Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles
Abstract
:1. Introduction
2. Microbial Biosynthesis of Nanoparticles
Microorganisms | Type of Nanoparticles |
---|---|
Bacteria | |
Bacillus subtilis | Ag |
Pseudomonas stutzeri | Ag, Au |
Pseudomonas aeruginosa | Au |
Shewanella algae | Au |
Shewanella oneidensis | Uranium (IV) |
Lactobacillus strains | Au, Ag, Au-Ag alloy, TiO2 |
Clostridium thermoaceticum | CdS |
Klebsiella aerogenes | CdS, Ag |
Escherichia coli | CdS, Au |
Rhodopseudomonas capsulata | Au |
Desulfobacteriaceae | ZnS |
Rhodococcus strains | Au |
Yeast | |
Candida glabrata | CdS |
Torulopsis sp. | PbS |
Schizosaccharomyces pombe | CdS |
S. cerevisiae | Sb2O3, TiO2 |
Fungi | |
Verticillium sp. | Ag, Au |
Fusarium oxysporum | Ag, Au, Au-Ag alloy, CdS |
Colletotrichum sp. | Au |
Aspergillus fumigatus | Ag |
Trichoderma asperellum | Ag |
Phaenerochaete chrysosporium | Ag |
Schizosaccharomyces cerevisiae | Au |
Yarrowia lipolytica | Au |
Torulopsis sp. | PbS |
Candida glubrata | CdS |
Actinomycetes | |
Rhodococcus sp. | Au |
Thermomonospora sp. | Au |
Algae | |
Chlorella vulgaris | Au |
Phaeodactylum tricornutum | CdS |
Sargassum wightii | Au |
3. Biosurfactants—Types, Structures and Properties
Biosurfactant Type | Microbial Species |
---|---|
Glycolipids | |
Trehalose mycolates | Rhodococcus erythropolis, Arthobacter paraffineu, Mycobacterium phlei, Nocardia erythropolis |
Trehalose esters | Mycobacterium fortium, Micromonospora sp., M. smegmatis, M. paraffnicum, Rhodococcus erythropoli, Arthobacter sp., Nocardia sp. |
Rhamnolipids | Pseudomonas spp., Pseudomonas chlororaphis, Burkholderia spp. |
Sophorolipids | Candida bombicola/apicola, Torulopsis petrophilum, Candida sp., Candida antartica, Candida botistae, Candida riodocensis, Candida stellata, Candida bogoriensis |
Flocculosin | Pseudomonas flocculosa |
Phospholipids and fatty acids | |
Phospholipids, Fatty acids | Candida sp., Corynebacterium sp., Micrococcus sp., Acinetobacter sp., Thiobacillus thiooxidans, Aspergillus sp., Pseudomonas sp., Mycococcus sp., Penicillium sp., Clavibacter michiganensis subsp. insidiosus |
Lipopeptides and lipoproteins | |
Gramicidins | Bacillus brevis |
Peptide lipids | Bacillus licheniformis |
Serrawettin | Serratia marcescens |
Surfactin, subtilysin, subsporin | Bacillus subtilis |
Lichenysin G | Bacillus licheniformis IM1307 |
Amphomycin | Streptomyces canus |
Globomycin | Streptomyces globocacience |
Bacillomycin L | Bacillus subtilis |
Iturin A | Bacillus subtilis |
Putisolvin I and II | Pseudomonas putida |
Arthrofactin | Arthobacter sp. |
Fengycin | Bacillus thuringiensis CMB26 |
Mycobacillin | Bacillus subtilis |
Polymeric biosurfactants | |
Emulsan | Acinetobacter caloaceticus RAG-1, Arethrobacter calcoaceticus |
Biodispersan | Acinetobacter caloaceticus A |
Liposan | Candida lipolytica |
Alasan | Acinetobacter calcoaceticus |
Protein PA | Pseudomonas aeruginosa |
Particulate biosurfactants | |
Membrane vesicles | Acinetobacter sp. HO1-N, Acinetobacter calcoaceticus |
Fimbriae, whole cell | Acinetobacter calcoaceticus, Cyanobacteria |
- (1)
- Biodegradability—owing to the low toxicity and simple chemical structure, the compounds do not persist in the environment, are easily degraded and therefore do not accumulate in the environment [31];
- (2)
- Biocompatibility and digestibility, which allows their unconstrained application in cosmetics, pharmaceuticals and as functional food additives [32];
- (3)
- Availability of raw materials—biosurfactants can be produced from relatively cheap raw materials, which are available in large quantities [33];
- (4)
- Acceptable production economics—most biosurfactants can be produced using sustainable substrates, and even using some industrial wastes and by-products, which represents a promising area for bulk production, which is important for use as detergents and cleaning products, or petroleum-related field technologies such as microbial enhanced oil recovery—MEOR [34];
- (5)
- Use in environmental biotechnology—biodegradation and detoxification of industrial effluents, bioremdiation of contaminated soils, control of oil-spills, processes for stabilization of industrial emulsions [21];
- (6)
- Specificity—due to specific functional groups in some biosurfactant molecules, they can used in detoxification of specific pollutants, de-emulsification of industrial emulsions, development of specific pharmaceutical and food applications [32];
- (7)
- Effectiveness at extreme temperatures, pH, and salinity [35].
4. Role of Biosurfactants in Biosynthesis of Metallic Nanoparticles
4.1. Glycolipids Biosurfactants Produced Nanoparticles
4.2. Lipopeptides Biosurfactants Produced Nanoparticles
4.3. Chemical Surfactants and Nanoparticles
5. Antimicrobial and Cellular Activity of Nanoparticles
6. Conclusions and Future Perspective
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the Construction Industry: A review of their applications and environmental health and safety considerations. ACS Nano 2010, 4, 3580–3590. [Google Scholar]
- Patel, K.; Kapoor, S.; Dave, D.P.; Ukherjee, T. Synthesis of Pt, Pd, Pt/Ag, and Pd/Ag nanoparticles by microwave-polyol method. J. Chem. Sci. 2007, 117, 311–316. [Google Scholar]
- Chen, Z.; Gao, L. A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles. Mater. Res. Bull. 2007, 42, 1657–1661. [Google Scholar]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Add. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar]
- Somg, Y.J.; Jang, K.-H.; Kim, S.B. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009, 44, 1133–1138. [Google Scholar]
- Leung, T.; Wong, Ch.K.; Xie, Y. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Mater. Chem. Phys. 2010, 121, 402–405. [Google Scholar]
- Bozanic, D.K.; Dimitrijevic-Brankovic, S.; Bibic, N.; Luyt, A.S.; Djokovic, V. Silver nanoparticles encapsulated in glycogen biopolymer: Morphology, optical and antimicrobial properties. Carbohydr. Polym. 2011, 83, 883–890. [Google Scholar]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011, 82, 489–494. [Google Scholar]
- Kumar, G.V.; Gokavarapu, D.S.; Rajeswari, A.; Dhas, S.T.; Karthick, V.; Kapadia, Z.; Shrestho, T.; Barathy, A.I.; Roy, A.; Sinna, S. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B Biointerfaces 2011, 87, 159–163. [Google Scholar] [CrossRef]
- MubarakiAli, D.; Arunkumar, J.; Nag, K.H.; SheikSyedlshack, K.A.; Baldev, E.; Pandiaraj, D.; Thajuddin, N. Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling. Colloids Surf. B Biointerfaces 2013, 103, 166–173. [Google Scholar]
- Tamuly, C.; Hazarika, M.; Borah, S.C.; Das, M.R.; Boruch, M.P. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids Surf. B Biointerfaces 2013, 102, 627–634. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar]
- Quester, K.; Avalos-Borja, M.; Castro-Longoria, E. Biosynthesis and microscopic study of metallic nanoparticles. Micron 2013, 54–55, 1–27. [Google Scholar]
- Nirmala, M.J.; Shiny, P.J.; Ernest, V.; Das, S.P.; Samundeeswari, A.; Mukherjee, A.; Chndrasekaran, N. A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int. J. Pharm. Sci. 2013, 5, 23–29. [Google Scholar]
- Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. [Google Scholar]
- Rangarajan, V.; Majumder, S.; Sen, R. Biosurfactant-mediated nanoparticles synthesis: A green and sustainable approach. In Biosurfactants: Research Trends and Applications; Mulligan, C.N., Sharma, S.K., Mudhoo, A., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 217–229. [Google Scholar]
- He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. [Google Scholar] [CrossRef]
- Sadowski, Z. Biosynthesis and application of silver and gold nanoparticles. In Silver Nanoparticles; Perez, D.P., Ed.; InTech: Rijeka, Croatia, 2010; pp. 258–276. [Google Scholar]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar]
- Franzetti, A.; Gandolfi, I.; Bestetti, G.; Banat, I.M. (Bio)surfactant and bioremediation, successes and failures. In Trends in Bioremediation and Phytoremediation; Płaza, G., Ed.; Research Signpost: Kerala, India, 2011; pp. 145–156. [Google Scholar]
- Satpute, S.K.; Banpurkar, A.G.; Dhakephalkar, P.K.; Banat, I.M.; Chopade, B.A. Methods for investigating biosurfactants and bioemulsifiers: A review. Crit. Rev. Biotechnol. 2009, 30, 127–144. [Google Scholar]
- Rosenberg, E.; Ron, E.Z. High- and low-molecular mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar]
- Smyth, T.J.P.; Perfumo, A.; McClean, S.; Marchant, R.; Banat, I.M. Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer-Verlag: Berlin, Germany, 2010; pp. 3689–3704. [Google Scholar]
- Smyth, T.J.P.; Perfumo, A.; Marchant, R.; Banat, I.M. Isolation and analysis of low molecular weight microbial glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer-Verlag: Berlin, Germany, 2010; pp. 3705–3723. [Google Scholar]
- Kapadia, S.G.; Yagnik, B.N. Current trend and potential for microbial biosurfactants. Asian J. Exp. Biol. Sci. 2013, 4, 1–8. [Google Scholar]
- Marchant, R.; Banat, I.M. Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol Lett. 2012, 34, 1597–1605. [Google Scholar]
- Marchant, R.; Banat, I.M. Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends Biotechnol. 2012, 30, 558–565. [Google Scholar]
- Perfumo, A.; Smyth, T.J.P.; Marchant, R.; Banat, I.M. Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer-Verlag: Berlin, Germany, 2010; pp. 1501–1512. [Google Scholar]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 2006, 24, 604–620. [Google Scholar]
- Fracchia, L.; Cavallo, M.; Martinotti, G.M.; Banat, I.M. Biosurfactants and bioemulsifiers. In Biomedical and Related Applications—Present Status and Future Potentials, Biomedical Science, Engineering and Technology; Ghista, D.N., Ed.; InTech: Rijeka, Croatia, 2012; pp. 325–370. [Google Scholar]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A.; de Luna, J.M.; Rufino, R.D.; Banat, I.M. Microbial biosurfactants as additives for food industries: A review. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in utilization of renewable substrates for biosurfactant production. Appl. Microbiol. Biotechnol. Express 2011, 1, 1–5. [Google Scholar]
- Perfumo, A.; Rancich, I.; Banat, I.M. Possibilities and challenges for biosurfactants uses in petroleum industry. In Biosurfactants: Advances in Experimental Medicine and Biology; Timmis, K.N., Ed.; Springer-Verlag: Berlin, Germany, 2010; Volume 672, pp. 135–145. [Google Scholar]
- Płaza, G.; Ulfig, K.; Zjawiony, I.; Banat, I.M. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soil. J. Petrol. Sci. Eng. 2006, 50, 71–77. [Google Scholar]
- Reddy, A.S.; Chen, C.Y.; Chen, C.C.; Jean, J.S.; Fan, C.W.; Chen, H.R.; Wang, J.C.; Nimje, V.R. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J. Nanosci. Nanotechnol. 2009, 9, 6693–6699. [Google Scholar]
- Reddy, A.S.; Chen, C.Y.; Baker, S.C.; Chen, C.C.; Jean, J.C.; Fan, C.W.; Chen, H.R.; Wang, J.C. Synthesis of silver nanoparticles using surfactin: A biosurfactant as stabilizing agent. Mater. Lett. 2009, 63, 1227–1230. [Google Scholar]
- Kiran, G.S.; Sabu, A.; Selvin, J. Synthesis of silver nanoparticles by glicololid biosurfactant produced from marine Brevibacterium. casei MSA 19. J. Biotechnol. 2010, 148, 221–225. [Google Scholar] [CrossRef]
- Singh, B.R.; Dwivedi, S.; Al-Khedhairy, A.A.; Musarrat, J. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf. B Biointerfaces 2011, 85, 207–213. [Google Scholar] [CrossRef]
- Chou, K.-S.; Lai, Y.-S. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater. Chem. Phys. 2004, 83, 82–88. [Google Scholar]
- Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834. [Google Scholar]
- Chen, Y.H.; Yeh, C.S. Laser ablation method: Use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf. A 2002, 197, 133–139. [Google Scholar]
- Xie, Y.; Ye, R.; Liu, H. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2006, 2, 175–178. [Google Scholar]
- Palanisamy, P. Biosurfactant mediated synthesis of NiO nanorods. Mater. Lett. 2008, 62, 743–746. [Google Scholar]
- Palanisamy, P.; Raichur, A.M. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng. 2009, 29, 199–204. [Google Scholar] [CrossRef]
- Ganesh, K.C.; Mamidyala, S.K.; Das, B.; Sridhar, B.; Devi, G.S.; Karuna, M.L. Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. J. Microbiol. Biotechnol. 2010, 20, 1061–1068. [Google Scholar] [CrossRef]
- Narayanan, J.; Ramji, R.; Sahu, H.; Gautam, P. Synthesis, stabilization and characterizationof rhamnolipid-capped ZnS nanoparticles in aqueous medium. IET Nanotechnol. 2010, 4, 29–34. [Google Scholar]
- Worakitsiri, P.; Pornsunthorntawee, O.; Thanpitcha, T.; Chavadej, S.; Weder, C.; Rujiravanit, R. Synthesis of polyaniline nanofibers and nanotubes via rhamnolipid biosurfactant templating. Synth. Meth. 2011, 161, 298–306. [Google Scholar]
- Kumar, G.G.; Mamidyala, S.K. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces 2011, 84, 462–466. [Google Scholar] [CrossRef]
- Saikia, J.P.; Bharali, P.; Konwar, B.K. Possible protection of silver nanoparticles against salt by using rhamnolipid. Colloids Surf. B Biointerfaces 2013, 104, 330–332. [Google Scholar]
- Hazra, C.; Kundu, D.; Chaudhari, A.; Jana, T. Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulphide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as capping and stabilizing agent. J. Chem. Technol. Biotechnol. 2013, 88, 1039–1048. [Google Scholar] [CrossRef]
- Kasture, M.; Singh, S.; Patel, P.; Joy, P.A.; Prabhune, A.A.; Ramana, C.V.; Prasad, B.L.V. Multiutility sophorolipids as nanoparticle capping agents: Synthesis of stable and water dispersible Co nanoparticles. Langmuir 2007, 23, 11409–11412. [Google Scholar]
- Kasture, M.B.; Patel, P.; Prabhune, A.A.; Ramana, C.V.; Kulkarni, A.A.; Prasad, B.L.V. Synthesis of silver nanoparticles by sophorolipids: Effects of temperature and sophorolipid structure on size of particles. J. Chem. Sci. 2008, 120, 515–520. [Google Scholar]
- Baccile, N.; Noiville, R.; Stievano, L.; van Bogaert, I. Sophorolipids-functionalized iron oxide nanoparticles. Phys. Chem. 2013, 15, 1606–1620. [Google Scholar] [Green Version]
- Reddy, A.S.; Kuo, Y.-H.; Atla, S.B.; Chen, C.Y.; Chen, C.C.; Shih, R.-C.; Chang, Y.-F.; Maity, J.P.; Chen, H.-J. Low-temperature synthesis of rose-like ZnO nanostructures using surfactin and their photocatalytic activity. J. Nanosci. Nanotechnol. 2011, 11, 1–8. [Google Scholar]
- Sen, R. Surfactin: Biosynthesis, genetics and potential applications. In Biosurfactants; Sen, R., Ed.; Springer: Berlin, Germany, 2010; pp. 314–323. [Google Scholar]
- Perez-Garcia, A.; Romero, D.; de Vicente, A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 2011, 22, 187–193. [Google Scholar]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2007, 16, 115–125. [Google Scholar] [CrossRef]
- Joshi, S.; Bharucha, C.; Desai, A.J. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour. Technol. 2008, 99, 4603–4608. [Google Scholar] [CrossRef]
- Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Mater. Res. Bull. 2011, 46, 384–389. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–84. [Google Scholar]
- Martinez-Gutirrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticle. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 681–688. [Google Scholar]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A 2012, 93, 95–99. [Google Scholar]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Płaza, G.A.; Chojniak, J.; Banat, I.M. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. Int. J. Mol. Sci. 2014, 15, 13720-13737. https://doi.org/10.3390/ijms150813720
Płaza GA, Chojniak J, Banat IM. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. International Journal of Molecular Sciences. 2014; 15(8):13720-13737. https://doi.org/10.3390/ijms150813720
Chicago/Turabian StylePłaza, Grażyna A., Joanna Chojniak, and Ibrahim M. Banat. 2014. "Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles" International Journal of Molecular Sciences 15, no. 8: 13720-13737. https://doi.org/10.3390/ijms150813720
APA StylePłaza, G. A., Chojniak, J., & Banat, I. M. (2014). Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. International Journal of Molecular Sciences, 15(8), 13720-13737. https://doi.org/10.3390/ijms150813720