Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions
Abstract
:1. Introduction
2. Scope of This Review
3. Identifying Markers That Are Highly Expressed in Cells with Some In Vitro Stem Cell Properties
3.1. Markers Identified in Clonogenic Cells
3.1.1. CD146 and Platelet Derived Growth Factor–Receptor β Co-Expression
3.1.2. SUSD2
3.2. Side Population Cells
3.3. Markers Identified in Cells with Other MSC Properties
3.3.1. Menstrual Blood-Derived Stem Cells
3.3.2. Bone Marrow as a Source of Endometrial ASCs
3.4. Label Retaining Cells
3.4.1. Epithelial LRCs
3.4.2. Stromal LRCs
4. Identifying Markers That Are Expressed by Cells Located in the Postulated Stem Cell Niche (Basalis and PM Glandular Epithelium)
4.1. SSEA-1
4.2. SOX9
4.3. Nuclear β-Catenin
4.4. N-Cadherin
5. Examining Endometrium for the Expression of Putative Stem Cell Markers That Were Identified to be Expressed in the Epithelial Stem Cells (ESCs), or Stem Cells of Different Tissues (e.g., OCT4, Mushashi-1, LGR5, Notch1/numb)
5.1. OCT-4
5.2. Musashi-1
5.3. Notch1/Numb
5.4. MSCA-1
5.5. LGR5
5.6. Telomerase
6. Involvement of Endometrial Stem Cells in Endometrial Proliferative Disease
6.1. Endometriosis
6.2. Endometrial Cancer
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cervello, I.; Gil-Sanchis, C.; Mas, A.; Delgado-Rosas, F.; Martinez-Conejero, J.A.; Galan, A.; Martinez-Romero, A.; Martinez, S.; Navarro, I.; Ferro, J.; et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS ONE 2010, 5, e10964. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.E. Uterine stem cells: What is the evidence? Hum. Reprod. Update 2007, 13, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, H.N.; Kelly, R.W.; Fraser, H.M.; Critchley, H.O. Endocrine regulation of menstruation. Endocr. Rev. 2006, 27, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Brenner, R.M.; Slayden, O.D. Molecular and functional aspects of menstruation in the macaque. Rev. Endocr. Metab. Disord. 2012, 13, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slayden, O.D.; Brenner, R.M. A critical period of progesterone withdrawal precedes menstruation in macaques. Reprod. Biol. Endocrinol. 2006, 4 (Suppl. 1), S6. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, A.C. Sonographic assessment of endometrial disorders. Semin. Ultrasound CT MR 1999, 20, 259–266. [Google Scholar] [CrossRef]
- Gargett, C.E. Identification and characterisation of human endometrial stem/progenitor cells. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Tresserra, F.; Grases, P.; Ubeda, A.; Pascual, M.A.; Grases, P.J.; Labastida, R. Morphological changes in hysterectomies after endometrial ablation. Hum. Reprod. 1999, 14, 1473–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimpelson, R.J. Ten-year literature review of global endometrial ablation with the novasure(r) device. Int. J. Womens Health 2014, 6, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Muller, I.; van der Palen, J.; Massop-Kelmink, D.; Vos-de Bruni, R.; Sikkema, J.M. Patient satisfaction and amenorrhea rate after endometrial ablation by thermachoice iii or novasure: A retrospective cohort study. Gynecol. Surg. 2015, 12, 81–87. [Google Scholar] [CrossRef]
- Prianishnikov, V.A. A functional model of the structure of the epithelium of normal, hyperplastic and malignant human endometrium: A review. Gynecol. Oncol. 1978, 6, 420–428. [Google Scholar] [CrossRef]
- Chan, R.W.; Schwab, K.E.; Gargett, C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004, 70, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Valentijn, A.J.; Palial, K.; Al-Lamee, H.; Tempest, N.; Drury, J.; Von Zglinicki, T.; Saretzki, G.; Murray, P.; Gargett, C.E.; Hapangama, D.K. Ssea-1 isolates human endometrial basal glandular epithelial cells: Phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum. Reprod. 2013, 28, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Salehnia, M.; Ziaei, S. Characteristics of human endometrial stem cells in tissue and isolated cultured cells: An immunohistochemical aspect. Iran. Biomed. J. 2016, 20, 109–116. [Google Scholar] [PubMed]
- Gargett, C.E.; Schwab, K.E.; Deane, J.A. Endometrial stem/progenitor cells: The first 10 years. Hum. Reprod. Update 2016, 22, 137–163. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Tavare, S.; Shibata, D. Counting human somatic cell replications: Methylation mirrors endometrial stem cell divisions. Proc. Natl. Acad. Sci. USA 2005, 102, 17739–17744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferenczy, A. Studies on the cytodynamics of human endometrial regeneration. I. Scanning electron microscopy. Am. J. Obstet. Gynecol. 1976, 124, 64–74. [Google Scholar] [CrossRef]
- Schenker, J.G.; Sacks, M.I.; Polischuk, W.Z.I. Regeneration of rabbit endometrium following curettage. Am. J. Obstet. Gynecol. 1971, 111, 970–978. [Google Scholar] [CrossRef]
- Baraggino, E.; Dalla Pria, S.; Cuberli, C.; Bortolotti, S. Scanning electron microscopy of the human normal endometrium. Clin. Exp. Obstet. Gynecol. 1980, 7, 66–70. [Google Scholar] [PubMed]
- Satake, T.; Matsuyama, M. Argyrophil cells in normal endometrial glands. Virchows Arch. A Pathol. Anat. Histopathol. 1987, 410, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, T. Human fetal endometrium-light and electron microscopic study. Arch. Gynecol. Obstet. 1989, 246, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Azami, M.; Ai, J.; Ebrahimi-Barough, S.; Farokhi, M.; Fard, S.E. In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue Cell 2013, 45, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.E.; Schwab, K.E.; Zillwood, R.M.; Nguyen, H.P.; Wu, D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol. Reprod. 2009, 80, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Salehnia, M.; Ziaei, S. Differentiation of human cd146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Shoae-Hassani, A.; Sharif, S.; Seifalian, A.M.; Mortazavi-Tabatabaei, S.A.; Rezaie, S.; Verdi, J. Endometrial stem cell differentiation into smooth muscle cell: A novel approach for bladder tissue engineering in women. BJU Int. 2013, 112, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Barough, S.; Hoveizi, E.; Norouzi Javidan, A.; Ai, J. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3d nanofibrous scaffold. J. Biomed. Mater. Res. A 2015, 103, 2621–2627. [Google Scholar] [CrossRef] [PubMed]
- Bayat, N.; Ebrahimi-Barough, S.; Ardakan, M.M.; Ai, A.; Kamyab, A.; Babaloo, N.; Ai, J. Differentiation of human endometrial stem cells into schwann cells in fibrin hydrogel as 3d culture. Mol. Neurobiol. 2016, 53, 7170–7176. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Barough, S.; Kouchesfahani, H.M.; Ai, J.; Massumi, M. Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (opcs). J. Mol. Neurosci. 2013, 51, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, X.; Massasa, E.E.; Feng, Y.; Wolff, E.; Taylor, H.S. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol. Ther. 2011, 19, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Niknamasl, A.; Ostad, S.N.; Soleimani, M.; Azami, M.; Salmani, M.K.; Lotfibakhshaiesh, N.; Ebrahimi-Barough, S.; Karimi, R.; Roozafzoon, R.; Ai, J. A new approach for pancreatic tissue engineering: Human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet β-cell. Cell Biol. Int. 2014, 38, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Shoae-Hassani, A.; Mortazavi-Tabatabaei, S.A.; Sharif, S.; Seifalian, A.M.; Azimi, A.; Samadikuchaksaraei, A.; Verdi, J. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: An autologous cell resource for reconstruction of the urinary bladder wall. J. Tissue Eng. Regen. Med. 2015, 9, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Snykers, S.; De Kock, J.; Rogiers, V.; Vanhaecke, T. In vitro differentiation of embryonic and adult stem cells into hepatocytes: State of the art. Stem Cells 2009, 27, 577–605. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Wang, W.; Li, X. In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell. Dev. Biol. Anim. 2014, 50, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, S.; Zhang, C.; Stegeman, S.; Pfaff-Amesse, T.; Zhang, Y.; Zhang, W.; Amesse, L.; Chen, Y. Human endometrial stromal stem cells differentiate into megakaryocytes with the ability to produce functional platelets. PLoS ONE 2012, 7, e44300. [Google Scholar] [CrossRef] [PubMed]
- Khademi, F.; Soleimani, M.; Verdi, J.; Tavangar, S.M.; Sadroddiny, E.; Massumi, M.; Ai, J. Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol. Int. 2014, 38, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, M.; Cui, C.; Umezawa, A. Myogenic transdifferentiation of menstrual blood-derived cells. Acta Myol. 2007, 26, 176–178. [Google Scholar] [PubMed]
- Allickson, J.G.; Sanchez, A.; Yefimenko, N.; Borlongan, C.V.; Sanberg, P.R. Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem Cell J. 2011, 3, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Luo, Y.; Chen, J.; Pan, R.; Xiang, B.; Du, X.; Xiang, L.; Shao, J.; Xiang, C. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev. 2014, 23, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.F.; Mutlu, L.; Massasa, E.E.; Elsworth, J.D.; Eugene Redmond, D., Jr.; Taylor, H.S. Endometrial stem cell transplantation in mptp-exposed primates: An alternative cell source for treatment of parkinson’s disease. J. Cell. Mol. Med. 2015, 19, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.F.; Gao, X.B.; Yao, K.V.; Andrews, Z.B.; Du, H.; Elsworth, J.D.; Taylor, H.S. Endometrial stem cell transplantation restores dopamine production in a parkinson’s disease model. J. Cell. Mol. Med. 2011, 15, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Wang, H.; Patel, A.N.; Kambhampati, S.; Angle, N.; Chan, K.; Marleau, A.M.; Pyszniak, A.; Carrier, E.; Ichim, T.E.; et al. Allogeneic endometrial regenerative cells: An “off the shelf solution” for critical limb ischemia? J. Transl. Med. 2008, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.E.; Gargett, C.E. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 2007, 22, 2903–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.W.; Corselli, M.; Park, T.S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Anwar, S.S.; Buhring, H.J.; Rao, J.R.; Gargett, C.E. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012, 21, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Yoshimoto, M.; Takahashi, K.; Noda, Y.; Nakahata, T.; Heike, T. Side population cells contribute to the genesis of human endometrium. Fertil. Steril. 2008, 90, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Cervello, I.; Simon, C. Somatic stem cells in the endometrium. Reprod. Sci. 2009, 16, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Matsuzaki, Y.; Hiratsu, E.; Ono, M.; Nagashima, T.; Kajitani, T.; Arase, T.; Oda, H.; Uchida, H.; Asada, H.; et al. Stem cell-like properties of the endometrial side population: Implication in endometrial regeneration. PLoS ONE 2010, 5, e10387. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Yoshimoto, M.; Kato, K.; Adachi, S.; Yamayoshi, A.; Arima, T.; Asanoma, K.; Kyo, S.; Nakahata, T.; Wake, N. Characterization of side-population cells in human normal endometrium. Hum. Reprod. 2007, 22, 1214–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervello, I.; Mas, A.; Gil-Sanchis, C.; Peris, L.; Faus, A.; Saunders, P.T.; Critchley, H.O.; Simon, C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS ONE 2011, 6, e21221. [Google Scholar] [CrossRef] [PubMed]
- Kurita, T.; Cooke, P.S.; Cunha, G.R. Epithelial-stromal tissue interaction in paramesonephric (mullerian) epithelial differentiation. Dev. Biol. 2001, 240, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.; Drury, J.A.; Valentijn, A.J.; Vasieva, O.; Hapangama, D.K. In silico, in vitro and in vivo analysis identifies a potential role for steroid hormone regulation of foxd3 in endometriosis-associated genes. Hum. Reprod. 2016, 31, 345–354. [Google Scholar] [PubMed]
- Xu, J.; Hu, F.F.; Cui, Y.G.; Luo, J.; Jiang, C.Y.; Gao, L.; Qian, X.Q.; Mao, Y.D.; Liu, J.Y. Effect of estradiol on proliferation and differentiation of side population stem/progenitor cells from murine endometrium. Reprod. Biol. Endocrinol. 2011, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyodo, S.; Matsubara, K.; Kameda, K.; Matsubara, Y. Endometrial injury increases side population cells in the uterine endometrium: A decisive role of estrogen. Tohoku J. Exp. Med. 2011, 224, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ichim, T.E.; Zhong, J.; Rogers, A.; Yin, Z.; Jackson, J.; Wang, H.; Ge, W.; Bogin, V.; Chan, K.W.; et al. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med. 2007, 5, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borlongan, C.V.; Kaneko, Y.; Maki, M.; Yu, S.J.; Ali, M.; Allickson, J.G.; Sanberg, C.D.; Kuzmin-Nichols, N.; Sanberg, P.R. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010, 19, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Dailey, T.; Weinbren, N.L.; Rizzi, J.; Tamboli, C.; Allickson, J.G.; Kuzmin-Nichols, N.; Sanberg, P.R.; Eve, D.J.; Tajiri, N.; et al. The battle of the sexes for stroke therapy: Female- versus male-derived stem cells. CNS Neurol. Disord. Drug Targets 2013, 12, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.C.; Glover, L.E.; Weinbren, N.; Rizzi, J.A.; Ishikawa, H.; Shinozuka, K.; Tajiri, N.; Kaneko, Y.; Sanberg, P.R.; Allickson, J.G.; et al. Toward personalized cell therapies: Autologous menstrual blood cells for stroke. J. Biomed. Biotechnol. 2011, 2011, 194720. [Google Scholar] [CrossRef] [PubMed]
- Azedi, F.; Kazemnejad, S.; Zarnani, A.H.; Behzadi, G.; Vasei, M.; Khanmohammadi, M.; Khanjani, S.; Edalatkhah, H.; Lakpour, N. Differentiation potential of menstrual blood-versus bone marrow-stem cells into glial-like cells. Cell Biol. Int. 2014, 38, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.C.; Voltarelli, J.; Sanberg, P.R.; Allickson, J.G.; Kuzmin-Nichols, N.; Garbuzova-Davis, S.; Borlongan, C.V. Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci. Biobehav. Rev. 2012, 36, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Alcayaga-Miranda, F.; Cuenca, J.; Martin, A.; Contreras, L.; Figueroa, F.E.; Khoury, M. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res. Ther. 2015, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Huang, Y.; Zhang, J.; Qin, W.; Chi, H.; Chen, J.; Yu, Z.; Chen, C. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014, 23, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.Z.; Lin, J.; Chen, J.Y.; Li, Y.F.; Wu, X.X.; Xiang, B.Y.; Li, C.Y.; Ma, J.M.; Xiang, C. Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells. J. Zhejiang Univ. Sci. B 2013, 14, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanjani, S.; Khanmohammadi, M.; Zarnani, A.H.; Akhondi, M.M.; Ahani, A.; Ghaempanah, Z.; Naderi, M.M.; Eghtesad, S.; Kazemnejad, S. Comparative evaluation of differentiation potential of menstrual blood-versus bone marrow-derived stem cells into hepatocyte-like cells. PLoS ONE 2014, 9, e86075. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, S.; Khanmohammadi, M.; Zarnani, A.H.; Talebi, S.; Edalatkhah, H.; Eghtesad, S.; Nikokar, I.; Kazemnejad, S. Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. J. Tissue Eng. Regen. Med. 2015, 9, E124–E134. [Google Scholar] [CrossRef] [PubMed]
- Darzi, S.; Zarnani, A.H.; Jeddi-Tehrani, M.; Entezami, K.; Mirzadegan, E.; Akhondi, M.M.; Talebi, S.; Khanmohammadi, M.; Kazemnejad, S. Osteogenic differentiation of stem cells derived from menstrual blood versus bone marrow in the presence of human platelet releasate. Tissue Eng. Part A 2012, 18, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, H.; Mehrabani, D.; Fard, M.; Akhavan, M.; Zare, S.; Bakhshalizadeh, S.; Manafi, A.; Kazemnejad, S.; Shirazi, R. The potential of menstrual blood-derived stem cells in differentiation to epidermal lineage: A preliminary report. World J. Plast. Surg. 2016, 5, 26–31. [Google Scholar] [PubMed]
- Hida, N.; Nishiyama, N.; Miyoshi, S.; Kira, S.; Segawa, K.; Uyama, T.; Mori, T.; Miyado, K.; Ikegami, Y.; Cui, C.; et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008, 26, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.H.; Uyama, T.; Miyado, K.; Terai, M.; Kyo, S.; Kiyono, T.; Umezawa, A. Menstrual blood-derived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol. Biol. Cell 2007, 18, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Domnina, A.P.; Novikova, P.V.; Fridlyanskaya, I.I.; Shilina, M.A.; Zenin, V.V.; Nikolsky, N.N. Induction of decidual differentiation of endometrial mesenchymal stem cells. Tsitologiia 2015, 57, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Guo, Y.; Zhang, Q.; Chen, Y.; Xiang, C. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim. Biophys. Sin. (Shanghai) 2016, 48, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Aghajanova, L.; Horcajadas, J.A.; Esteban, F.J.; Giudice, L.C. The bone marrow-derived human mesenchymal stem cell: Potential progenitor of the endometrial stromal fibroblast. Biol. Reprod. 2010, 82, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Lysiak, J.J.; Lala, P.K. In situ localization and characterization of bone marrow-derived cells in the decidua of normal murine pregnancy. Biol. Reprod. 1992, 47, 603–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.B.; Cheng, M.J.; Huang, Y.T.; Jiang, W.; Cong, Q.; Zheng, Y.F.; Xu, C.J. A study in vitro on differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Taylor, H.S. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 2007, 25, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Mints, M.; Jansson, M.; Sadeghi, B.; Westgren, M.; Uzunel, M.; Hassan, M.; Palmblad, J. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum. Reprod. 2008, 23, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004, 292, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Cervello, I.; Gil-Sanchis, C.; Mas, A.; Faus, A.; Sanz, J.; Moscardo, F.; Higueras, G.; Sanz, M.A.; Pellicer, A.; Simon, C. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS ONE 2012, 7, e30260. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, T.; Kyo, S.; Maida, Y.; Ozaki, S.; Takakura, M.; Nakao, S.; Inoue, M. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am. J. Obstet. Gynecol. 2009, 201, 608.e1–608.e8. [Google Scholar] [CrossRef] [PubMed]
- Ong, Y.R.; Cousins, F.L.; Yang, X.; Mushafi, A.; Breault, D.T.; Gargett, C.E.; Deane, J.A. Bone marrow stem cells do not contribute to endometrial cell lineages in chimeric mouse models. Stem Cells 2018, 36, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Gargett, C.E. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006, 24, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Kaitu’u-Lino, T.; Gargett, C.E. Role of label-retaining cells in estrogen-induced endometrial regeneration. Reprod. Sci. 2012, 19, 102–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervello, I.; Martinez-Conejero, J.A.; Horcajadas, J.A.; Pellicer, A.; Simon, C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum. Reprod. 2007, 22, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Szotek, P.P.; Chang, H.L.; Zhang, L.; Preffer, F.; Dombkowski, D.; Donahoe, P.K.; Teixeira, J. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells 2007, 25, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.T.; Xiao, L.; Deane, J.A.; Tan, K.S.; Cousins, F.L.; Masuda, H.; Sprung, C.N.; Rosamilia, A.; Gargett, C.E. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum. Reprod. 2017, 32, 2254–2268. [Google Scholar] [CrossRef] [PubMed]
- Tempest, N.; Baker, A.M.; Wright, N.A.; Hapangama, D.K. Does human endometrial lgr5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche? Hum. Reprod. 2018, 33, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Tempest, N.; Baker, A.M.; Jensen, M.; Wright, N.A.; Hapangama, D.K. 3D architecture of endometrial glands in relation to stem cell organisation. Reprod. Sci. 2018, 25 (Suppl. 1), 57A. [Google Scholar]
- Knowles, B.B.; Aden, D.P.; Solter, D. Monoclonal antibody detecting a stage-specific embryonic antigen (ssea-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol. 1978, 81, 51–53. [Google Scholar] [PubMed]
- Solter, D.; Knowles, B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (ssea-1). Proc. Natl. Acad. Sci. USA 1978, 75, 5565–5569. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.B.; Rappaport, J.; Solter, D. Murine embryonic antigen (ssea-1) is expressed on human cells and structurally related human blood group antigen i is expressed on mouse embryos. Dev. Biol. 1982, 93, 54–58. [Google Scholar] [CrossRef]
- Fox, N.; Damjanov, I.; Knowles, B.B.; Solter, D. Immunohistochemical localization of the mouse stage-specific embryonic antigen 1 in human tissues and tumors. Cancer Res. 1983, 43, 669–678. [Google Scholar] [PubMed]
- Capela, A.; Temple, S. Lex/ssea-1 is expressed by adult mouse cns stem cells, identifying them as nonependymal. Neuron 2002, 35, 865–875. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Sprung, C.N.; Gargett, C.E. Differential expression of wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology 2012, 153, 2870–2883. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.W.; Dominguez-Steglich, M.A.; Guioli, S.; Kwok, C.; Weller, P.A.; Stevanovic, M.; Weissenbach, J.; Mansour, S.; Young, I.D.; Goodfellow, P.N.; et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994, 372, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Wirth, J.; Meyer, J.; Zabel, B.; Held, M.; Zimmer, J.; Pasantes, J.; Bricarelli, F.D.; Keutel, J.; Hustert, E.; et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994, 79, 1111–1120. [Google Scholar] [CrossRef]
- Sudbeck, P.; Schmitz, M.L.; Baeuerle, P.A.; Scherer, G. Sex reversal by loss of the c-terminal transactivation domain of human SOX9. Nat. Genet. 1996, 13, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Spokony, R.F.; Aoki, Y.; Saint-Germain, N.; Magner-Fink, E.; Saint-Jeannet, J.P. The transcription factor SOX9 is required for cranial neural crest development in xenopus. Development 2002, 129, 421–432. [Google Scholar] [PubMed]
- Blache, P.; van de Wetering, M.; Duluc, I.; Domon, C.; Berta, P.; Freund, J.N.; Clevers, H.; Jay, P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol. 2004, 166, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Saegusa, M.; Hashimura, M.; Suzuki, E.; Yoshida, T.; Kuwata, T. Transcriptional up-regulation of SOX9 by NF-κB in endometrial carcinoma cells, modulating cell proliferation through alteration in the p14(ARF)/p53/p21(WAF1) pathway. Am. J. Pathol. 2012, 181, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Bastide, P.; Darido, C.; Pannequin, J.; Kist, R.; Robine, S.; Marty-Double, C.; Bibeau, F.; Scherer, G.; Joubert, D.; Hollande, F.; et al. SOX9 regulates cell proliferation and is required for paneth cell differentiation in the intestinal epithelium. J. Cell Biol. 2007, 178, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 2000, 103, 311–320. [Google Scholar] [CrossRef]
- van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.; van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A.P.; et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002, 111, 241–250. [Google Scholar] [CrossRef]
- Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 2007, 27, 7551–7559. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.D.; Zhang, L.; Rees, M.C.; Bicknell, R.; Harris, A.L. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br. J. Cancer 1997, 75, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulac, S.; Nayak, N.R.; Kao, L.C.; Van Waes, M.; Huang, J.; Lobo, S.; Germeyer, A.; Lessey, B.A.; Taylor, R.N.; Suchanek, E.; et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J. Clin. Endocrinol. Metab. 2003, 88, 3860–3866. [Google Scholar] [CrossRef] [PubMed]
- Nei, H.; Saito, T.; Yamasaki, H.; Mizumoto, H.; Ito, E.; Kudo, R. Nuclear localization of β-catenin in normal and carcinogenic endometrium. Mol. Carcinog. 1999, 25, 207–218. [Google Scholar] [CrossRef]
- Makker, A.; Goel, M.M.; Nigam, D.; Bhatia, V.; Mahdi, A.A.; Das, V.; Pandey, A. Endometrial expression of homeobox genes and cell adhesion molecules in infertile women with intramural fibroids during window of implantation. Reprod. Sci. 2017, 24, 435–444. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Li, D.; Yuan, M.; Li, Q.; Zhang, L.; Wang, G. Interaction of macrophages and endometrial cells induces epithelial-mesenchymal transition-like processes in adenomyosis. Biol. Reprod. 2017, 96, 46–57. [Google Scholar] [PubMed]
- Matthai, C.; Horvat, R.; Noe, M.; Nagele, F.; Radjabi, A.; van Trotsenburg, M.; Huber, J.; Kolbus, A. Oct-4 expression in human endometrium. Mol. Hum. Reprod. 2006, 12, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentz, E.K.; Kenning, M.; Schneeberger, C.; Kolbus, A.; Huber, J.C.; Hefler, L.A.; Tempfer, C.B. Oct-4 expression in follicular and luteal phase endometrium: A pilot study. Reprod. Biol. Endocrinol. 2010, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Gotte, M.; Wolf, M.; Staebler, A.; Buchweitz, O.; Kelsch, R.; Schuring, A.N.; Kiesel, L. Increased expression of the adult stem cell marker musashi-1 in endometriosis and endometrial carcinoma. J. Pathol. 2008, 215, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lin, F.; Fang, H.; Yang, X.; Qin, L. Expression of a putative stem cell marker musashi-1 in endometrium. Histol. Histopathol. 2011, 26, 1127–1133. [Google Scholar] [PubMed]
- Movahedan, A.; Majdi, M.; Afsharkhamseh, N.; Sagha, H.M.; Saadat, N.S.; Shalileh, K.; Milani, B.Y.; Ying, H.; Djalilian, A.R. Notch inhibition during corneal epithelial wound healing promotes migration. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7476–7483. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, R.; Xiong, W.; Pu, D.; Wang, S.; Li, T. Lentiviral vector-mediated down-regulation of Notch1 in endometrial stem cells results in proliferation and migration in endometriosis. Mol. Cell. Endocrinol. 2016, 434, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Zhao, X.; Li, M.; Zhang, X.; Lu, Z.; Yang, C.; Zhang, C.; Zhang, H.; Zhang, N. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis. Reprod. Biol. Endocrinol. 2015, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, L.; Caprio, F.; Trabucco, E.; Mastrogiacomo, A.; Coppola, G.; Manente, L.; Colacurci, N.; De Falco, M.; De Luca, A. The pattern of expression of notch protein members in normal and pathological endometrium. J. Anat. 2008, 213, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Afshar, Y.; Jeong, J.W.; Roqueiro, D.; DeMayo, F.; Lydon, J.; Radtke, F.; Radnor, R.; Miele, L.; Fazleabas, A. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J. 2012, 26, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, M.; Miyamoto, T.; Ohno, S.; Miyake, Y.; Sakaguchi, T.; Ohno, E. Diagnostic utility of Notch-1 immunocytochemistry in endometrial cytology. Acta Cytol. 2012, 56, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Van Sinderen, M.; Cuman, C.; Gamage, T.; Rainczuk, K.; Osianlis, T.; Rombauts, L.; Dimitriadis, E. Localisation of the notch family in the human endometrium of fertile and infertile women. J. Mol. Histol. 2014, 45, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Schuring, A.N.; Schulte, N.; Kelsch, R.; Ropke, A.; Kiesel, L.; Gotte, M. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil. Steril. 2011, 95, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Sobiesiak, M.; Sivasubramaniyan, K.; Hermann, C.; Tan, C.; Orgel, M.; Treml, S.; Cerabona, F.; de Zwart, P.; Ochs, U.; Muller, C.A.; et al. The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells Dev. 2010, 19, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Bitensky, L.; Cohen, S. The histochemical demonstration of alkaline phosphatase in unfixed frozen sections. Q. J. Microsc. Sci. 1965, 106, 193–196. [Google Scholar] [PubMed]
- Hoshi, K.; Amizuka, N.; Oda, K.; Ikehara, Y.; Ozawa, H. Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem. Cell Biol. 1997, 107, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.W. Alkaline phosphatase in pre-decidual cells of the human endometrium. J. Reprod. Fertil. 1969, 19, 567–568. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.W. Some properties of human endometrial alkaline phosphatase. Fertil. Steril. 1976, 27, 299–303. [Google Scholar] [CrossRef]
- O’Connor, M.D.; Kardel, M.D.; Iosfina, I.; Youssef, D.; Lu, M.; Li, M.M.; Vercauteren, S.; Nagy, A.; Eaves, C.J. Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells 2008, 26, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of stem cells in small intestine and colon by marker gene LGR5. Nature 2007, 449, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jackson, L.; Dey, S.K.; Daikoku, T. In pursuit of leucine-rich repeat-containing G protein-coupled receptor-5 regulation and function in the uterus. Endocrinology 2009, 150, 5065–5073. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; Clevers, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 2010, 138, 1681–1696. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.K.; Burgess, A.W.; Gulbis, J.M. Structure and function of Lgr5: An enigmatic G-protein coupled receptor marking stem cells. Protein Sci. Publ. Protein Soc. 2014, 23, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Krusche, C.A.; Kroll, T.; Beier, H.M.; Classen-Linke, I. Expression of leucine-rich repeat-containing G-protein-coupled receptors in the human cyclic endometrium. Fertil. Steril. 2007, 87, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Gil-Sanchis, C.; Cervello, I.; Mas, A.; Faus, A.; Pellicer, A.; Simon, C. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a putative human endometrial stem cell marker. Mol. Hum. Reprod. 2013, 19, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Cervello, I.; Gil-Sanchis, C.; Santamaria, X.; Faus, A.; Vallve-Juanico, J.; Diaz-Gimeno, P.; Genolet, O.; Pellicer, A.; Simon, C. Leucine-rich repeat-containing G-protein-coupled receptor 5-positive cells in the endometrial stem cell niche. Fertil. Steril. 2017, 107, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Munoz, J.; Stange, D.E.; Schepers, A.G.; van de Wetering, M.; Koo, B.K.; Itzkovitz, S.; Volckmann, R.; Kung, K.S.; Koster, J.; Radulescu, S.; et al. The Lgr5 intestinal stem cell signature: Robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012, 31, 3079–3091. [Google Scholar] [CrossRef] [PubMed]
- Hapangama, D.K.; Kamal, A.; Saretzki, G. Implications of telomeres and telomerase in endometrial pathology. Hum. Reprod. Update 2017, 23, 166–187. [Google Scholar] [CrossRef] [PubMed]
- Flores, I.; Benetti, R.; Blasco, M.A. Telomerase regulation and stem cell behaviour. Curr. Opin. Cell Biol. 2006, 18, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.N.; Kim, M.J.; Jung, Y.S.; Lien, E.M.; Jun, S.; Park, J.I. Quiescence exit of tert+ stem cells by Wnt/β-catenin is indispensable for intestinal regeneration. Cell Rep. 2017, 21, 2571–2584. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Kyo, S.; Takakura, M.; Kanaya, T.; Sagawa, T.; Yamashita, K.; Okada, Y.; Hiyama, E.; Inoue, M. Expression of telomerase activity in human endometrium is localized to epithelial glandular cells and regulated in a menstrual phase-dependent manner correlated with cell proliferation. Am. J. Pathol. 1998, 153, 1985–1991. [Google Scholar] [CrossRef]
- Deane, J.A.; Ong, Y.R.; Cain, J.E.; Jayasekara, W.S.; Tiwari, A.; Carlone, D.L.; Watkins, D.N.; Breault, D.T.; Gargett, C.E. The mouse endometrium contains epithelial, endothelial and leucocyte populations expressing the stem cell marker telomerase reverse transcriptase. Mol. Hum. Reprod. 2016, 22, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Breault, D.T.; Min, I.M.; Carlone, D.L.; Farilla, L.G.; Ambruzs, D.M.; Henderson, D.E.; Algra, S.; Montgomery, R.K.; Wagers, A.J.; Hole, N. Generation of Mtert-GFP mice as a model to identify and study tissue progenitor cells. Proc. Natl. Acad. Sci. USA 2008, 105, 10420–10425. [Google Scholar] [CrossRef] [PubMed]
- Valentijn, A.J.; Saretzki, G.; Tempest, N.; Critchley, H.O.; Hapangama, D.K. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum. Reprod. 2015, 30, 2816–2828. [Google Scholar] [CrossRef] [PubMed]
- Sourial, S.; Tempest, N.; Hapangama, D.K. Theories on the pathogenesis of endometriosis. Int. J. Reprod. Med. 2014, 2014, 179515. [Google Scholar] [CrossRef] [PubMed]
- Leyendecker, G.; Herbertz, M.; Kunz, G.; Mall, G. Endometriosis results from the dislocation of basal endometrium. Hum. Reprod. 2002, 17, 2725–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hapangama, D.K.; Turner, M.A.; Drury, J.A.; Quenby, S.; Saretzki, G.; Martin-Ruiz, C.; Von Zglinicki, T. Endometriosis is associated with aberrant endometrial expression of telomerase and increased telomere length. Hum. Reprod. 2008, 23, 1511–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lac, V.; Huntsman, D.G. Distinct developmental trajectories of endometriotic epithelium and stroma: Implications for the origins of endometriosis. J. Pathol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Noe, M.; Ayhan, A.; Wang, T.L.; Shih, I.M. Independent development of endometrial epithelium and stroma within the same endometriosis. J. Pathol. 2018, 245, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. Uterine Cancer Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/uterine-cancer (accessed on 31 July 2018).
- Ma, L.; Xu, Y.L.; Ding, W.J.; Shao, H.F.; Teng, Y.C. Prognostic value of musashi-1 in endometrioid adenocarcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 4564–4572. [Google Scholar] [PubMed]
- Gotte, M.; Greve, B.; Kelsch, R.; Muller-Uthoff, H.; Weiss, K.; Kharabi Masouleh, B.; Sibrowski, W.; Kiesel, L.; Buchweitz, O. The adult stem cell marker musashi-1 modulates endometrial carcinoma cell cycle progression and apoptosis via Notch-1 and p21WAF1/CIP1. Int. J. Cancer 2011, 129, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Mehra, S.; Wang, Y.; Akiyama, H.; Behringer, R.R. SOX9 overexpression in uterine epithelia induces endometrial gland hyperplasia. Differentiation 2016, 92, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zheng, X.; Wang, J.; Chen, L. Clinical significance of twist, e-cadherin, and n-cadherin protein expression in endometrioid adenocarcinoma. J. Cancer Res. Ther. 2017, 13, 817–822. [Google Scholar] [PubMed]
- Wang, C.; Cui, T.; Feng, W.; Li, H.; Hu, L. Role of numb expression and nuclear translocation in endometrial cancer. Oncol. Lett. 2015, 9, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Location | CD146/PDGFRβ | SUSD2 | SP | LRCs | SSEA-1 | SOX9 | Nuclear β-Catenin | N-Cadherin | OCT4 | Musashi-1 | Notch/Numb | MSCA-1 | LGR5 | Telomerase |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epithelial | Luminal | − | − | ? | + | + | + | − | − | + | + | ++ | |||
Functionalis | − | − | ? | − | − | − | − | + | + | − | − | + | |||
Basalis | − | − | ? | ++ | ++ | + | ++ | + | + | − | + | + | |||
Undefined | + | ||||||||||||||
Stromal | Functionalis | + | |||||||||||||
Basalis | + | ||||||||||||||
Undefined | + | + | + | ||||||||||||
Peri-vascular | Functionalis | + | + | + | ? | ||||||||||
Basalis | + | + | + | + | |||||||||||
References | [22,42,43] | [15,44] | [1,45,47,48,49,50,51,52,53] | [2,80,81,82] | [13,85,87,88,89,90,91] | [13,92,93,94,95,96,97,98,99] | [13,97,100,101,102,103,104,105] | [84,92,106,107] | [82,108,109] | [80,110,111] | [112,113,114,115,116,117,118,119] | [25,42,112,120,121,122,123,124] | [85,126,127,128,129,130,131,132,133] | [13,110,134,135,136,137,138,139] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tempest, N.; Maclean, A.; Hapangama, D.K. Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. Int. J. Mol. Sci. 2018, 19, 3240. https://doi.org/10.3390/ijms19103240
Tempest N, Maclean A, Hapangama DK. Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. International Journal of Molecular Sciences. 2018; 19(10):3240. https://doi.org/10.3390/ijms19103240
Chicago/Turabian StyleTempest, Nicola, Alison Maclean, and Dharani K. Hapangama. 2018. "Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions" International Journal of Molecular Sciences 19, no. 10: 3240. https://doi.org/10.3390/ijms19103240
APA StyleTempest, N., Maclean, A., & Hapangama, D. K. (2018). Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. International Journal of Molecular Sciences, 19(10), 3240. https://doi.org/10.3390/ijms19103240