The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese
Abstract
:1. Introduction
2. Results
2.1. Population Characteristics
Factors | Chronic Heart Failure (CHF) | Controls | p Value | |
---|---|---|---|---|
Age (years) | 61.41 ± 12.51 | 60.33 ± 8.56 | 0.2 a | |
Males/females | 175/125 | 211/189 | 0.14 b | |
Hypertension | 172 (57.33%) | 122 (30.5%) | <0.001 b | |
Dyslipidemia | 84 (28%) | 81 (20.25%) | 0.0168 b | |
Diabetes | 104 (34.67%) | 67 (16.75%) | <0.001 b | |
Smoking habit | 91 (30.33%) | 62 (15.5%) | <0.001 b | |
CAD | 180 (60%) | – | ||
ICDM | 76 (25.33%) | – | ||
HC | 9 (3%) | – | ||
Other diagnose | 35 (11.67%) | – | ||
LVEF ≤ 40% | 207 (69%) | – | ||
NYHA class | II | 94 (31.33%) | – | |
III | 117 (39%) | – | ||
IV | 89 (29.67%) | – |
2.2. Association between Tag Single-Nucleotide Polymorphisms (SNPs) and Susceptibility to Chronic Heart Failure (CHF)
Genotype | CHF n (%) | Controls n (%) | HWE p a | Dominant Model p a | Recessive Model p a | Additive Model p a | Allele Contrast p a |
---|---|---|---|---|---|---|---|
rs762539 | |||||||
TT (W) | 140 (46.82) | 198 (49.75) | 0.46 | 0.44 | 0.73 | 0.62 | 0.67 |
CT | 132 (44.15) | 161 (40.45) | |||||
CC | 27 (9.03) | 39 (9.8) | |||||
rs2007720 | |||||||
AA (W) | 175 (58.92) | 243 (61.52) | 0.88 | 0.49 | 0.88 | 0.79 | 0.53 |
AG | 107 (36.03) | 133 (33.67) | |||||
GG | 15 (5.05) | 19 (4.81) | |||||
rs6031678 | |||||||
CC | 234 (78.26) | 319 (79.95) | 0.82 | 0.59 | 0.43 b | 0.52 | 0.43 |
CT | 59 (19.73) | 76 (19.05) | |||||
TT | 6 (2.0) | 4 (1) | |||||
rs8119756 | |||||||
AA | 223 (74.83) | 270 (68.01) | 0.82 | 0.04996 | 0.47 | 0.143 | 0.051 |
AG | 68 (22.82) | 114 (28.72) | |||||
GG | 7 (2.35) | 13 (3.27) | |||||
rs244072 | |||||||
TT | 205 (68.56) | 272 (68.34) | 0.39 | 0.95 | 0.59 | 0.86 | 0.81 |
TC | 85 (28.43) | 111 (27.89) | |||||
CC | 9 (3.01) | 15 (3.77) | |||||
rs6031689 | |||||||
TT | 228 (76.25) | 320 (80.4) | 0.08 | 0.19 | 0.74 | 0.33 | 0.27 |
GT | 66 (22.07) | 70 (17.59) | |||||
GG | 5 (1.67) | 8 (2.01) | |||||
rs2299694 | |||||||
TT | 134 (44.97) | 189 (47.61) | 0.44 | 0.49 | 0.71 | 0.78 | 0.48 |
TC | 129 (43.29) | 165 (41.56) | |||||
CC | 35 (11.74) | 43 (10.83) | |||||
rs452159 | |||||||
CC | 93 (31.31) | 162 (40.7) | 0.14 | 0.011 | 0.48 | 0.039 | 0.032 |
CA | 151 (50.84) | 173 (43.47) | |||||
AA | 53 (17.85) | 63 (15.83) | |||||
rs73598374 | |||||||
GG | 259 (87.21) | 361 (90.48) | 0.046 | 0.17 | 0.83b | 0.23 | 0.26 |
AG | 37 (12.46) | 35 (8.77) | |||||
AA | 1 (0.34) | 3 (0.75) |
SNPs | Dominant Model | Recessive Model | Additive Model | Allele Contrast |
---|---|---|---|---|
Odds Ratio (95% CI) p | Odds Ratio (95% CI) p | Odds Ratio (95% CI) p | Odds Ratio (95% CI) p | |
rs452159 | 1.537 (1.10–2.16) 0.013 | 1.005 (0.65–1.55) 0.981 | 1.224 (0.97–1.54) 0.085 | 1.229 (0.98–1.55) 0.081 |
rs8119756 | 0.775 (0.54–1.10) 0.164 | 0.912 (0.34–2.47) 0.856 | 0.816(0.60–1.12) 0.204 | 0.814 (0.59–1.12) 0.201 |
2.3. Association between Genotype Distribution and Allele Frequency and Clinicopathological Parameters in Patients with CHF
Genotype | NYHA | Hypertension n = 172 | Dyslipidemia n = 84 | Diabetes n = 104 | Smoking Habit n = 91 | ||
---|---|---|---|---|---|---|---|
II | III | IV | |||||
rs452159 | |||||||
CC | 28 (30.1%) | 33 (28.45%) | 32 (40.51%) | 57 (33.52%) | 18 (21.43%) | 32 (30.77%) | 25 (28.41%) |
CA | 46 (49.46%) | 59 (50.86%) | 46 (58.23%) | 77 (45.29%) | 44 (52.38%) | 50 (48.08%) | 46 (52.27%) |
AA | 19 (20.43%) | 24 (20.69%) | 10 (12.66%) | 36 (21.18%) | 22 (26.19%) | 22 (21.15%) | 17 (19.32%) |
Allele frequency (p-value) | 0.18 a | 0.751 b | 0.0049 b | 0.487 b | 0.485 b | ||
Genotype distribution (p-value) | 0.395 a | 0.064 b | 0.016 b | 0.539 b | 0.764 b |
Genotype | LVEF Mean Value | LVEDD Mean Value | LVESD Mean Value |
---|---|---|---|
rs452159 | |||
CC | 42.14 ± 14.08 | 64.34 ± 11.71 | 51.39 ± 13.56 |
CA | 39.39 ± 12 | 66.22 ± 10.75 | 53.70 ± 12.43 |
AA | 42.42 ± 13.33 | 63.77 ± 10.91 | 51.02 ± 12.14 |
p a | 0.165 | 0.260 | 0.254 |
3. Discussion
4. Experimental Section
4.1. Subjects
4.2. Genotyping Assay
SNP_ID | Allele | 1st-PCRP (5'–3') | 2nd-PCRP (5'–3') | UEP_SEQ (5'–3') |
---|---|---|---|---|
rs762539 | T/C | ACGTTGGATGACTTTT ATCTCACGGAATC | ACGTTGGATGTCCACT CCCTAAGCTTCAGT | GCCATGCCTTGT CAAGTC |
rs2007720 | A/G | ACGTTGGATGTGCAG GGACCCAAAATCTTG | ACGTTGGATGTACCAG GTGCCTTCAGTGAC | GGCCTTCAGTGA CTTTTTCTT |
rs6031678 | C/T | ACGTTGGATGGGGTTT GGGAGTATGGTATC | ACGTTGGATGTTGTCT TGGACTGTTGAGGC | CTCCAAAGATTC CAGGCCC |
rs8119756 | A/G | ACGTTGGATGCTTCCT CTTCTTACCTCCAC | ACGTTGGATGTAGAGG AACCGTTCTAGAGG | AACGGAGTGAG GGTAGAATCC |
rs244072 | T/C | ACGTTGGATGTTGGAT GCTTGGACCTCCTG | ACGTTGGATGAATCCT CCACAAAGTAGAAC | AGATGATGAAAAA TAGGAGTAAAC |
rs6031689 | T/G | ACGTTGGATGGTGAG AAGGGATGAGTGCTA | ACGTTGGATGTAGGGG TTCAGGGAGCTGG | GGGAAGAGCCA GCTGCCCACCA |
rs2299694 | T/C | ACGTTGGATGCCGGGT TAAGTTATTGAAGC | ACGTTGGATGTTACTC CACCTACCACGGCT | GAACGGCAATAG AGTTCCT |
rs452159 | C/T | ACGTTGGATGGTGTGT TGGGAAAAGATCAC | ACGTTGGATGACACTA AGCACACGCAGCTC | GATCATTCTTTCT TCTCCCTGG |
rs73598374 | G/A | ACGTTGGATGCCCCGC GCGCGCTCACTTT | ACGTTGGATGACGAG GGCACCATGGCCCAG | TCCCAGACGCCC GCCTTC |
4.3. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Davidson, P.M.; Inglis, S.C.; Newton, P.J. Self-care in patients with chronic heart failure. Expert Rev. Pharm. Outcomes Res. 2013, 13, 351–359. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Safdari, R.; Rahimi, A. Multi-agent system as a new approach to effective chronic heart failure management: Key considerations. Healthc. Inform. Res. 2013, 19, 162–166. [Google Scholar] [CrossRef]
- Hori, M.; Kitakaze, M. Adenosine, the heart, and coronary circulation. Hypertension 1991, 18, 565–574. [Google Scholar] [CrossRef]
- Kitakaze, M.; Hori, M.; Takashima, S.; Sato, H.; Inoue, M.; Kamada, T. Ischemic preconditioning increases adenosine release and 5'-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. Circulation 1993, 87, 208–215. [Google Scholar] [CrossRef]
- Del, R.S.; Cabiati, M.; Martino, A.; Simioniuc, A.; Morales, M.A.; Picano, E. Adenosine receptor mRNA expression in normal and failing minipig hearts. J. Cardiovasc. Pharmacol. 2011, 58, 149–156. [Google Scholar]
- Mallet, R.T.; Lee, S.C.; Downey, H.F. Endogenous adenosine increases O2 utilisation efficiency in isoprenaline-stimulated canine myocardium. Cardiovasc. Res. 1996, 31, 102–116. [Google Scholar] [CrossRef]
- Sukoyan, G.V.; Gongadze, N.V. Mechanism of cardioprotective effect of adenocine and non-glycoside cardiotonic drugs during experimental chronic cardiac insufficiency. Bull. Exp. Biol. Med. 2011, 150, 610–613. [Google Scholar] [CrossRef]
- Peart, J.N.; Headrick, J.P. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol. Ther. 2007, 114, 208–221. [Google Scholar] [CrossRef]
- Belardinelli, L.; Shryock, J.C.; Song, Y.; Wang, D.; Srinivas, M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J. 1995, 9, 359–365. [Google Scholar]
- Andreassi, M.G.; Laghi, P.F.; Picano, E.; Capecchi, P.L.; Pompella, G.; Foffa, I.; Borghini, A.; Sicari, R. Adenosine A2(A) receptor gene polymorphism (1976C>T) affects coronary flow reserve response during vasodilator stress testing in patients with non ischemic-dilated cardiomyopathy. Pharmacogenet. Genomics 2011, 21, 469–475. [Google Scholar] [CrossRef]
- Sommerschild, H.T.; Kirkeboen, K.A. Adenosine and cardioprotection during ischaemia and reperfusion—An overview. Acta Anaesthesiol. Scand. 2000, 44, 1038–1055. [Google Scholar] [CrossRef]
- Mullane, K.; Bullough, D. Harnessing an endogenous cardioprotective mechanism: Cellular sources and sites of action of adenosine. J. Mol. Cell. Cardiol. 1995, 27, 1041–1054. [Google Scholar] [CrossRef]
- Mubagwa, K.; Mullane, K.; Flameng, W. Role of adenosine in the heart and circulation. Cardiovasc. Res. 1996, 32, 797–813. [Google Scholar] [CrossRef]
- Willems, L.; Reichelt, M.E.; Molina, J.G.; Sun, C.X.; Chunn, J.L.; Ashton, K.J.; Schnermann, J.; Blackburn, M.R.; Headrick, J.P. Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts. Cardiovasc. Res. 2006, 71, 79–87. [Google Scholar]
- Choi, J.W.; Park, C.S.; Hwang, M.; Nam, H.Y.; Chang, H.S.; Park, S.G.; Han, B.G.; Kimm, K.; Kim, H.L.; Oh, B.; et al. A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J. Allergy Clin. Immunol. 2008, 122, 1119–1126. [Google Scholar] [CrossRef]
- Howe, K.J.; Ares, M.J. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc. Natl. Acad. Sci. USA 1997, 94, 12467–12472. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; van Nostrand, E.; Burge, C.B. General and specific functions of exonic splicing silencers in splicing control. Mol. Cell 2006, 23, 61–70. [Google Scholar] [CrossRef]
- Pohl, M.; Bortfeldt, R.H.; Grutzmann, K.; Schuster, S. Alternative splicing of mutually exclusive exons—A review. Biosystems 2013, 114, 31–38. [Google Scholar] [CrossRef]
- Napolioni, V.; Predazzi, I.M. Age- and gender-specific association between ADA (22G>A) and TNF-α (−308G>A) genetic polymorphisms. Tissue Antigens 2010, 76, 311–314. [Google Scholar]
- Napolioni, V.; Carpi, F.M.; Gianni, P.; Sacco, R.; di Blasio, L.; Mignini, F.; Lucarini, N.; Persico, A.M. Age- and gender-specific epistasis between ADA and TNF-α influences human life-expectancy. Cytokine 2011, 56, 481–488. [Google Scholar] [CrossRef]
- Dutra, G.P.; Ottoni, G.L.; Lara, D.R.; Bogo, M.R. Lower frequency of the low activity adenosine deaminase allelic variant (ADA1*2) in schizophrenic patients. Rev. Bras. Psiquiatr. 2010, 32, 275–278. [Google Scholar] [CrossRef]
- Bachmann, V.; Klaus, F.; Bodenmann, S.; Schafer, N.; Brugger, P.; Huber, S.; Berger, W.; Landolt, H.P. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb. Cortex. 2012, 22, 962–970. [Google Scholar] [CrossRef]
- Mazzotti, D.R.; Guindalini, C.; de Souza, A.A.; Sato, J.R.; Santos-Silva, R.; Bittencourt, L.R.; Tufik, S. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLoS One 2012, 7, e44154. [Google Scholar]
- Safranow, K.; Rzeuski, R.; Binczak-Kuleta, A.; Czyzycka, E.; Skowronek, J.; Jakubowska, K.; Wojtarowicz, A.; Loniewska, B.; Ciechanowicz, A.; Kornacewicz-Jach, Z.; et al. ADA*2 allele of the adenosine deaminase gene may protect against coronary artery disease. Cardiology 2007, 108, 275–281. [Google Scholar]
- Riksen, N.P.; Franke, B.; van den Broek, P.; Naber, M.; Smits, P.; Rongen, G.A. The 22G>A polymorphism in the adenosine deaminase gene impairs catalytic function but does not affect reactive hyperaemia in humans in vivo. Pharmacogenet. Genomics 2008, 18, 843–846. [Google Scholar] [CrossRef]
- Pangilinan, F.; Molloy, A.M.; Mills, J.L.; Troendle, J.F.; Parle-McDermott, A.; Signore, C.; O’Leary, V.B.; Chines, P.; Seay, J.M.; Geiler-Samerotte, K.; et al. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Med. Genet. 2012, 13, 62. [Google Scholar]
- Gass, N.; Ollila, H.M.; Utge, S.; Partonen, T.; Kronholm, E.; Pirkola, S.; Suhonen, J.; Silander, K.; Porkka-Heiskanen, T.; Paunio, T. Contribution of adenosine related genes to the risk of depression with disturbed sleep. J. Affect. Disord. 2010, 126, 134–139. [Google Scholar] [CrossRef]
- Asakura, M.; Asanuma, H.; Kim, J.; Liao, Y.; Nakamaru, K.; Fujita, M.; Komamura, K.; Isomura, T.; Furukawa, H.; Tomoike, H.; et al. Impact of adenosine receptor signaling and metabolism on pathophysiology in patients with chronic heart failure. Hypertens. Res. 2007, 30, 781–787. [Google Scholar] [CrossRef]
- Fujita, M.; Asakura, M.; Sanada, S.; Funaya, H.; Tsukamoto, O.; Komamura, K.; Asanuma, H.; Taketani, S.; Isomura, T.; Nakamaru, K.; et al. Activation of ecto-5'-nucleotidase in the blood and hearts of patients with chronic heart failure. J. Card. Fail. 2008, 14, 426–430. [Google Scholar] [CrossRef]
- Fredholm, B.B. Effect of adenosine, adenosine analogues and drugs inhibiting adenosine inactivation on lipolysis in rat fat cells. Acta Physiol. Scand. 1978, 102, 191–198. [Google Scholar] [CrossRef]
- Schwabe, U.; Schonhofer, P.S.; Ebert, R. Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3':5'-monophosphate, lipolysis, and glucose oxidation in isolated fat cells. Eur. J. Biochem. 1974, 46, 537–545. [Google Scholar] [CrossRef]
- Dowling, H.J.; Fried, S.K.; Pi-Sunyer, F.X. Insulin resistance in adipocytes of obese women: effects of body fat distribution and race. Metabolism 1995, 44, 987–995. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhang, B.; Liu, X.Q.; Yang, H.L. Abdominal fat accumulation with hyperuricemia and hypercholesterolemia quail model induced by high fat diet. Chin. Med. Sci. J. 2009, 24, 191–194. [Google Scholar]
- Bottini, N.; Gloria-Bottini, F.; Borgiani, P.; Antonacci, E.; Lucarelli, P.; Bottini, E. Type 2 diabetes and the genetics of signal transduction: A study of interaction between adenosine deaminase and acid phosphatase locus 1 polymorphisms. Metabolism 2004, 53, 995–1001. [Google Scholar]
- Peculis, R.; Latkovskis, G.; Tarasova, L.; Pirags, V.; Erglis, A.; Klovins, J. A nonsynonymous variant I248L of the adenosine A3 receptor is associated with coronary heart disease in a Latvian population. DNA Cell Biol. 2011, 30, 907–911. [Google Scholar] [CrossRef]
- International HapMap Project. Available online: http://hapmap.ncbi.nlm.nih.gov/ (accessed on 27 August 2014).
- He, G.H.; Lu, J.; Shi, P.P.; Xia, W.; Yin, S.J.; Jin, T.B.; Chen, D.D.; Xu, G.L. Polymorphisms of human histamine receptor H4 gene are associated with breast cancer in Chinese Han population. Gene 2013, 519, 260–265. [Google Scholar] [CrossRef]
- Li, S.; Jin, T.; Zhang, J.; Lou, H.; Yang, B.; Li, Y.; Chen, C.; Zhang, Y. Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer Epidemiol. 2012, 36, 283–287. [Google Scholar]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet. 2009, 2, 2–12. [Google Scholar]
- Thomas, R.K.; Baker, A.C.; Debiasi, R.M.; Winckler, W.; Laframboise, T.; Lin, W.M.; Wang, M.; Feng, W.; Zander, T.; MacConaill, L.; et al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 2007, 39, 347–351. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, H.-R.; Li, Y.-J.; He, G.-H.; Wang, Y.-J.; Zhai, Y.-J.; Xie, J.; Zhang, W.-P.; Dong, Y.-L.; Lu, J. The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese. Int. J. Mol. Sci. 2014, 15, 15259-15271. https://doi.org/10.3390/ijms150915259
He H-R, Li Y-J, He G-H, Wang Y-J, Zhai Y-J, Xie J, Zhang W-P, Dong Y-L, Lu J. The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese. International Journal of Molecular Sciences. 2014; 15(9):15259-15271. https://doi.org/10.3390/ijms150915259
Chicago/Turabian StyleHe, Hai-Rong, Yuan-Jie Li, Gong-Hao He, Ya-Jun Wang, Ya-Jing Zhai, Jiao Xie, Wei-Peng Zhang, Ya-Lin Dong, and Jun Lu. 2014. "The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese" International Journal of Molecular Sciences 15, no. 9: 15259-15271. https://doi.org/10.3390/ijms150915259
APA StyleHe, H. -R., Li, Y. -J., He, G. -H., Wang, Y. -J., Zhai, Y. -J., Xie, J., Zhang, W. -P., Dong, Y. -L., & Lu, J. (2014). The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese. International Journal of Molecular Sciences, 15(9), 15259-15271. https://doi.org/10.3390/ijms150915259