Next Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 2, Issue 1 (March 2001), Pages 1-39

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Open AccessArticle Theoretical Conformational Analysis of Chemotactic Peptides Formyl-Met-Leu-Phe-OMe and Formyl-Met-Acc6-Phe-OMe
Int. J. Mol. Sci. 2001, 2(1), 1-9; doi:10.3390/i2010001
Received: 4 October 2000 / Accepted: 15 December 2000 / Published: 2 February 2001
PDF Full-text (118 KB) | HTML Full-text | XML Full-text
Abstract
In order to investigate the proper peptide backbone conformation that is biologically active, the chemotactic peptides formyl-Met-Leu-Phe-OMe and formyl-Met-Acc6-Phe-OMe (Acc6 is the a-a disubstituted amino acid l-aminocyclohexane-1-carboxylic acid) were studied by the theoretical method PEPSEA. This study shows that the parent peptide [...] Read more.
In order to investigate the proper peptide backbone conformation that is biologically active, the chemotactic peptides formyl-Met-Leu-Phe-OMe and formyl-Met-Acc6-Phe-OMe (Acc6 is the a-a disubstituted amino acid l-aminocyclohexane-1-carboxylic acid) were studied by the theoretical method PEPSEA. This study shows that the parent peptide formyl-Met-Leu-Phe-OMe has a flexible structure, and that the other conformationally constrained peptide has a tendency to form the b turn structure. It also gives evidence against the hypothesis proposing the importance of a formyl group in the interaction with the receptor. Full article
Open AccessArticle The Nature of the Chemical Process. 1. Symmetry Evolution – Revised Information Theory, Similarity Principle and Ugly Symmetry
Int. J. Mol. Sci. 2001, 2(1), 10-39; doi:10.3390/i2010010
Received: 16 December 2000 / Accepted: 15 March 2001 / Published: 25 March 2001
Cited by 13 | PDF Full-text (139 KB) | HTML Full-text | XML Full-text
Abstract
Symmetry is a measure of indistinguishability. Similarity is a continuous measure of imperfect symmetry. Lewis' remark that “gain of entropy means loss of information” defines the relationship of entropy and information. Three laws of information theory have been proposed. Labeling by introducing [...] Read more.
Symmetry is a measure of indistinguishability. Similarity is a continuous measure of imperfect symmetry. Lewis' remark that “gain of entropy means loss of information” defines the relationship of entropy and information. Three laws of information theory have been proposed. Labeling by introducing nonsymmetry and formatting by introducing symmetry are defined. The function L ( L=lnw, w is the number of microstates, or the sum of entropy and information, L=S+I) of the universe is a constant (the first law of information theory). The entropy S of the universe tends toward a maximum (the second law law of information theory). For a perfect symmetric static structure, the information is zero and the static entropy is the maximum (the third law law of information theory). Based on the Gibbs inequality and the second law of the revised information theory we have proved the similarity principle (a continuous higher similarity−higher entropy relation after the rejection of the Gibbs paradox) and proved the Curie-Rosen symmetry principle (a higher symmetry−higher stability relation) as a special case of the similarity principle. The principles of information minimization and potential energy minimization are compared. Entropy is the degree of symmetry and information is the degree of nonsymmetry. There are two kinds of symmetries: dynamic and static symmetries. Any kind of symmetry will define an entropy and, corresponding to the dynamic and static symmetries, there are static entropy and dynamic entropy. Entropy in thermodynamics is a special kind of dynamic entropy. Any spontaneous process will evolve towards the highest possible symmetry, either dynamic or static or both. Therefore the revised information theory can be applied to characterizing all kinds of structural stability and process spontaneity. Some examples in chemical physics have been given. Spontaneous processes of all kinds of molecular interaction, phase separation and phase transition, including symmetry breaking and the densest molecular packing and crystallization, are all driven by information minimization or symmetry maximization. The evolution of the universe in general and evolution of life in particular can be quantitatively considered as a series of symmetry breaking processes. The two empirical rules − similarity rule and complementarity rule − have been given a theoretical foundation. All kinds of periodicity in space and time are symmetries and contribute to the stability. Symmetry is beautiful because it renders stability. However, symmetry is in principle ugly because it is associated with information loss. Full article

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
ijms@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS
Back to Top