Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Global Phylogeny of SAMe Proteins
Kingdom | Group | Class | Clusters * Species | Number of Copies | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | II | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | III | Total | ||||
Animal | Culex quinquefasciatus | 15 | 7 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 24 | ||
Bacteria | Escherichia coli | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 6 | ||
Fungus | Penicillium marneffei | 8 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 14 | ||
Aspergillus nidulans | 10 | 4 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 16 | |||
Plant | Glymnospermae | Pinus taeda | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | |
Pinus pinaster | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |||
Pseudotsuga menziesii | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 6 | |||
Algae | Chlamydomonas reinhardtii | 34 | 16 | 6 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 2 | 0 | 5 | 3 | 13 | 63 | ||
Pteridophyta | Selaginella moellendorffii | 154 | 83 | 14 | 18 | 2 | 0 | 3 | 0 | 4 | 8 | 7 | 8 | 5 | 0 | 2 | 85 | 0 | 0 | 5 | 9 | 8 | 5 | 1 | 8 | 2 | 29 | 18 | 49 | 288 | ||
Angiospermae | Dicotyle-doneae | Glycine max | 145 | 85 | 11 | 7 | 1 | 0 | 3 | 0 | 13 | 11 | 1 | 5 | 4 | 0 | 4 | 135 | 0 | 0 | 14 | 12 | 16 | 15 | 2 | 11 | 5 | 29 | 31 | 53 | 225 | |
Populus trichocarpa | 103 | 65 | 5 | 7 | 1 | 0 | 1 | 0 | 4 | 4 | 9 | 3 | 3 | 0 | 1 | 68 | 0 | 0 | 6 | 6 | 7 | 6 | 1 | 4 | 1 | 20 | 17 | 50 | 221 | |||
Arabidopsis thaliana | 66 | 36 | 5 | 6 | 1 | 0 | 2 | 0 | 2 | 2 | 6 | 2 | 3 | 0 | 1 | 40 | 0 | 0 | 4 | 3 | 5 | 3 | 1 | 1 | 0 | 11 | 12 | 13 | 119 | |||
Arabidopsis lyrata | 117 | 34 | 8 | 21 | 0 | 45 | 0 | 0 | 0 | 0 | 2 | 0 | 7 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 8 | 8 | 0 | 1 | 0 | 8 | 8 | 8 | 158 | |||
Vitis vinifera | 89 | 57 | 4 | 5 | 1 | 0 | 1 | 0 | 9 | 2 | 4 | 2 | 2 | 0 | 2 | 41 | 0 | 0 | 3 | 4 | 4 | 4 | 1 | 2 | 1 | 9 | 13 | 41 | 171 | |||
Lonicera japonica | 57 | 30 | 5 | 4 | 1 | 0 | 1 | 0 | 4 | 3 | 2 | 1 | 5 | 1 | 0 | 55 | 0 | 4 | 4 | 2 | 3 | 8 | 0 | 7 | 1 | 6 | 20 | 21 | 133 | |||
Lonicera japonica var. chinensis | 52 | 27 | 5 | 4 | 1 | 0 | 1 | 0 | 4 | 3 | 2 | 1 | 3 | 1 | 0 | 49 | 0 | 3 | 4 | 2 | 3 | 8 | 0 | 5 | 1 | 6 | 17 | 21 | 122 | |||
Monocotyle-doneae | Zea mays | 116 | 51 | 15 | 6 | 1 | 0 | 0 | 8 | 0 | 10 | 6 | 5 | 14 | 0 | 0 | 113 | 0 | 0 | 9 | 7 | 17 | 7 | 1 | 8 | 1 | 35 | 28 | 45 | 272 | ||
Sorghum bicolor | 68 | 36 | 6 | 6 | 1 | 0 | 0 | 5 | 0 | 2 | 4 | 2 | 5 | 0 | 1 | 48 | 0 | 0 | 2 | 3 | 6 | 6 | 1 | 2 | 1 | 14 | 13 | 44 | 160 | |||
Oryza sativa | 101 | 57 | 4 | 5 | 2 | 0 | 0 | 8 | 0 | 2 | 3 | 2 | 5 | 0 | 13 | 71 | 0 | 0 | 3 | 6 | 11 | 9 | 1 | 1 | 1 | 21 | 18 | 53 | 225 | |||
Total | 1140 | 593 | 89 | 107 | 14 | 45 | 12 | 21 | 40 | 49 | 47 | 35 | 62 | 2 | 24 | 771 | 1 | 7 | 54 | 54 | 94 | 85 | 9 | 55 | 14 | 197 | 201 | 443 | 2354 |
2.2. Copying Genes of SAMe in L. japonica
Gene Name | Function in Floral Organ | AT NCBI Accession No. | FLJ | rFLJ | ||
---|---|---|---|---|---|---|
Accession No. * | RPKM | Accession No. * | RPKM | |||
FVE | Vegetative to the flower-producing phases | AT2G19520 | 23402 | 0 | 563813 | 9.82 |
FCA | AT4G16280 | 172383 | 41.93 | 563294 | 57.57 | |
APETALA 1 | Morphogenesis | AT1G69120 | 146243 | 30.85 | 562895 | 0 |
APETALA 3 | AT3G54340 | 124852 | 6.69 | 565304 | 0 | |
PISTILLATA | AT5G20240 | 189255 | 6.34 | 568457 | 0 | |
AGAMOUS | AT4G18960 | 191843 | 66.11 | 576158 | 57.57 | |
SEPALLATA | AT1G24260 | 195015 | 8.09 | 571982 | 0 | |
SAHH | Maintenance and recycling of S-adenosylmethionine dependent methylation | AT3G23810 | 183400 | 7.06 | 569411 | 0 |
ADK | AT3G09820 | 101959 | 323.33 | 388474 | 294.47 |
2.3. Expression of SAMe Genes in L. japonica Flowers
Subgroups * | Orthologs Pfam | Gene | RPKM | Amino Acid Variation | ||
---|---|---|---|---|---|---|
FLJ Bud | FLJ Flower1 | rFLJ Bud | ||||
II-2 | PF03141 | FLJSAMT59 | 120.99 | 106.17 | 365A/E | |
rFLJSAM40 | 248.90 | |||||
II-8 | PF03141 | FLJSAMT53 | 495.65 | 860.77 | 275H/R, 289N/D, 441D/E, 623A/E | |
rFLJSAMT30 | 0 | |||||
II-11 | PF03141 | FLJSAMT51 | 68.79 | 82.94 | none | |
rFLJSAMT28 | 0 | |||||
PF03141 | FLJSAMT73 | 151.06 | 153.34 | none | ||
rFLJSAMT87 | 0 | |||||
PF03141 | FLJSAMT77 | 118.24 | 153.34 | none | ||
rFLJSAMT97 | 0 | |||||
I-1 | PF01135 | FLJSAMT12 | 141.97 | 121.13 | 197V/I | |
rFLJSAMT2 | 0 | |||||
PF02005 | FLJSAMT36 | 77.75 | 54.43 | 49E/Q, 299L/S, 599V/A | ||
rFLJSAMT45 | 0 | |||||
PF02353 | FLJSAMT37 | 52.42 | 60.38 | none | ||
rFLJSAMT24 | 5.90 |
2.4. Phosphoethanolamine N-Methyltransferase (PEAMT) in L. japonica Domestication
2.5. Sequence Diversity of SAMe between L. japonica and Its Wild Variety
2.6. SAM–SAH Cycle Regulates PEAMT Activity
3. Experimental Section
3.1. Plant Material
3.2. SAMe Classification
3.3. SAMe Annotation
3.4. SAMe Phylogeny
3.5. Orthologs and Paralogs
3.6. Gene Expression Analyses and Experimental Validation
3.7. SNP Identification, Validation and Sequences Diversity
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Willnow, S.; Martin, M.; Luscher, B.; Weinhold, E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 2012, 13, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Fellenberg, C.; Bottcher, C.; Vogt, T. Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds. Phytochemistry 2009, 70, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Kessler, D.; Gase, K.; Baldwin, I.T. Field experiments with transformed plants reveal the sense of floral scents. Science 2008, 321, 1200–1202. [Google Scholar] [CrossRef] [PubMed]
- Gough, J.; Karplus, K.; Hughey, R.; Chothia, C. Assignment of homology to genome sequences using a library of hidden markov models that represent all proteins of known structure. J. Mol. Biol. 2001, 313, 903–919. [Google Scholar] [CrossRef] [PubMed]
- McNeil, S.; Nuccio, M.; Ziemak, M.; Hanson, A. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc. Nat. Acad. Sci. USA 2001, 98, 10001–10005. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yu, Z.; Wang, F.; Li, W.; Ye, C.; Li, J.; Tang, J.; Ding, J.; Zhao, J.; Wang, B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol. Biotechnol. 2007, 36, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Mou, Z.; Wang, X.; Fu, Z.; Dai, Y.; Han, C.; Jian, O.; Bao, F.; Hu, Y.; Li, J. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell 2002, 14, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Song, L.; Li, M.; Liu, G.; Chu, Y.; Ma, L.; Zhou, Y.; Wang, X.; Gao, W.; Qin, S.; et al. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics 2012, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Wirsing, L.; Naumann, K.; Vogt, T. Arabidopsis methyltransferase fingerprints by affinity-based protein profiling. Anal. Biochem. 2011, 408, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Phogat, N.; Vindal, V.; Kumar, V.; Inampudi, K.K.; Prasad, N.K. Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora. J. Mol. Model. 2012, 16, 1461–1471. [Google Scholar] [CrossRef]
- D’Hont, A.; Denoeud, F.; Aury, J.M.; Baurens, F.C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; Rouard, M.; et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pin, P.A.; Nilsson, O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 2012, 35, 1742–1755. [Google Scholar] [CrossRef] [PubMed]
- Blackman, B.K.; Strasburg, J.L.; Raduski, A.R.; Michaels, S.D.; Rieseberg, L.H. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 2010, 20, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Bomblies, K. Evolution: Redundancy as an opportunity for innovation. Curr. Biol. 2010, 20, 320–322. [Google Scholar] [CrossRef]
- Chain, F.J.; Dushoff, J.; Evans, B.J. The odds of duplicate gene persistence after polyploidization. BMC Genomics 2011, 12. [Google Scholar] [CrossRef] [PubMed]
- </b>Roulin, A.; Auer, P.L.; Libault, M.; Schlueter, J.; Farmer, A.; May, G.; Stacey, G.; Doerge, R.W.; Jackson, S.A. The fate of duplicated genes in a polyploid plant genome. Plant J. 2012, 1, 143–153. [Google Scholar]
- Berr, A.; McCallum, E.J.; Menard, R.; Meyer, D.; Fuchs, J.; Dong, A.; Shen, W.H. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 2010, 22, 3232–3248. [Google Scholar] [CrossRef] [PubMed]
- Grienenberger, E.; Besseau, S.; Geoffroy, P.; Debayle, D.; Heintz, D.; Lapierre, C.; Pollet, B.; Heitz, T.; Legrand, M. A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J. 2009, 58, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Fellenberg, C.; Milkowski, C.; Hause, B.; Lange, P.R.; Bottcher, C.; Schmidt, J.; Vogt, T. Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. Plant J. 2008, 56, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Price-Jones, M.J.; Harwood, J.L. Hormonal regulation of phosphatidylcholine syntehesis in plants: The inhibition of cytidylyltransferase activity by indol-3-ylacetic acid. Biochem. J. 1983, 216, 627–631. [Google Scholar] [PubMed]
- Smith, D.D.; Summers, P.S.; Weretilnyk, E.A. Phosphocholine synthesis in spinach: Characterization of phosphoethanolamine N-Methyltransferase. Physiol. Plant. 2000, 108, 286–294. [Google Scholar] [CrossRef]
- Yang, K.; Fu, Y.; Zhang, Y.; Yan, Y.; Zhao, Z.; Fang, R.; Sun, Z.; Chen, X. Analysis of rice OsPLD3 and OsPLD4 genes and promoters. J. Biotechnol. 2008, 24, 368–375. [Google Scholar]
- Hong, Y.; Pan, X.; Welti, R.; Wang, X. Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 2008, 20, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, S.; Kawai-Oda, A.; Ueda, J.; Nishida, I.; Okada, K. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 2001, 13, 2191–2209. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Yu, S.I.; Lee, H.; Yim, J.H.; Zhu, J.K.; Lee, B.H. Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. Int. J. Mol. Sci. 2012, 13, 3176–3188. [Google Scholar] [CrossRef] [PubMed]
- Alatorre-Cobos, F.; Cruz-Ramirez, A.; Hayden, C.A.; Perez-Torres, C.A.; Chauvin, A.L.; Ibarra-Laclette, E.; Alva-Cortes, E.; Jorgensen, R.A.; Herrera-Estrella, L. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. J. Exp. Bot. 2012, 63, 5203–5221. [Google Scholar] [CrossRef] [PubMed]
- Mo, P.; Zhu, Y.; Liu, X.; Zhang, A.; Yan, C.; Wang, D. Identification of two phosphatidylinositol/phosphatidylcholine transfer protein genes that are predominately transcribed in the flowers of Arabidopsis thaliana. J. Plant Physiol. 2007, 164, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.S.; Choi, K.R.; Lee, I. Revisiting phase transition during flowering in Arabidopsis. Plant Cell Physiol. 2003, 44, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Wuest, S.E.; O’Maoileidigh, D.S.; Rae, L.; Kwasniewska, K.; Raganelli, A.; Hanczaryk, K.; Lohan, A.J.; Loftus, B.; Graciet, E.; Wellmer, F. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc. Natl. Acad. Sci. USA 2012, 109, 13452–13457. [Google Scholar] [CrossRef] [PubMed]
- Gregis, V.; Sessa, A.; Dorca-Fornell, C.; Kater, M.M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 2009, 60, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.; Muino, J.M.; Jauregui, R.; Airoldi, C.A.; Smaczniak, C.; Krajewski, P.; Angenent, G.C. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009, 7. [Google Scholar] [CrossRef]
- Weretilnyk, E.A.; Alexander, K.J.; Drebenstedt, M.; Snider, J.D.; Summers, P.S.; Moffatt, B.A. Maintaining methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol. 2001, 125, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Poulton, J.E.; Butt, V.S. Purification and properties of S-adenosyl-l-methionine:caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L.). Biochim. Biophys. Acta 1975, 403, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Schroder, G.; Eichel, J.; Breinig, S.; Schroder, J. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: Molecular and functional characterization. Plant Mol. Biol. 1997, 33, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Poulton, J.E. Transmethylation and demethylation reactions in the metabolism of secondary plant products. In The Biochemistry of Plants; Stumpf, P.K., Conn, E.E., Eds.; Academic Press: New York, NY, USA, 1981; Volume 7, pp. 667–723. [Google Scholar]
- Pereira, L.A.; Todorova, M.; Cai, X.; Makaroff, C.A.; Emery, R.J.; Moffatt, B.A. Methyl recycling activities are co-ordinately regulated during plant development. J. Exp. Bot. 2007, 58, 1083–1098. [Google Scholar] [CrossRef] [PubMed]
- Available online: supfam.cs.bris.ac.uk/SUPERFAMILY (accessed on 9 December 2013).
- Available online: http://www.uniprot.org/uniprot/ (accessed on 9 December 2013).
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- InterPro. Available online: http://www.ebi.ac.uk/Tools/InterProScan (accessed on 9 December 2013).
- Pfam. Available online: http://www.pfam.sanger.ac.uk/ (accessed on 9 December 2013).
- COG. Available online: http://www.ncbi.nlm.nih.gov/COG/ (accessed on 9 December 2013).
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Jeanmougin, F.; Thompson, J.D.; Gouy, M.; Higgins, D.G.; Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 1998, 23, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A genomic perspective on protein families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Oshlack, A.; Robinson, M.D.; Young, M.D. From RNA-seq reads to differential expression results. Genome Biol. 2010, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Primer3. Available online: http://Simgene.com/primer3 (accessed on 9 December 2013).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin1, R. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Qi, L.; Yu, J.; Wang, X.; Huang, L. Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica. Int. J. Mol. Sci. 2015, 16, 521-534. https://doi.org/10.3390/ijms16010521
Yuan Y, Qi L, Yu J, Wang X, Huang L. Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica. International Journal of Molecular Sciences. 2015; 16(1):521-534. https://doi.org/10.3390/ijms16010521
Chicago/Turabian StyleYuan, Yuan, Linjie Qi, Jun Yu, Xumin Wang, and Luqi Huang. 2015. "Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica" International Journal of Molecular Sciences 16, no. 1: 521-534. https://doi.org/10.3390/ijms16010521
APA StyleYuan, Y., Qi, L., Yu, J., Wang, X., & Huang, L. (2015). Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica. International Journal of Molecular Sciences, 16(1), 521-534. https://doi.org/10.3390/ijms16010521