Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children
Abstract
:1. Introduction
2. Graft vs. Host Disease
2.1. Treatment Protocols
2.2. Variants Affecting Graft vs. Host Disease
Gene | Variant | Sample Size | Age | Ethnicity | GVHD | Genotype Effect on PK Parameters | Reference |
---|---|---|---|---|---|---|---|
ABCB1 | rs1128503 (C1236T) | 58 R | A | J | None | None on CsA or Tac initial concentration | [28] |
rs2032582 (G2677TA) | 58 R | A | J | None | None on CsA or Tac initial concentration | [28] | |
20 R | A | K | – | None on MTX CL | [29] | ||
27 R | P | J | – | None on Tac CL | [30] | ||
rs3213619 (T-129C) | 27 R | P | J | – | None on Tac CL | [30] | |
rs1045642 (C3435T) | 27 R | P | J | – | None on Tac CL | [30] | |
20 R | A | K | – | CC/CT ↑ MTX CL | [29] | ||
58 R | A | J | None | None on CsA or Tac initial concentration | [28] | ||
ABCC2 | rs717620 (C-24CT) | 20 R | A | K | – | None on MTX CL | [29] |
rs2273697 (G1249A) | 20 R | A | K | – | None on MTX CL | [29] | |
ABCG2 | rs2231142 (C421A) | 27 R | P | J | – | None on Tac CL | [30] |
ATIC | rs2372536 (C347G) | 20 R | A | K | – | None on MTX CL | [29] |
CYP2C19 | rs4244285 (G681A, *2) | 58 R | A | J | None | None on CsA or Tac initial concentration | [28] |
CYP3A5 | rs15524 (A>G) | 58 R | A | J | None | TT ↑ CsA initial concentration | [28] |
rs4646450 (G>A) | 58 R | A | J | None | CC ↑ Tac initial concentration and ↓ Tac dosage from Day −1–Day +28 | [28] | |
rs3800959 (A>G) | 58 R | A | J | None | none on CsA or Tac | [28] | |
rs776746 (A6986G) | 58 R | A | J | None | GG ↑ CsA and Tac initial concentration; GG ↓ Tac dosage from Day −1–Day +28 | [28] | |
27 R | P | J | None | None on Tac CL | [30] | ||
GGH | rs3758149 (C-401T) | 20 R | A | K | – | None on MTX CL | [29] |
GST-A1 | rs3957356 (G-52A) | 18 R † | P | Ar | None | *B*B ↓ oral BU Cmax, AUC and CL/kg body weight | [31] |
rs3957357 (C-69T, *B) | 69 R | P | C | None | *B none on BU-PK | [32] | |
GST-M1 | Deletion | 18 R † | P | Ar | None | none on BU-PK | [31] |
69 R | P | C | Null ↑ | [32] | |||
GST-T1 | Deletion | 18 R † | P | Ar | None | None on BU-PK | [31] |
GST-P1 | rs1695 (A313G) | 18 R † | P | Ar | None | Oral BU-Cmax and AUC | [31] |
MTHFR | rs1801133 (C677T) | 20 R | A | K | – | None on MTX CL | [29] |
rs1801131 (A1298C) | 20 R | A | K | – | None on MTX CL | [29] | |
TYMS | rs34743033 (28 bp tandem repeat) | 20 R | A | K | – | None on MTX CL | [29] |
3. Sinusoidal Obstruction Syndrome
Gene | Variant | Sample Size | Age | Ethnicity | SOS | Reference |
---|---|---|---|---|---|---|
ACE | Intron 16 I/D | 89 D/R | P/A | C | None | [45] |
CPS | rs1047891 (Thr1405Asn) | 168 R | A | nk | CPS 1405Asn allele + HFE 282Tyr allele ↓ | [46] |
CYP2B6 | *2 (C64T, Arg22Cys) | 107 D/R leuk | P/A | nk | None | [47] |
*3 (C777A, Ser259Arg) | 107 D/R leuk | P/A | nk | None | [47] | |
*4 (A785G, Lys262Arg) | 107 D/R leuk | P/A | nk | None | [47] | |
*5 (C1459T, Arg487Cys) | 107 D/R leuk | P/A | nk | None | [47] | |
66 R | P | C | None | [48] | ||
*6 (G516T, Gln172His) | 107 D/R leuk | P/A | nk | GG genotype in both D and R ↑ | [47] | |
*9 | 66 R | P | C | NONE | [48] | |
CY2C19 | *2 | 66 R | P | C | NONE | [48] |
*17 | 66 R | P | C | NONE | [48] | |
CY2C9 | *2 | 66 R | P | C | None | [48] |
*3 | 66 R | P | C | None | [48] | |
F2 | rs1799963 (G20210A) | 89 D/R | P/A | C | None | [45] |
209 R | A | C | (A allele ↑) | [49] | ||
10 R | P | nk | None | [50] | ||
F5 | rs6025 (G1691A) | 89 D/R | P/A | C | None | [45] |
209 | A | C | None | [49] | ||
10 | P | nk | (A allele ↑) | [50] | ||
FGB | rs1800790 | 89 D/R | P/A | C | None | [45] |
FMO | rs2266780 | 66 R | P | C | None | [48] |
rs2266782 | 66 R | P | C | None | [48] | |
rs1736557 | 66 R | P | C | None | [48] | |
GPIIIa | PIa1/a2 | 89 D/R | P/A | C | None | [45] |
GSTA1 | rs3957356 (−52 C>T) | 18 R* | P | A–M | None | [31] |
69 R | P | C | None | [32] | ||
rs3957357 (C-69T,*B) | 77 R | P | Mixed | None | [51] | |
69 R | P | C | TT↑ | [32] | ||
rs11964968 (T-513C) | 69 R | P | C | None | [32] | |
rs4715332 (T-567G) | 69 R | P | C | None | [32] | |
rs4715333 (T-631G) | 69 R | P | C | None | [32] | |
rs58912740 (C-1142G) | 69 R | P | C | None | [32] | |
GSTM1 | Deletion | 69 R | P | C | None | [32] |
Deletion | 18 R* | P | A–M | None | [31] | |
Deletion | 77 R | P | Mixed | None (↑ univariate) | [51] | |
Deletion | 114 R | P | Indian | Null↑ | [52] | |
Deletion | 107 D/R leuk | P/A | nk | None | [47] | |
GSTP1 | rs1695 (A313G, Ile105Val) | 69 R | P | C | None | [32] |
18 R* | P | A–M | None | [31] | ||
77 R | P | Mixed | None | [51] | ||
107 D/R leuk | P/A | nk | None | [47] | ||
rs1138272 | 69 R | P | C | None | [32] | |
GSTT1 | Deletion | 18 R* | P | A–M | None | [31] |
77 R | P | Mixed | None | [51] | ||
114 R | P | Indian | None | [52] | ||
107 D/R leuk | P/A | nk | None | [47] | ||
HFE | rs1800562 (Cys282Tyr) | 168 R | A | nk | 282Tyr allele ↑ | [46] |
HSPE | rs4693608 (G>A) | 160 R | P | C | G allele ↓ | [53] |
rs4364254 (C>T) | 160 R | P | C | C allele ↓ | [53] | |
IL-1β | rs16944 (C-511T) | 76 D/R | P | nk | TT genotype in donor ↑ | [54] |
MTHFR | rs1801133 (677C>T) | 107 D/R leuk | P/A | nk | None | [47] |
rs1801133 (C677T) | 89 D/R | P/A | C | None | [45] | |
rs1801131 (1298A>C) | 107 D/R leuk | P/A | nk | None | [47] | |
PAI-1 | rs1799889 | 89 D/R | P/A | C | None | [45] |
VDR | rs1544410 (BsmI G>A) | 107 D/R leuk | P/A | nk | None | [47] |
rs7975232 (ApaI G>T) | 107 D/R leuk | P/A | nk | None | [47] | |
rs731236 (TaqI T>C) | 107 D/R leuk | P/A | nk | None | [47] |
3.1. Pharmacogenetics of SOS
3.1.1. Busulfan
3.1.2. Other Drugs
3.1.3. Defibrotide
3.2. Variants Affecting SOS Susceptibility
4. Variants Affecting Transplant-Related Mortality
5. Controversial Issues in HSCT Studies
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Passweg, J.R.; Baldomero, H.; Peters, C.; Gaspar, H.B.; Cesaro, S.; Dreger, P.; Duarte, R.F.; Falkenburg, J.H.F.; Farge-Bancel, D.; Gennery, A.; et al. Hematopoietic SCT in Europe: Data and trends in 2012 with special consideration of pediatric transplantation. Bone Marrow Transplant. 2014, 49, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Arnaout, K.; Patel, N.; Jain, M.; El-Amm, J.; Amro, F.; Tabbara, I.A. Complications of allogeneic hematopoietic stem cell transplantation. Cancer Investig. 2014, 32, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Servais, S.; Beguin, Y.; Baron, F. Emerging drugs for prevention of graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin. Emerg. Drugs 2013, 18, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Huezo-Diaz, P.; Uppugunduri, C.R.; Tyagi, A.K.; Krajinovic, M.; Ansari, M. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Curr. Drug Metab. 2014, 15, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Klein, T.E. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 2013, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Sucheston-Campbell, L.E.; Clay, A.; McCarthy, P.L.; Zhu, Q.; Preus, L.; Pasquini, M.; Onel, K.; Hahn, T. Identification and utilization of donor and recipient genetic variants to predict survival after HCT: Are we ready for primetime? Curr. Hematol. Malig. Rep. 2015, 10, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Beatty, P.G.; Clift, R.A.; Mickelson, E.M.; Nisperos, B.B.; Flournoy, N.; Martin, P.J.; Sanders, J.E.; Stewart, P.; Buckner, C.D.; Storb, R.; et al. Marrow transplantation from related donors other than HLA-identical siblings. N. Engl. J. Med. 1985, 313, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Chinen, J.; Buckley, R.H. Transplantation immunology: Solid organ and bone marrow. J. Allergy Clin. Immunol. 2010, 125, S324–S335. [Google Scholar] [CrossRef] [PubMed]
- Hombrink, P.; Hassan, C.; Kester, M.G.; de Ru, A.H.; van Bergen, C.A.; Nijveen, H.; Drijfhout, J.W.; Falkenburg, J.H.F.; Heemskerk, M.H.M.; van Veelen, P.A. Discovery of T cell epitopes implementing HLA-peptidomics into a reverse immunology approach. J. Immunol. 2013, 190, 3869–3877. [Google Scholar] [CrossRef] [PubMed]
- Armistead, P.M.; Liang, S.; Li, H.; Lu, S.; van Bergen, C.A.; Alatrash, G.; John, L.S.; Hunsucker, S.A.; Sarantopoulos, S.; Falkenburg, J.H.F.; et al. Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data. PLoS ONE 2011, 6, e23217. [Google Scholar] [CrossRef] [PubMed]
- Baird, K.; Cooke, K.; Schultz, K.R. Chronic graft-versus-host disease (GVHD) in children. Pediatr. Clin. N. Am. 2010, 57, 297–322. [Google Scholar] [CrossRef] [PubMed]
- Jacobsohn, D.A. Acute graft-versus-host disease in children. Bone Marrow Transplant. 2008, 41, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ruutu, T.; Gratwohl, A.; de Witte, T.; Afanasyev, B.; Apperley, J.; Bacigalupo, A.; Dazzi, F.; Dreger, P.; Duarte, R.; Finke, J.; et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014, 49, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, A; Valsecchi, M.G.; Silvestri, D.; Locatelli, F.; Manfredini, L.; Busca, A.; Iori, A.P.; Messina, C.; Prete, A.; Andolina, M.; et al. Transplant-related toxicity and mortality: An AIEOP prospective study in 636 pediatric patients transplanted for acute leukemia. Bone Marrow Transplant. 2002, 29, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Dini, G.; Zecca, M.; Balduzzi, A.; Messina, C.; Masetti, R.; Fagioli, F.; Favre, C.; Rabusin, M.; Porta, F.; Biral, E.; et al. No difference in outcome between children and adolescents transplanted for acute lymphoblastic leukemia in second remission. Blood 2011, 118, 6683–6690. [Google Scholar] [CrossRef] [PubMed]
- Fagioli, F.; Quarello, P.; Zecca, M.; Lanino, E.; Rognoni, C.; Balduzzi, A.; Messina, C.; Favre, C.; Foà, R.; Ripaldi, M.; et al. Hematopoietic stem cell transplantation for children with high-risk acute lymphoblastic leukemia in first complete remission: A report from the AIEOP registry. Haematologica 2013, 98, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Fagioli, F.; Zecca, M.; Rognoni, C.; Lanino, E.; Balduzzi, A.; Berger, M.; Messina, C.; Favre, C.; Rabusin, M.; Nigro, L.L.; et al. Allogeneic hematopoietic stem cell transplantation for Philadelphia-positive acute lymphoblastic leukemia in children and adolescents: A retrospective multicenter study of the Italian Association of Pediatric Hematology and Oncology (AIEOP). Biol. Blood Marrow Transplant. 2012, 18, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, E.W.; Malkki, M.; Gooley, T.A.; Spellman, S.R.; Haagenson, M.D.; Horowitz, M.M.; Wang, T. MHC-resident variation affects risks after unrelated donor hematopoietic cell transplantation. Sci. Trans. Med. 2012, 4, 144ra01. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.E.; Gooley, T.A.; Malkki, M.; Madrigal, J.A.; Begovich, A.B.; Horowitz, M.M.; Gratwohl, A.; Ringdé, O.; Marsh, S.G.E.; Petersdorf, E.W. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood 2007, 110, 4560–4566. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, E.W.; Malkki, M.; Horowitz, M.M.; Spellman, S.R.; Haagenson, M.D.; Wang, T. Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation. Blood 2013, 121, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Mossallam, G.I.; Fattah, R.A.; El-Haddad, A.; Mahmoud, H.K. HLA-E polymorphism and clinical outcome after allogeneic hematopoietic stem cell transplantation in Egyptian patients. Hum. Immunol. 2015, 76, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Harkensee, C.; Oka, A.; Onizuka, M.; Middleton, P.G.; Inoko, H.; Hirayasu, K.; Kashiwase, K.; Yabe, T.; Nakaoka, H.; Gennery, A.R.; et al. Single nucleotide polymorphisms and outcome risk in unrelated mismatched hematopoietic stem cell transplantation: An exploration study. Blood 2012, 119, 6365–6372. [Google Scholar] [CrossRef] [PubMed]
- Hviid, T.V.; Hylenius, S.; Rorbye, C.; Nielsen, L.G. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003, 55, 63–79. [Google Scholar] [PubMed]
- Le Maux, A.; Noel, G.; Birebent, B.; Grosset, J.M.; Vu, N.; de Guibert, S.; Bernard, M.; Semana, G.; Amiot, L. Soluble human leucocyte antigen-G molecules in peripheral blood haematopoietic stem cell transplantation: A specific role to prevent acute graft-versus-host disease and a link with regulatory T cells. Clin. Exp. Immunol. 2008, 152, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Boukouaci, W.; Busson, M.; Fortier, C.; Amokrane, K.; de Latour, R.P.; Robin, M.; Krishnamoorthy, R.; Toubert, A.; Charron, D.; Socié, G.; et al. Association of HLA-G low expressor genotype with severe acute graft-versus-host disease after sibling bone marrow transplantation. Front. Immunol. 2011, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Caocci, G.; Baccoli, R.; Vacca, A.; Mastronuzzi, A.; Bertaina, A.; Piras, E.; Littera, R.; Locatelli, F.; Carcassi, C.; La Nasa, G. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp. Hematol. 2010, 38, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Chiusolo, P.; Bellesi, S.; Piccirillo, N.; Giammarco, S.; Marietti, S.; de Ritis, D.; Metafuni, E.; Stignani, M.; Baricordi, O.R.; Sica, S.; et al. The role of HLA--G 14-bp polymorphism in allo-HSCT after short-term course MTX for GvHD prophylaxis. Bone Marrow Transplant. 2012, 47, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Onizuka, M.; Kunii, N.; Toyosaki, M.; Machida, S.; Ohgiya, D.; Ogawa, Y.; Kawada, H.; Inoko, H.; Ando, K. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone Marrow Transplant. 2011, 46, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.W.; Yun, H.Y.; Choi, B.; Han, N.; Park, S.Y.; Lee, E.S.; Oh, J.M. ABCB1 C3435T genetic polymorphism on population pharmacokinetics of methotrexate after hematopoietic stem cell transplantation in Korean patients: A prospective analysis. Clin. Ther. 2012, 34, 1816–1826. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, R.; Katsuyama, Y.; Shigemura, T.; Saito, S.; Tanaka, M.; Nakazawa, Y.; Sakashita, K.; Shiohara, M.; Koike, K. Engraftment syndrome, but not acute GVHD, younger age, CYP3A5 or MDR1 polymorphisms, increases tacrolimus clearance in pediatric hematopoietic SCT. Bone Marrow Transplant. 2011, 46, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Elhasid, R.; Krivoy, N.; Rowe, J.M.; Sprecher, E.; Adler, L.; Elkin, H.; Efrati, E. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr. Blood Cancer 2010, 55, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Rezgui, M.A.; Theoret, Y.; Uppugunduri, C.R.; Mezziani, S.; Vachon, M.F.; Desjean, C.; Rousseau, J.; Labuda, M.; Przybyla, C.; et al. Glutathione S-transferase gene variations influence BU pharmacokinetics and outcome of hematopoietic SCT in pediatric patients. Bone Marrow Transplant. 2013, 48, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, J.M.; Staatz, C.E.; Venkataramanan, R.; Klein, T.E.; Altman, R.B. PharmGKB summary: Cyclosporine and tacrolimus pathways. Pharmacogenet. Genom. 2013, 23, 563–585. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.C.; Hines, R.N.; Gu, C.; Koukouritaki, S.B.; Manro, J.R.; Tandler, P.J.; Zaya, M.J. Developmental expression of the major human hepatic CYP3A enzymes. J. Pharmacol. Exp. Ther. 2003, 307, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Reiss, U.; Cowan, M.; McMillan, A.; Horn, B. Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: Incidence, risk factors, and outcome in a cohort of 241 patients. J. Pediatr. Hematol. Oncol. 2002, 24, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Shulman, H.M.; Hinterberger, W. Hepatic veno-occlusive disease—Liver toxicity syndrome after bone marrow transplantation. Bone Marrow Transplant. 1992, 10, 197–214. [Google Scholar] [PubMed]
- Cheuk, D.K. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Prophylaxis and treatment controversies. World J. Transplant. 2012, 2, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, G.B.; Hinds, M.S.; Fisher, L.D.; Schoch, H.G.; Wolford, J.L.; Banaji, M.; Hardin, B.J.; Shulman, H.M.; Clift, R.A. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: A cohort study of 355 patients. Ann. Intern. Med. 1993, 118, 255–267. [Google Scholar] [CrossRef] [PubMed]
- McDonald, G.B.; Sharma, P.; Matthews, D.E.; Shulman, H.M.; Thomas, E.D. Venocclusive disease of the liver after bone marrow transplantation: Diagnosis, incidence, and predisposing factors. Hepatology 1984, 4, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Lee, K.S.; Beschorner, W.E.; Vogel, V.G.; Grochow, L.B.; Braine, H.G.; Vogelsang, G.B.; Sensenbrenner, L.L.; Santos, G.W.; Saral, R. Venoocclusive disease of the liver following bone marrow transplantation. Transplantation 1987, 44, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M.; Malard, F.; Abecassis, M.; Aerts, E.; Alaskar, A.S.; Aljurf, M.; Arat, M.; Bader, P.; Baron, F.; Bazarbachi, A.; et al. Sinusoidal obstruction syndrome/veno-occlusive disease: Current situation and perspectives—A position statement from the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2015, 50, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis of hepatic sinusoidal obstruction syndrome (veno-occlusive disease) following hematopoietic cell transplantation. Available online: http://www.uptodate.com/contents/diagnosis-of-hepatic-sinusoidal-obstruction-syndrome-veno-occlusive-disease-following-hematopoietic-cell-transplantation#H8038408 (accessed on 20 July 2015).
- Pihusch, M.; Lohse, P.; Reitberger, J.; Hiller, E.; Andreesen, R.; Kolb, H.J.; Holler, E.; Pihusch, R. Impact of thrombophilic gene mutations and graft-versus-host disease on thromboembolic complications after allogeneic hematopoietic stem-cell transplantation. Transplantation 2004, 78, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Kallianpur, A.R.; Hall, L.D.; Yadav, M.; Byrne, D.W.; Speroff, T.; Dittus, R.S.; Haines, J.L. The hemochromatosis C282Y allele: A risk factor for hepatic veno-occlusive disease after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2005, 35, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Porcher, R.; Fernandes, J.F.; Filion, A.; Bittencourt, H.; Silva, W., Jr.; Vilela, G.; Zanette, D.L.; Ferry, C.; Larghero, J.; et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia 2009, 23, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Uppugunduri, C.R.; Rezgui, M.A.; Diaz, P.H.; Tyagi, A.K.; Rousseau, J.; Daali, Y.; Duval, M.; Bittencourt, H.; Krajinovic, M.; Ansari, M. The association of cytochrome P450 genetic polymorphisms with sulfolane formation and the efficacy of a busulfan-based conditioning regimen in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenom. J. 2014, 14, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.; Schmidt, M.; Lawler, M.; White, B.; Cusack, S.; McCann, S.; Smith, O.P. The prothrombin gene variant G20210A but not factor V leiden may be associated with veno-occlusive disease following BMT. Bone Marrow Transplant. 1999, 24, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Ertem, M.; Akar, N. Factor V Leiden mutation as a predisposing factor for veno-occlusive disease following BMT. Bone Marrow Transplant. 2000, 25, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Zwaveling, J.; Press, R.R.; Bredius, R.G.; van Derstraaten, T.R.; den Hartigh, J.; Bartelink, I.H.; Boelens, J.J.; Guchelaar, H.J. Glutathione S-transferase polymorphisms are not associated with population pharmacokinetic parameters of busulfan in pediatric patients. Ther. Drug Monit. 2008, 30, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Poonkuzhali, B.; Shaji, R.V.; George, B.; Mathews, V.; Chandy, M.; Krishnamoorthy, R. Glutathione S-transferase M1 polymorphism: A risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004, 104, 1574–1577. [Google Scholar] [CrossRef] [PubMed]
- Seifert, C.; Wittig, S.; Arndt, C.; Gruhn, B. Heparanase polymorphisms: Influence on incidence of hepatic sinusoidal obstruction syndrome in children undergoing allogeneic hematopoietic stem cell transplantation. J. Cancer Res. Clin. Oncol. 2015, 141, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Elbahlawan, L.; McArthur, J.; Quasney, M.W.; Pei, D.; Srivastava, K.; Dahmer, M.K.; Barfield, R. Association of IL-1β-511 polymorphism with severe veno-occlusive disease in pediatric-matched allogeneic hematopoietic stem cell transplantation. J. Pediatr. Hematol. Oncol. 2012, 34, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Coppell, J.A.; Brown, S.A.; Perry, D.J. Veno-occlusive disease: Cytokines, genetics, and haemostasis. Blood Rev. 2003, 17, 63–70. [Google Scholar] [CrossRef]
- Iwamoto, T.; Hiraku, Y.; Oikawa, S.; Mizutani, H.; Kojima, M.; Kawanishi, S. DNA intrastrand cross-link at the 5′-GA-3′ sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004, 95, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Coles, B.F.; Morel, F.; Rauch, C.; Huber, W.W.; Yang, M.; Teitel, C.H.; Green, B.; Lang, N.P.; Kadlubar, F.F. Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 2001, 11, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Pajaud, J.; Kumar, S.; Rauch, C.; Morel, F.; Aninat, C. Regulation of signal transduction by glutathione transferases. Int. J. Hepatol. 2012, 2012, 137676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifazi, F.; Storci, G.; Bandini, G.; Marasco, E.; Dan, E.; Zani, E.; Albani, F.; Bertoni, S.; Bontadini, A.; de Carolis, S.; et al. Glutathione transferase-A2 S112T polymorphism predicts survival, transplant-related mortality, busulfan and bilirubin blood levels after allogeneic stem cell transplantation. Haematologica 2014, 99, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Ten Brink, M.H.; Swen, J.J.; Bohringer, S.; Wessels, J.A.; van der Straaten, T.; Marijt, E.W.; Peter, A.; Zwaveling, J.; Guchelaar, H.-J. Exploratory analysis of 1936 SNPs in ADME genes for association with busulfan clearance in adult hematopoietic stem cell recipients. Pharmacogenet. Genom. 2013, 23, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Ten Brink, M.H.; van Bavel, T.; Swen, J.J.; van der Straaten, T.; Bredius, R.G.; Lankester, A.C.; Zwaveling, J.; Guchelaar, H.-J. Effect of genetic variants GSTA1 and CYP39A1 and age on busulfan clearance in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenomics 2013, 14, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Zimniak, L.; Zimniak, P. The human hGSTA5 gene encodes an enzymatically active protein. Biochim. Biophys. Acta 2010, 1800, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Stiles, A.R.; Kozlitina, J.; Thompson, B.M.; McDonald, J.G.; King, K.S.; Russell, D.W. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc. Natl. Acad. Sci. USA 2014, 111, E4006–E4014. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.J.; Yasar, U.; Lundgren, S.; Griskevicius, L.; Terelius, Y.; Hassan, M.; Rane, A. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenom. J. 2003, 3, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Buggia, I.; Zecca, M.; Alessandrino, E.P.; Locatelli, F.; Rosti, G.; Bosi, A.; Pession, A.; Rotoli, B.; Majolino, I.; Dallorso, A.; et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. GITMO (Gruppo Italiano Trapianto di Midollo Osseo). Anticancer Res. 1996, 16, 2083–2088. [Google Scholar] [PubMed]
- Bianchi, G.; Barone, D.; Lanzarotti, E.; Tettamanti, R.; Porta, R.; Moltrasio, D.; Cedro, A.; Salvetti, L.; Mantovani, M.; Prino, G. Defibrotide, a single-stranded polydeoxyribonucleotide acting as an adenosine receptor agonist. Eur. J. Pharmacol. 1993, 238, 327–334. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Cesaro, S.; Faraci, M.; Valteau-Couanet, D.; Gruhn, B.; Rovelli, A.; Boelens, J.J.; Hewitt, A.; Schrum, J.; Schulz, A.S.; et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: An open-label, phase 3, randomised controlled trial. Lancet 2012, 379, 1301–1309. [Google Scholar] [CrossRef]
- Richardson, P.G.; Ho, V.T.; Giralt, S.; Arai, S.; Mineishi, S.; Cutler, C.; Antin, J.H.; Stavitzski, N.; Niederwieser, D.; Holler, E.; et al. Safety and efficacy of defibrotide for the treatment of severe hepatic veno-occlusive disease. Ther. Adv. Hematol. 2012, 3, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Reimer, J.; Bien, S.; Ameling, S.; Hammer, E.; Volker, U.; Hempel, G.; Boos, J.; Kroemer, H.K.; Ritter, C.A. Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur. J. Clin. Pharmacol. 2012, 68, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.T.; Cutler, C.S.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Soiffer, R.J.; Antin, J.H. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood 2007, 109, 4586–4588. [Google Scholar] [CrossRef] [PubMed]
- Maradei, S.C.; Maiolino, A.; de Azevedo, A.M.; Colares, M.; Bouzas, L.F.; Nucci, M. Serum ferritin as risk factor for sinusoidal obstruction syndrome of the liver in patients undergoing hematopoietic stem cell transplantation. Blood 2009, 114, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Yegin, Z.A.; Pasaoglu, H.; Aki, S.Z.; Ozkurt, Z.N.; Demirtas, C.; Yagci, M.; Acar, K.; Sucak, G.T. Pro-oxidative/antioxidative imbalance: A key indicator of adverse outcome in hematopoietic stem cell transplantation. Int. J. Lab. Hematol. 2011, 33, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434, 365–481. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.L.; Rahmanto, Y.S.; Richardson, D.R. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 2007, 17, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J.; Merlot, A.M.; Huang, M.L.; Bae, D.H.; Jansson, P.J.; Sahni, S.; Kalinowski, D.S.; Richardson, D.R. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta 2015, 1853, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, O.; Shimoni, A.; Baryakh, P.; Morgulis, Y.; Mayorov, M.; Beider, K.; Shteingauz, A.; Ilan, N.; Vlodavsky, I.; Nagler, A. Modification of heparanase gene expression in response to conditioning and LPS treatment: Strong correlation to rs4693608 SNP. J. Leukoc. Biol. 2014, 95, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Chiusolo, P.; Sica, S.; de Stefano, V.; Casorelli, I.; Laurenti, L.; Leone, G. Incidence of Factor V Leiden and prothrombin G20210A in patients submitted to stem cell transplantation. Haematologica 2000, 85, 670–671. [Google Scholar] [PubMed]
- Malard, F.; Chevallier, P.; Guillaume, T.; Delaunay, J.; Rialland, F.; Harousseau, J.L.; Moreau, P.; Mechinaud, F.; Milpied, N.; Mohty, M. Continuous reduced nonrelapse mortality after allogeneic hematopoietic stem cell transplantation: A single-institution's three decade experience. Biol. Blood Marrow Transplant. 2014, 20, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.K.; O’Brien, T.A.; Oswald, C.; Gabriel, M.; Ziegler, D.S.; Cohn, R.J.; Russell, S.J.; Barbaric, D.; Marshall, G.M.; Trahair, T.N. Transplant-related mortality following allogeneic hematopoeitic stem cell transplantation for pediatric acute lymphoblastic leukemia: 25-Year retrospective review. Pediatr. Blood Cancer 2013, 60, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Rio, B.; Chevret, S.; Vigouroux, S.; Chevallier, P.; Furst, S.; Sirvent, A.; Bay, J.-O.; Socié, G.; Ceballos, P.; Huynh, A.; et al. Decreased nonrelapse mortality after unrelated cord blood transplantation for acute myeloid leukemia using reduced-intensity conditioning: A prospective phase II multicenter trial. Biol. Blood Marrow Transplant. 2015, 21, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R.; et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Prete, A.; Rondelli, R.; Zecca, M.; Fagioli, F.; Lanino, E.; Messina, C.; Rovelli, A.; Porta, F.; Iori, A.P.; Favre, C.; et al. Indicazioni e risultati del trapianto allogenico in età pediatrica. Trapianti 2013, 17, 56–63. [Google Scholar]
- Pession, A.; Rondelli, R.; Paolucci, P.; Pastore, G.; Dini, G.; Bonetti, F.; Madon, E.; Mandelli, F.; Zanesco, L.; Uderzo, C.; et al. Hematopoietic stem cell transplantation in childhood: Report from the bone marrow transplantation group of the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP). Haematologica 2000, 85, 638–646. [Google Scholar] [PubMed]
- Joannides, R.; Etienne, I.; Iacob, M.; Hurault de Ligny, B.; Barbier, S.; Bellien, J.; Lebranchu, Y.; Thuillez, C.; Godin, M. Comparative effects of sirolimus and cyclosporin on conduit arteries endothelial function in kidney recipients. Transpl. Int. 2010, 23, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, B.C. Vascular endothelium and graft-versus-host disease. Best Pract. Res. 2008, 21, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kansu, E. Thrombosis in stem cell transplantation. Hematology 2012, 17, S159–S162. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, B.; Jackson, S.; Basu, S.; Jacobson, P.; Gross, M.D.; Weisdorf, D.J.; Arora, M. Association between genetic variants in adhesion molecules and outcomes after hematopoietic cell transplants. Int. J. Immunogenet. 2013, 40, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Barbalic, M.; Dupuis, J.; Dehghan, A.; Bis, J.C.; Hoogeveen, R.C.; Schnabel, R.B.; Nambi, V.; Bretler, M.; Smith, N.L.; Peters, A.; et al. Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum. Mol. Genet. 2013, 19, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Bielinski, S.J.; Pankow, J.S.; Li, N.; Hsu, F.C.; Adar, S.D.; Jenny, N.S.; Bowden, D.W.; Wasserman, B.A.; Arnett, D. ICAM1 and VCAM1 polymorphisms, coronary artery calcium, and circulating levels of soluble ICAM-1: The multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2008, 201, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Bielinski, S.J.; Reiner, A.P.; Nickerson, D.; Carlson, C.; Bailey, K.R.; Thyagarajan, B.; Lange, L.A.; Boerwinkle, E.A.; Jacobs, D.R.; Gross, M.D. Polymorphisms in the ICAM1 gene predict circulating soluble intercellular adhesion molecule-1(sICAM-1). Atherosclerosis 2011, 216, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Pare, G.; Chasman, D.I.; Kellogg, M.; Zee, R.Y.; Rifai, N.; Badola, S.; Miletich, J.P.; Ridker, P.M. Novel association of ABO histo-blood group antigen with soluble ICAM-1: Results of a genome-wide association study of 6578 women. PLoS Genet. 2008, 4, e1000118. [Google Scholar] [PubMed]
- Puthothu, B.; Krueger, M.; Bernhardt, M.; Heinzmann, A. ICAM1 amino-acid variant K469E is associated with paediatric bronchial asthma and elevated sICAM1 levels. Genes Immun. 2006, 7, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Oancea, I.; Png, C.W.; Das, I.; Lourie, R.; Winkler, I.G.; Eri, R.; Subramaniam, N.; Jinnah, H.A.; McWhinney, B.C.; Levesque, J.-P.; et al. A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut 2013, 62, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Tanigami, H.; Suzuki, K.; Shimaoka, M. Thrombomodulin: A bifunctional modulator of inflammation and coagulation in sepsis. Crit. Care Res. Pract. 2012, 2012, 614545. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, S.P.; Penack, O.; Dietrich, S.; Blau, O.; Blau, I.W.; Radujkovic, A.; Ho, A.D.; Uharek, L.; Dreger, P.; Kumar, R.; et al. Single-nucleotide polymorphisms within the thrombomodulin gene (THBD) predict mortality in patients with graft-versus-host disease. J. Clin. Oncol. 2014, 32, 3421–3427. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.; Rebora, P.; Athanasakis, E.; Favretto, D.; Verzegnassi, F.; Basso, G.; Tommasini, A.; Valsecchi, M.G.; Decorti, G.; Rabusin, M. TNF-α SNP rs1800629 and risk of relapse in childhood acute lymphoblastic leukemia: Relation to immunophenotype. Pharmacogenomics 2014, 15, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.; Rebora, P.; Basso, G.; Biondi, A.; Cazzaniga, G.; Crovella, S.; Decorti, G.; Fagioli, F.; Giarin, E.; Locatelli, F.; et al. Glutathione S-transferase homozygous deletions and relapse in childhood acute lymphoblastic leukemia: A novel study design in a large Italian AIEOP cohort. Pharmacogenomics 2012, 13, 1905–1916. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franca, R.; Stocco, G.; Favretto, D.; Giurici, N.; Decorti, G.; Rabusin, M. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children. Int. J. Mol. Sci. 2015, 16, 18601-18627. https://doi.org/10.3390/ijms160818601
Franca R, Stocco G, Favretto D, Giurici N, Decorti G, Rabusin M. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children. International Journal of Molecular Sciences. 2015; 16(8):18601-18627. https://doi.org/10.3390/ijms160818601
Chicago/Turabian StyleFranca, Raffaella, Gabriele Stocco, Diego Favretto, Nagua Giurici, Giuliana Decorti, and Marco Rabusin. 2015. "Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children" International Journal of Molecular Sciences 16, no. 8: 18601-18627. https://doi.org/10.3390/ijms160818601