimer’s Disease; Springer: Berlin, Germany, 2013; Volume 155, pp. 19–36. [Google Scholar]
  128. Hard, T. Amyloid fibrils: Formation, polymorphism, and inhibition. J. Phys. Chem. Lett. 2014, 5, 607–614. [Google Scholar] [CrossRef]
  129. Nguyen, P.H.; Li, M.S.; Stock, G.; Straub, J.E.; Thirumalai, D. Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage dock-lock mechanism. Proc. Natl. Acad. Sci. USA 2007, 104, 111–116. [Google Scholar] [CrossRef] [PubMed]
  130. Welander, H.; Franberg, J.; Graff, C.; Sundstrm, E.; Winblad, B.; Tjernberg, L.O. Aβ43 is more frequent than Aβ40 in amyloid plaque cores from Alzheimer disease brains. J. Neurochem. 2009, 110, 697–706. [Google Scholar] [CrossRef] [PubMed]
  131. Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 1994, 13, 45–53. [Google Scholar] [CrossRef] [PubMed]
  132. Portelius, E.; Zetterberg, H.; Dean, R.A.; Marcil, A.; Bourgeois, P.; Nutu, M.; Andreasson, U.; Siemers, E.; Mawuenyega, K.G.; Sigurdson, W.C.; et al. Amyloid-β(1 − 15/16) as a marker for γ-secretase inhibition in Alzheimer’s disease. J. Alzheimers Dis. 2012, 31, 335–341. [Google Scholar] [PubMed]
  133. Wiltfang, J.; Esselmann, H.; Bibl, M.; Smirnov, A.; Otto, M.; Paul, S.; Schmidt, B.; Klafki, H.W.; Maler, M.; Dyrks, T.; et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1 − 37/38/39 in addition to 1 − 40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J. Neurochem. 2002, 81, 481–496. [Google Scholar] [CrossRef] [PubMed]
  134. Portelius, E.; Tran, A.J.; Andreasson, U.; Persson, R.; Brinkmalm, G.; Zetterberg, H.; Blennow, K.; Westman-Brinkmalm, A. Characterization of amyloid β peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J. Proteome Res. 2007, 6, 4433–4439. [Google Scholar] [CrossRef] [PubMed]
  135. Bouter, Y.; Dietrich, K.; Wittnam, J.L.; Rezaei-Ghaleh, N.; Pillot, T.; Papot-Couturier, S.; Lefebvre, T.; Sprenger, F.; Wirths, O.; Zweckstetter, M. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol. 2013, 126, 189–206. [Google Scholar] [CrossRef] [PubMed]
  136. Jawhar, S.; Wirths, O.; Bayer, T.A. Pyroglutamate amyloid-β (Aβ): A hatchet man in Alzheimer disease. J. Biol. Chem. 2011, 286, 38825–38832. [Google Scholar] [CrossRef] [PubMed]
  137. Harigaya, Y.; Saido, T.C.; Eckman, C.B.; Prada, C.M.; Shoji, M.; Younkin, S.G. Amyloid β protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem. Biophys. Res. Commun. 2000, 276, 422–427. [Google Scholar] [CrossRef] [PubMed]
  138. Perez-Garmendia, R.; Gevorkian, G. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer’s disease immunotherapy. Curr. Neuropharmacol. 2013, 11, 491–498. [Google Scholar] [CrossRef] [PubMed]
  139. Bayer, T.A.; Wirths, O. Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol. 2014, 127, 787–801. [Google Scholar] [CrossRef] [PubMed]
  140. Haass, C.; Schlossmacher, M.G.; Hung, A.Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B.L.; Lieberburg, I.; Koo, E.H.; Schenk, D.; Teplow, D.B.; et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 1992, 359, 322–325. [Google Scholar] [CrossRef] [PubMed]
  141. Russo, C.; Saido, T.C.; DeBusk, L.M.; Tabaton, M.; Gambetti, P.; Teller, J.K. Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer’s disease and Down’s syndrome brains. FEBS Lett. 1997, 409, 411–416. [Google Scholar] [CrossRef] [PubMed]
  142. Sevalle, J.; Amoyel, A.; Robert, P.; Fournie-Zaluski, M.C.; Roques, B.; Checler, F. Aminopeptidase A contributes to the N-terminal truncation of amyloid beta-peptide. J. Neurochem. 2009, 109, 248–256. [Google Scholar] [CrossRef] [PubMed]
  143. Sun, N.; Hartmann, R.; Lecher, J.; Stoldt, M.; Funke, S.A.; Gremer, L.; Ludwig, H.; Demuth, H.; Kleinschmidt, M.; Willbold, D. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer’s disease-related amyloid-beta using NMR spectroscopy. J. Pept. Sci. 2012, 18, 691–695. [Google Scholar] [CrossRef] [PubMed]
  144. Wirths, O.; Erck, C.; Martens, H.; Harmeier, A.; Geumann, C.; Jawhar, S.; Kumar, S.; Multhaup, G.; Walter, J.; Ingelsson, M.; et al. Identification of low molecular weight pyroglutamate Aβ oligomers in Alzheimer disease. J. Biol. Chem. 2010, 285, 41517–41524. [Google Scholar] [CrossRef] [PubMed]
  145. Wirths, O.; Breyhan, H.; Cynis, H.; Schilling, S.; Demuth, H.U.; Bayer, T.A. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 2009, 118, 487–696. [Google Scholar] [CrossRef] [PubMed]
  146. LaFerla, F.M. Pathways linking Aβ and tau pathologies. Biochem. Soc. Trans. 2010, 38, 993–995. [Google Scholar] [CrossRef] [PubMed]
  147. Gouras, G.K.; Tsai, J.; Naslund, J.; Vincent, B.; Edgar, M.; Checler, F.; Greenfield, J.P.; Haroutunian, V.; Buxbaum, J.D.; Xu, H.; et al. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 2000, 156, 15–20. [Google Scholar] [CrossRef] [PubMed]
  148. Rissman, R.; Poon, W.W.; Blurton, M.; Oddo, S.; Torp, R.; Vitek, M.; LaFerla, F.; Rohn, T.T. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J. Clin. Investig. 2004, 114, 121–130. [Google Scholar] [CrossRef] [PubMed]
  149. Blurton-Jones, M.; LaFerla, F.M. Pathways by which Abeta facilitates tau pathology. Curr. Alzheimer Res. 2006, 3, 437–448. [Google Scholar] [CrossRef] [PubMed]
  150. Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 357–399. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Zhao, L.N.; Lu, L.; Chew, L.Y.; Mu, Y. Alzheimer’s Disease—A Panorama Glimpse. Int. J. Mol. Sci. 2014, 15, 12631-12650. https://doi.org/10.3390/ijms150712631

AMA Style

Zhao LN, Lu L, Chew LY, Mu Y. Alzheimer’s Disease—A Panorama Glimpse. International Journal of Molecular Sciences. 2014; 15(7):12631-12650. https://doi.org/10.3390/ijms150712631

Chicago/Turabian Style

Zhao, Li Na, Lanyuan Lu, Lock Yue Chew, and Yuguang Mu. 2014. "Alzheimer’s Disease—A Panorama Glimpse" International Journal of Molecular Sciences 15, no. 7: 12631-12650. https://doi.org/10.3390/ijms150712631

Article Metrics

Back to TopTop