Acute Myeloid Leukemia Mutations: Therapeutic Implications
Abstract
:1. Introduction
2. Mutational Scenario in AML
3. FLT3 Mutations
3.1. FLT3 Inhibitors
3.1.1. First-Generation FLT3 Inhibitors: Midostaurin
3.1.2. Second-Generation FLT3 Inhibitors: Quizartinib, Crenolanib, and Gilteritinib
3.2. Mechanisms of Resistance to FLT3 Inhibitors
4. IDH1-IDH2 Mutations
4.1. IDH1 Inhibitors: Ivosidenib
4.2. IDH2 Inhibitors: Enasidenib
4.3. Mechanisms of Resistance to IDH1-2 Inhibitors
5. Conclusions
Funding
Conflicts of Interest
References
- Medinger, M.; Passweg, J.R. Acute myeloid leukaemia genomics. Br. J. Haematol. 2017, 179, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef]
- De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E. The role of targeted therapy in the management of patients with AML. Blood Adv. 2017, 1, 2281–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, J.E.; Lapidot, T. Biology of normal and acute myeloid leukemia stem cells. Int. J. Hematol. 2005, 82, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Ivey, A.; Huntly, B.J. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016, 127, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardis, E.R.; Ding, L.; Dooling, D.J.; Larson, D.E.; McLellan, M.D.; Chen, K. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 2009, 361, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and manage- ment of AML in adults: 2017 ELN recommen- dations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lubbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allo- geneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef]
- Kiyoi, H.; Towatari, M.; Yokota, S.; Hamaguchi, M.; Ohno, R.; Saito, H.; Naoe, T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998, 12, 1333–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuki, M.; Fenski, R.; Halfter, H.; Matsumura, I.; Schmidt, R.; Müller, C.; Grüning, W.; Kratz-Albers, K.; Serve, S.; Steur, C. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000, 96, 3907–3914. [Google Scholar] [PubMed]
- Chen, P.; Levis, M.; Brown, P.; Kim, K.T.; Allebach, J.; Small, D. FLT3/ITD mutation signaling includes suppression of SHP-1. J. Biol. Chem. 2005, 280, 5361–5369. [Google Scholar] [CrossRef] [PubMed]
- Staudt, D.; Murray, H.C.; McLachlan, T.; Alvaro, F.; Enjeti, A.K.; Verrills, N.M.; Dun, M.D. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int. J. Mol. Sci. 2018, 19, 3198. [Google Scholar] [CrossRef] [PubMed]
- Levis, M.; Small, D. FLT3: ITDoes matter in leukemia. Leukemia 2003, 17, 1738–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanada, M.; Matsuo, K.; Suzuki, T.; Kiyoi, H.; Naoe, T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: A meta-analysis. Leukemia 2005, 19, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Mead, A.J.; Linch, D.C.; Hills, R.K.; Wheatley, K.; Burnett, A.K.; Gale, R.E. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007, 110, 1262–1270. [Google Scholar] [CrossRef]
- Bacher, U.; Haferlach, C.; Kern, W.; Haferlach, T.; Schnittger, S. Prognostic relevance of FLT3-TKD mutations in AML: The combination matters—An analysis of 3082 patients. Blood 2008, 111, 2527–2537. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, E.; Boulton, C.; Kelly, L.M.; Manley, P.; Fabbro, D.; Meyer, T.; Gilliland, D.G.; Griffin, J.D. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC. Cancer Cell 2002, 1, 433–443. [Google Scholar] [CrossRef]
- Fischer, T.; Stone, R.M.; Deangelo, D.J. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 2010, 28, 4339–4345. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Kantarjian, H.; Foran, J.M.; Ghirdaladze, D.; Zodelava, M.; Borthakur, G.; Gammon, G.; Trone, D.; Armstrong, R.C.; James, J.; et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J. Clin. Oncol. 2013, 31, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Levis, M.J.; Perl, A.E.; Dombret, H.; Döhner, H.; Steffen, B.; Rousselot, P.; Martinelli, G.; Estey, E.H.; Burnett, A.K.; Gammon, G. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory Acute Myeloid Leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. Blood 2012, 120, 673. [Google Scholar]
- Cortes, J.; Perl, A.E.; Döhner, H.; Kantarjian, H.; Martinelli, G.; Kovacsovics, T.; Rousselot, P.; Steffen, B.; Dombret, H.; Estey, E. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: An open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018, 19, 889–903. [Google Scholar] [CrossRef]
- Altman, J.K.; Foran, J.M.; Pratz, K.W.; Trone, D.; Cortes, J.E.; Tallman, M.S. Phase 1 study of quizartinib in combination with induction and consolidation chemotherapy in patients with newly diagnosed acute myeloid leukemia. Am. J. Hematol. 2018, 93, 213–221. [Google Scholar] [CrossRef]
- Zimmerman, E.I.; Turner, D.C.; Buaboonnam, J.; Hu, S.; Orwick, S.; Roberts, M.S.; Janke, L.J.; Ramachandran, A.; Stewart, C.F.; Inaba, H. Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. Blood 2013, 122, 3607–3615. [Google Scholar] [CrossRef]
- Randhawa, J.K.; Kantarjian, H.M.; Borthakur, G.; Thompson, P.A.; Konopleva, M.; Daver, N.; Pemmaraju, N.; Jabbour, E.; Kadia, T.M.; Estrov, Z. Results of a phase II study of crenolanib in relapsed/refractory Acute Myeloid Leukemia Patients (Pts) with activating FLT3 mutations. Blood 2014, 124, 389. [Google Scholar]
- Goldberg, A.D.; Collins, R.H.; Stone, R.M.; Walter, R.B.; Karanes, C.; Vigil, C.E.; Wang, S.E.; Tallman, M.S. Addition of Crenolanib to Induction Chemotherapy Overcomes the Poor Prognostic Impact of Co- Occurring Driver Mutations in Patients with Newly Diagnosed FLT3-Mutated AML. Blood 2018, 132, 1436. [Google Scholar]
- Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood 2017, 129, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Perl, A.E.; Altman, J.K.; Cortes, J.; Smith, C.; Litzow, M.; Baer, M.R.; Claxton, D.; Erba, H.P.; Gill, S.; Goldberg, S.; et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: A multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017, 18, 1061–1075. [Google Scholar] [CrossRef]
- Melo, J.V.; Chuah, C. Novel agents in CML therapy: Tyrosine kinase inhibitors and beyond. Hematol. Am. Soc. Hematol. Educ. Program 2008, 1, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chng, W.-J. Resistance to FLT3 inhibitors in acute myeloid leukemia: Molecular mechanisms and resensitizing strategies. World J. Clin. Oncol. 2018, 9, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; DiNardo, C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018, 14, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Mondesir, J.; Willekens, C.; Touat, M.; de Botton, S. IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J. Blood Med. 2016, 7, 171–180. [Google Scholar] [PubMed]
- Medeiros, B.C.; Fathi, A.T.; DiNardo, C.D.; Pollyea, D.A.; Chan, S.M.; Swords, R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 2017, 31, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Le, K.; Manyak, E.; Liu, H.; Prahl, M.; Bowden, C.J.; Biller, S.; Agresta, S.; Yang, H. Longitudinal pharmacokinetic/pharmacodynamic profile of AG-120, a potent inhibitor of the IDH1 mutant protein, in a phase 1 study of IDH1-mutant advanced hematologic malignancies. Blood 2015, 126, 1310. [Google Scholar]
- DiNardo, C.D.; de Botton, S.; Stein, E.M.; Roboz, G.J.; Swords, R.T.; Pollyea, D.A.; Fathi, A.T.; Collins, R.; Altman, J.K.; Flinn, I.W.; et al. Determination of IDH1 mutational burden and clearance via next-generation sequencing in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class inhibitor of mutant IDH1. Blood 2016, 128, 1070. [Google Scholar]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- Intlekofer, A.M.; Shih, A.H.; Wang, B.; Nazir, A.; Rustenburg, A.S.; Albanese, S.K.; Patel, M.; Famulare, C.; Correa, F.M.; Takemoto, T.; et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018, 559, 125–129. [Google Scholar] [CrossRef]
- Quek, L.; David, M.D.; Kennedy, A.; Metzner, M.; Amatangelo, M.; Shih, A.; Stoilova, B.; Quivoron, C.; Heiblig, M.; Willekens, C.; et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat. Med. 2018, 24, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S. Quizartinib significantly prolongs overall survival in patients with FLT3-internal tandem duplication–mutated (Mut) relapsed/refractory AML in the phase 3, randomized, controlled quantum-r trial. Prensented at the EHA Annual Meeting, Stockholm, Sweden, 16 June 2018. [Google Scholar]
- Perl, A.E.; Martinelli, G.; Berman, E.; Paolini, S. Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): Results from the Phase III ADMIRAL trial. In Proceedings of the ASH Annual Meeting at AACR Annual Meeting, Atlanta, GA, USA, 2 April 2019. [Google Scholar]
- Pratz, K.; Cherry, M.; Altman, J.K.; Cooper, B.W.; Cruz, J.C.; Jurcic, J.G.; Levis, M.J.; Lin, T.L.; Perl, A.E.; Podoltsev, N.A.; et al. Preliminary Results from a Phase 1 Study of Gilteritinib in Combination with Induction and Consolidation Chemotherapy in Subjects with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood 2018, 130, 722. [Google Scholar]
- Stein, E.M.; DiNardo, C.D.; Fathi, A.T.; Mims, A.S.; Pratz, K.W.; Savona, M.R.; Stein, A.S.; Stone, R.M.; Winer, E.S.; Seet, C.S.; et al. Ivosidenib or Enasidenib Combined with Induction and Consolidation Chemotherapy in Patients with Newly Diagnosed AML with an IDH1 or IDH2 Mutation Is Safe, Effective, and Leads to MRD-Negative Complete Remissions. Blood 2018, 132, 560. [Google Scholar]
Mutation | Frequency in CN-AML | Targeted Agents Available? | Prognostic Impact | Drugs |
---|---|---|---|---|
NPM1 | 30–45% | No | Favorable | NA |
DNMT3A | 34% | No | Not defined | NA |
FLT3-ITD | 28–34% | Yes | Unfavorable in high ratio | Sorafenib, Quizartinib, Gilteritinib, Midostaurin |
FLT3-TKD | 11–14% | Yes | Neutral | Midostaurin, Gilteritinib, Quizartinib |
IDH1/2 | 15–30% | Yes | Favorable | Ivosidenib, Enasidenib |
TET2 | 10% | No | Not defined | NA |
ASXL1 | 5–16% | No | Unfavorable | NA |
CEBPA | 10–18% | No | Favorable | NA |
RAS | 25% NRAS, 15% KRAS | Yes | Neutral | Cobimetinib |
KIT | 20–30% of CBF-AML | Yes | Unfavorable | Dasatinib, Imatinib |
KMT2A-PTD | 5–10% | No | Unfavorable | NA |
RUNX1 | 5–13% | No | Unfavorable | NA |
TP53 | 5–20% | Yes (wild type forms) | Unfavorable | Idasanutlin |
NCT | DRUG | Phase | Setting | Results | Enrollment |
---|---|---|---|---|---|
01846624 | Midostaurin + decitabine | II | Newly diagnosed, elderly FLT3 ITD/TKD AML | NA | Closed |
03512197 | Midostaurin + chemotherapy | III | Newly diagnosed, >18 years, FLT3 negative AML | NA | Ongoing |
02039726 [42] | Quizartinib vs. Salvage chemoterapy | III | Relapsed/refractory, >18 years, FLT3 ITD AML | Median OS: 6.2 months vs. 4.7 months; Estimated survival probability at 1 year: 27% vs. 20% | Active, not recruiting |
02668653 | Chemotherapy + quizartinib/placebo | III, randomized, double blind, placebo-control | Newly diagnosed, >18 years, FLT3 ITD AML | NA | Ongoing |
03258931 | Crenolanib vs. Midostaurin following induction and consolidation chemotherapy | III | Newly diagnosed, >18 years, FLT3 ITD/TKD AML | NA | Ongoing |
02421939 [43] | Gilteritinib vs. salvage chemotherapy | III | Relapsed/refractory, >18 years, FLT3 ITD/TKD AML | Median OS: 9.3 months vs. 5.6 months; 1 year survival rate: 37% vs. 17% | Active, not recruiting |
03182244 | Gilteritinib vs. salvage chemotherapy | III | Relapsed/refractory, >18 years, FLT3 ITD/TKD AML | NA | Ongoing |
02236013 [44] | Gilteritinib + chemotherapy | I | Newly diagnosed FLT3 ITD/TKD and FLT3 negative AML | MTD > 120 mg/daily CRc 91.3 % (FLT3 pos) and 56% (FLT3 neg) | Ongoing |
02577406 | Enasidenib vs. Conventional care | III | Advanced elderly IDH2 mutated AML | NA | Ongoing |
02632708 [45] | Ivosidenib or Enasidenib with chemotherapy | I | Newly diagnosed, >18 years, IDH1-2 mutated AML | IVOSIDENIB arm: CR + CRi + CRp: 80% ENASIDENIB arm: CR + CRi + CRp: 72% | Active, not recruiting |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papayannidis, C.; Sartor, C.; Marconi, G.; Fontana, M.C.; Nanni, J.; Cristiano, G.; Parisi, S.; Paolini, S.; Curti, A. Acute Myeloid Leukemia Mutations: Therapeutic Implications. Int. J. Mol. Sci. 2019, 20, 2721. https://doi.org/10.3390/ijms20112721
Papayannidis C, Sartor C, Marconi G, Fontana MC, Nanni J, Cristiano G, Parisi S, Paolini S, Curti A. Acute Myeloid Leukemia Mutations: Therapeutic Implications. International Journal of Molecular Sciences. 2019; 20(11):2721. https://doi.org/10.3390/ijms20112721
Chicago/Turabian StylePapayannidis, Cristina, Chiara Sartor, Giovanni Marconi, Maria Chiara Fontana, Jacopo Nanni, Gianluca Cristiano, Sarah Parisi, Stefania Paolini, and Antonio Curti. 2019. "Acute Myeloid Leukemia Mutations: Therapeutic Implications" International Journal of Molecular Sciences 20, no. 11: 2721. https://doi.org/10.3390/ijms20112721
APA StylePapayannidis, C., Sartor, C., Marconi, G., Fontana, M. C., Nanni, J., Cristiano, G., Parisi, S., Paolini, S., & Curti, A. (2019). Acute Myeloid Leukemia Mutations: Therapeutic Implications. International Journal of Molecular Sciences, 20(11), 2721. https://doi.org/10.3390/ijms20112721