From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis
Abstract
:1. Introduction
2. Extraction and Purification
3. Physicochemical Properties
3.1. Solubility and Reactivity
3.2. Thermal Behavior
3.3. Morphology and Size
3.3.1. Scanning Electron Microscopy (SEM)
Melanin Source | Granule Morphology and Size | Ref. |
---|---|---|
Synthetic | 30−60 nm/40–200 nm/100–150 nm/spherical form | [33,35,42,43] |
Fungal | ||
Auricularia auricula | 20–30 nm/Amorphous fragments with a rough morphology/Chunks of amorphous materials lacking a crystalline structure | [34,44] |
Cryptococcus neoformans/ Cryptococcus gattii | Amorphous irregular shape | [42] |
Inonotus hispidus | 89.33 nm (average hydrodynamic size)/Irregular spherical and ellipsoidal structures | [23] |
Mycosphaerella fijiensis | 100–300 nm/Spherical granules | [36] |
Rubrivivax benzoatilyticus | Spherical, ball-like structures | [45] |
Termitomyces albuminosus | 100–400 nm/Thin amorphous plates comprising large clusters of almost spherical compacted nanogranules | [46] |
Bacterial | ||
Streptomyces glaucescens | Particles are irregular and have a porous structure/small spheres | [37,47] |
Proteus mirabilis | Particles are rounded aggregates of spherical bodies (some of the particles have a “doughnut” shape) | [48] |
Pseudomonas sp. (marin) | Amorphous deposit with no differentiable structures | [49] |
Escherichia coli | Small granules | [50] |
Others | ||
Human hair | Ellipsoidal shape | [42] |
Sepia ink | 85–165 nm/45–230 nm/70–460 nm/40–160 nm/150 nm/100 nm/100–200 nm/Spherical and quasi-spherical shape particles | [33,41,43,51,52,53,54,55,56,57] |
Bovine retinal pigment epithelium (RPE) | Spherical/ovoid with diameters of several hundred nanometers and larger | [43] |
Alpaca fiber | 400–1000 nm/the particles are compactly arranged inside the matrix cells of the fiber | [57] |
Catharsius molossus L. | Irregularly shape, tiny layered structures, without smooth surface | [15] |
3.3.2. Transmission Electron Microscopy (TEM)
3.3.3. Atomic Force Microscopy (AFM)
3.4. Elemental Analysis
Precursor/Source of Melanin | Results (%) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | S/N | C/N | C/H | ||
Molar Ratio | |||||||||
Dopa-melanin, 12.5 mM, tyrosinase | 51.55 | 3.79 | 7.51 | - | 0.09 | 8.00 | [16] | ||
Dopa-melanin, 12.5 mM pH 8.0 | 55.25 | 3.32 | 8.13 | - | - | 7.92 | |||
Dopa-melanin, 12.5 mM pH 10.0 | 47.26 | 3.28 | 7.62 | - | - | 7.24 | |||
Dopamine-melanin, 12.5 mM, tyrosinase | 51.25 | 4.50 | 7.93 | - | 0.11 | 7.54 | |||
DHl-melanin, 12.5 mM, tyrosinase | 51.12 | 3.84 | 7.68 | - | - | 7.76 | |||
DHIC-melanin, 12.5 mM, tyrosinase | 44.24 | 4.16 | 6.16 | 0.00 | 8.37 | ||||
Dopa-melanin 1 mM | 56.45 | 3.15 | 8.49 | 0.09 | 0.00 | [75] | |||
Dopa: 5-S cysteinyldopa 0.9:0.1 | 55.49 | 3.62 | 8.22 | 1.48 | 0.07 | ||||
0.75:0.25 | 54.00 | 3.64 | 8.45 | 4.05 | 0.21 | ||||
0.5:0.5 | 50.96 | 4.01 | 8.90 | 7.17 | 0.35 | ||||
0.25:0.75 | 48.82 | 4.24 | 9.33 | 9.38 | 0.44 | ||||
5-S cysteinyldopa | 48.47 | 4.08 | 9.66 | 10.72 | 0.48 | ||||
Pheomelanin Dopa: L-cysteine 1:1.5 | 46.24 | 4.46 | 9.34 | 9.78 | 0.46 | ||||
Dopamine melanine | 53.78 | 4.08 | 7.66 | 0.11 | 0.00 | ||||
5-S cysteinyldopamine | 47.86 | 4.86 | 10.85 | 11.91 | 0.48 | ||||
Synthetic commercially available melanin Precursor: Tyrosine Oxidation by hydrogen peroxide | 47.80 | 3.50 | 6.15 | 1.11 | [77] | ||||
69.72 | - | 5.08 | 24.71 | n.r. | [19] | ||||
48.15 | 3.75 | 6.77 | 7.12 | [78] | |||||
48 | n.r. | 7 | n.r. | [76] | |||||
DHI-melanin | 51.52 | 3.45 | 7.80 | [79] | |||||
DHICA-melanin | 47.43 | 3.57 | 6.42 | ||||||
Dopamine: cysteine Autooxidation 37 °C, 3 days | 50.66 | 3.65 | 8.41 | 3.17 | 1.14 | [80] | |||
Dopamine: cysteine Autooxidation 37 °C, 3 days + freshly dissected putamen tissue, 37 °C for 48 h | 51.10 | 5.12 | 7.22 | 3.07 | 0.83 | ||||
MELex5—Precursor: Dopamine | 68 | 5 | 3 | n.r. | 26:1 | [76] | |||
MEL1—Precursor: Dopamine | 48 | 3 | 7 | n.r. | 7.9:1 | ||||
MEL2—Precursor: L-DOPA | 52 | 4 | 7 | n.r. | 8.4:1 | ||||
MEL3b—Precursor: L-Cysteine, L-DOPA, 3:2 molar ratio | 34 | 5 | 11 | 22 | 3.6:1 | ||||
MEL4—Precursor: 5-S-cysteinyl-L-DOPA 20:1 molar ratio | 46 | 4 | 9 | 10 | 5.9:1 | ||||
n.r. = not reported |
4. Spectral Properties
4.1. UV-visible Light Absorption Spectrum
4.2. FTIR Analysis
5. Nuclear Magnetic Resonance (NMR) Analysis
6. Mass Spectrometry
6.1. Electrospray Ionization (ESI)
6.2. Matrix Assisted Laser Desorption Ionization (MALDI)
6.2.1. Synthetic Melanins
6.2.2. Natural Melanins
6.3. Other Ionization Techniques
Melanin Source | Melanin Type | MALDI Matrix | Scan Range (Da) | Ref. |
---|---|---|---|---|
Synthetic | Tyrosine melanin Serotonin melanin | Sinapinic acid or DHB | 50–100,000 | [98,99] |
Dopamine melanin | DHB | 200–3000 | [100] | |
DHICA melanin | DHB | 100–2000 | [101] | |
DHI melanin | DHB | 100–2500 | [102] | |
5,6-DHT melanin | DHB | 100–3500 | [103] | |
DOPA and dopamine melanin | DHB | 100–1200 | [104] | |
Tyrosine, DOPA and dopamine melanin | DHB | 50–2000 | [105] | |
Dopamine, DOPA, DHI and DHICA melanin | CHCA | n.r. | [106] | |
DOPA melanin | CHCA | n.r. | [107] | |
DOPA melanin | CHCA | n.r. | [123,124] | |
DHI and NMDHI melanin | DHB | 500–10,000 | [108] | |
Thiomelanin Eumelanin | DHB | n.r. | [109] | |
Natural | ||||
Retinal pigment Epithelial melanin | Eumelanin | Sinapinic acid | 30,000–175,000 | [97] |
Hair and iris melanin | Eumelanin | DHB | n.r. | [111] |
Human and cryptococcal melanin | Eumelanin | CHCA | 380–2000 | [42] |
Human hair | Eumelanin | No matrix | n.r. | [113] |
Erylus mamillaris | Eumelanin | n.r. | n.r. | [38] |
Erylus discophorus var. deficiens | ||||
Pachymatisma johnstonia | ||||
Dercitus bucklandi | ||||
Acanthopleura granulata | Pheomelanin | CHCA | n.r. | [114] |
Streptomyces kathirae | n.r. | DHB | n.r. | [115] |
Azotobacter chroococcum | n.r. | CHCA | n.r. | [116] |
Mycosphaerella fijiensis | DHN-melanin | DHB | 1000–8000 | [36] |
Pseudocercospora griseola f. mesoamericana | DHN-melanin | Norharmane | n.r. | [59] |
Fulvia fulva | DHI melanin | DHB | n.r. | [118] |
Catharsius molossus L. | CHCA | n.r. | [15] |
7. Separative Methods Coupled with Mass Spectrometry
7.1. Pyrolysis Gas Chromatography Analysis (py-GC-MS)
7.1.1. Synthetic Melanins
7.1.2. Natural Melanins
Melanin Source | Py-GC-MS Results | Ref. |
---|---|---|
Fungal | ||
Lachnum YM205 mycelium | Main pyrolysis products: pyrrole, benzene and their derivatives | [85] |
Lachnum YM404 extracellular melanin | Main pyrolysis products: pyrrole, benzene, and their derivatives; 2-methylpyrrole, 3-methylpyrrole and 2, 3-dimethylpyrrole; toluene, ethyl- benzene, 1,4-xylene and styrene Acetic acid, indole, phenol and its derivatives were also detected | [11] |
Lachnum singerianum YM296 mycelium | Main pyrolysis products: benzene, pyrroles, phenols, indoles, benzonitriles, carboxylic acids and sulfocompounds; phenol, 1,2- benzenediol, benzonitriles and carboxylic acids (ethanoic acid and phthalic acid) small amount of sulfur compounds (thiazole and benzothiophene) | [84] |
Boletus griseus | Main pyrolysis products: benzene and its derivatives, followed by indole and its derivatives; few quinoline and isoquinoline molecules small amount of phenyl nitrile, furan, and pyrazole | [22] |
Penicillium chrysogenum cell-free fungal growth medium | Pyomelanin 4-methoxy benzeneacetic acid, 4-methoxy benzenepropanoic acid and other phenolic compounds | [135] |
Drosophila melanogaster Flies | D. melanogaster type egl and w: methylbenzene, phenol, 2-methylindole, 5-hydroxyindole D. melanogaster yw: methanethiol, benzomethanothiol 2-propyl-1,3-dithiolane, 3-hydroxybenzothiazine | [137] |
Catharsius molossus | Main pyrolysis products: pyrrole, indole, phenol and their alkyl derivatives; traces of alkyl derivatives of thiophene; higher content of indole and its derivatives; 5,6-diacetoxy-1- methyl indole; hydroquinone and derivatives, dioxoindoline | [15] |
Sepia officinalis | Main pyrolysis products: pyrrole, indole, phenol and their alkyl derivatives pyridine and its derivatives; 5,6-diacetoxy-1- methyl indole; 5,6-dipropionyl-1-methyl indole | [15] |
Epidermal Human Melanocytes | The major pyrolysis product: styrene; pyrrole and its methyl derivatives, toluene, phenols, and indoles Thiazole and its methyl derivative; hydrogen sulfide, carbonyl sulfide, and methanethiol with low retention times TMAH thermochemolysis: N,N-dimethylated amino acid glycine and amine derivatives | [132] |
Primary human epidermal melanocytes derived from lightly-and darkly-pigmented neonatal foreskin | The most abundant pheomelanin markers: thiazole and hydroxybenzothiazole Non-sulfur containing pyrolysis products: toluene, phenol, methylphenol, indole and methylindole | [138] |
Human melanoma cells (A-375) Treatments: Dimethylsolfoxid (DMSO) Valproic acid (VA) 5,7-dimethoxycoumarin (DMC) Combination of VA+DMC | Main pyrolysis products: pyrrole, indole, phenol and their alkyl derivatives dominated by 1,2- benzenediol DMSO melanin: lower content of compounds (pyrrole, indole, and benzene derivatives) | [139] |
DMC melanin: Styrene and α-methylstyrene; Toluene, methylethylbenzene and small amounts of benzene, pyridine, pyrrole, phenol, indole and their methyl derivatives VA melanin: Benzene, pyridine, pyrrole, toluene, styrene, 4-methylphenol and indole; Benzothiazole; VA+DMC melanin: Thiophene, thiazole, pyrrole and its alkylic derivatives, methyl derivatives of pyridine, styrene and α-methylstyrene | [140] | |
Black human hair | Low yields of indole in pyrolisates; high content of alkilindole derivatives | [125] |
Cattle eye melanosomes isolated from retinal pigment epithelium, ciliary body, iris | Main pyrolysis products: Pyrrole and its derivatives phenylacetonitrile, phenols, indoles, catechol and its derivatives | [141] |
Substantia nigra Brain tissues of neurologically normal adult individuals | High levels of low molecular weight gases with low retention times The most abundant pyrolysis product: limonene; pyrrole, benzene, phenol and indole derivatives Enhanced relative content of pyrrole and indole derivatives in the pyrolysate of proteinase-untreated neuromelanin samples No pheomelanin markers | [131] |
Methylpyrrole, toluene, ethylbenzene, styrene, indole methylindole, Dodecene, tetradceanoic acid pentadecanoic acid and esade- canoic acid High amount of indole derivatives compared to phenols | [142] |
7.2. Liquid Chromatography Analysis (LC-MS)
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1,8-DHN | 1,8-dihydroxynaphthalene |
3-AT | 3-amino-tyrosine |
5,6-DHT | 5,6-dihydroxytryptamine |
AFM | atomic force microscopy |
AHP | 4-amino-3-hydroxyphenylalanine |
BTCA | 6-(2-amino-2carboxyethyl)-2-carboxy-4-hydroxibenzothiazole |
CHCA | α-cyano-4-hydroxycinnamic acid |
DHB | dihydroxybenzoic acid |
DHI | 5,6-dihydroxyindole |
DHICA | 5,6-dihydroxyindole-2-carboxylic acid |
DMSO | dimetylsulfoxide |
DTG | derivative thermogravimetry |
EI | electron impact |
ESI | electrospray ionization |
FAB | fast atom bombardment |
FTIR | Fourier-transform infrared spectroscopy |
GC-FID | gas chromatography coupled with flame ionization detection |
HGA | homogentisic acid |
IR-MALDESI | Infrared matrix assisted laser desorption electrospray ionization |
L-DOPA | L-3,4-dihyroxyphenylalanine |
LC-MS | liquid chromatography coupled with mass spectrometry |
MALDI | matrix assisted laser desorption/ionization |
NanoSIMS | nanoscale secondary ion mass spectrometry |
NMDHI | N-methyl-5,6-dihydroxyindole |
NMR | Nuclear magnetic resonance |
PTCA | pyrrole-2,3,5-tricarboxylic acid |
Py-GC-MS | pyrolysis gas chromatography coupled with mass-analysis |
Py-GC-MS/MS | pyrolysis gas chromatography with tandem mass-analysis |
SEM | Scanning electron microscopy |
SIMS | secondary ion mass spectrometry |
synchrotron-LDPI | laser desorption synchrotron postionization mass spectrometry |
TDCA | thiazole-4,5-dicarboxylic acid |
TEM | transmission electron microscopy |
TGA | thermogravimetric analysis |
TMAH | Tetramethylammonium hydroxide |
TTCA | thiazole-2,4,5-tricarboxilic acid |
References
- Cordero, R.J.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef]
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 1–28. [Google Scholar] [CrossRef]
- D’Ischia, M.; Wakamatsu, K.; Cicoira, F.; Di Mauro, E.; García-Borrón, J.C.; Commo, S.; Galván, I.; Ghanem, G.; Kenzo, K.; Meredith, P.; et al. Melanins and melanogenesis: From pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 2015, 28, 520–544. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, K.; Ito, S. Advanced Chemical Methods in Melanin Determination. Pigment Cell Res. 2002, 15, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kolbe, L.; Weets, G.; Wakamatsu, K. Visible light accelerates the ultraviolet A-induced degradation of eumelanin and pheomelanin. Pigment Cell Melanoma Res. 2019, 32, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Haining, R.L.; Achat-Mendes, C. Neuromelanin, one of the most overlooked molecules in modern medicine, is not a spectator. Neural Regen. Res. 2017, 12, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Belozerskaya, T.A.; Gessler, N.N.; Aver’yanov, A.A. Melanin Pigments of Fungi. In Fungal Metabolites; Springer International Publishing: Cham, Switzerland, 2017; pp. 263–291. [Google Scholar]
- Suryanarayanan, T.S.; Ravishankar, J.P.; Venkatesan, G.; Murali, T.S. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol. Res. 2004, 108, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, P.; Rajasekar, S.; Periasamy, K.; Raaman, N. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J. Microbiol. Biotechnol. 2008, 24, 2125–2131. [Google Scholar] [CrossRef]
- Wang, L.F.; Rhim, J.W. Isolation and characterization of melanin from black garlic and sepia ink. LWT 2019, 99, 17–23. [Google Scholar] [CrossRef]
- Ye, M.; Guo, G.Y.; Lu, Y.; Song, S.; Wang, H.Y.; Yang, L. Purification, structure and anti-radiation activity of melanin from Lachnum YM404. Int. J. Biol. Macromol. 2014, 63, 170–176. [Google Scholar] [CrossRef]
- Dong, C.; Yao, Y. Isolation, characterization of melanin derived from Ophiocordyceps sinensis, an entomogenous fungus endemic to the Tibetan Plateau. J. Biosci. Bioeng. 2012, 113, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Dai, D.; Huang, G.; Zhang, Z. Isolation and Characterization of Extracellular Melanin Produced by Chroogomphus rutilus D447. Am. J. Food Technol. 2015, 10, 68–77. [Google Scholar] [Green Version]
- Sun, S.; Zhang, X.; Sun, S.; Zhang, L.; Shan, S.; Zhu, H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem. 2016, 190, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Ma, J.H.; Tan, C.J.; Yang, Z.; Ye, F.; Long, C.; Ye, S.; Hou, D.B. Preparation of melanin from Catharsius molossus L. and preliminary study on its chemical structure. J. Biosci. Bioeng. 2015, 119, 446–454. [Google Scholar]
- Ito, S. Reexamination of the structure of eumelanin. Biochim. Biophys. Acta (BBA) Gen. Subj. 1986, 883, 155–161. [Google Scholar] [CrossRef]
- Dadachova, E.; Bryan, R.A.; Huang, X.; Moadel, T.; Schweitzer, A.D.; Aisen, P.; Nosanchuk, J.D.; Casadevall, A. Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi. PLoS ONE 2007, 2, e457. [Google Scholar] [CrossRef] [PubMed]
- Youngchim, S.; Morris-Jones, R.; Hay, R.J.; Hamilton, A.J. Production of melanin by Aspergillus fumigatus. J. Med. Microbiol. 2004, 53, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.R.; Jiang, B.; Zheng, J.X.; Xu, G.Y.; Li, J.Y.; Yang, N. Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chem. 2008, 111, 745–749. [Google Scholar] [CrossRef]
- Kempf, V.R.; Nofsinger, J.B.; Weinert, E.E.; Wakamatsu, K.; Liu, Y.; Rudnicki, M.; Ito, S.; Simon, J.D. Comparison of the Structural and Physical Properties of Human Hair Eumelanin Following Enzymatic or Acid/Base Extraction. Pigment Cell Res. 2003, 16, 355–365. [Google Scholar] [CrossRef]
- D’Ischia, M.; Wakamatsu, K.; Napolitano, A.; Briganti, S.; García-Borrón, J.C.; Kovacs, D.; Meredith, P.; Pezzella, A.; Picardo, M.; Sarna, T.; et al. Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Res. 2013, 26, 616–633. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, J.; Liu, B.; Zhuang, Y.; Sun, L. Study on the Preparation and Chemical Structure Characterization of Melanin from Boletus griseus. Int. J. Mol. Sci. 2018, 19, 3736. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Liu, X.; Xiang, K.; Chen, L.; Wu, X.; Lin, W.; Zheng, M.; Fu, J.; Lia, W. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chem. 2019, 277, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Vanna, R.; Bellei, C.; Zucca, F.A.; Wakamatsu, K.; Monzani, E.; Ito, S.; Casella, L.; Zecca, L. Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS ONE 2012, 7, e48490. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Kumar, J.; Kumar, A. Isolation of pyomelanin from bacteria and evidences showing its synthesis by 4-hydroxyphenylpyruvate dioxygenase enzyme encoded by hppD gene. Int. J. Biol. Macromol. 2018, 119, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Raman, N.M.; Ramasamy, S. Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus. Biochem. Biophys. Rep. 2017, 12, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Simonović, B.; Vučelic, V.; Hadzi-Pavlovic, A.; Stepien, K.; Wilczok, T.; Vučelić, D. Thermogravimetry and differential scanning calorimetry of natural and synthetic melanins. J. Therm. Anal. Calorim. 1990, 36, 2475–2482. [Google Scholar] [CrossRef]
- Simonovic, B.R.; Wilczok, T. Direct evidence of melanin decomposition by simultaneous DTA, TGA and MS analysis. J. Serb. Chem. Soc. 1995, 60, 981–986. [Google Scholar]
- Dezidério, S.N.; Brunello, C.A.; Da Silva, M.I.N.; Cotta, M.A.; Graeff, C.F.O. Thin films of synthetic melanin. J. Non. Cryst. Solids 2004, 338, 634–638. [Google Scholar] [CrossRef]
- Gómez-Marín, A.M.; Sánchez, C.I. Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. J. Non Cryst. Solids 2010, 356, 1576–1580. [Google Scholar] [CrossRef]
- Sajjan, S.S. Properties and Functions of Melanin Pigment from Klebsiella sp. GSK. Microbiol. Biotechnol. Lett. 2013, 41, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Mbonyiryivuze, A.; Nuru, Z.Y.; Ngom, B.D.; Mwakikunga, B.; Dhlamini, S.M.; Park, E.; Maaza, M. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. Am. J. Nanomater. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Strube, O.I.; Büngeler, A.; Bremser, W. Site-Specific In Situ Synthesis of Eumelanin Nanoparticles by an Enzymatic Autodeposition-Like Process. Biomacromolecules 2015, 16, 1608–1613. [Google Scholar] [CrossRef]
- Prados-Rosales, R.; Toriola, S.; Nakouzi, A.; Chatterjee, S.; Stark, R.; Gerfen, G.; Tumpowsky, P.; Dadachova, E.; Casadevall, A. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula. J. Agric. Food Chem. 2015, 63, 7326–7332. [Google Scholar] [CrossRef] [PubMed]
- Büngeler, A.; Hämisch, B.; Huber, K.; Bremser, W.; Strube, O.I. Insight into the Final Step of the Supramolecular Buildup of Eumelanin. Langmuir 2017, 33, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Garcia, M.J.; Prado, F.M.; Oliveira, M.S.; Ortiz-Mendoza, D.; Scalfo, A.C.; Pessoa, A.; Medeiros, M.H.G.; White, J.F.; Di Mascio, P. Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas. PLoS ONE 2014, 9, e91616. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ji, C.; Tang, B. Purification, characterisation and biological activity of melanin from Streptomyces sp. FEMS Microbiol. Lett. 2018, 365, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.; Xavier, J.R.; Nunes, C.D.; Vaz, P.D.; Humanes, M. Marine sponge melanin: A new source of an old biopolymer. Struct. Chem. 2012, 23, 115–122. [Google Scholar] [CrossRef]
- Costa, T.G.; Younger, R.; Poe, C.; Farmer, P.J.; Szpoganicz, B. Studies on Synthetic and Natural Melanin and Its Affinity for Fe(III) Ion. Bioinorg. Chem. Appl. 2012, 2012, 712840. [Google Scholar] [CrossRef]
- Srisuk, P.; Correlo, V.M.; Leonor, I.B.; Palladino, P.; Reis, R.L. Effect of Melanomal Proteins on Sepia Melanin Assembly. J. Macromol. Sci. Part B 2015, 54, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Mbonyiryivuze, A.; Nuru, Z.; Kotsedi, L.; Mwakikunga, B.; Dhlamini, S.; Park, E.; Maaza, M. Multi-scale Assembly in Nano-scaled Sepia Melanin Natural Dye. Mater. Today Proc. 2015, 2, 3988–3997. [Google Scholar] [CrossRef]
- Correa, N.; Covarrubias, C.; Rodas, P.I.; Hermosilla, G.; Olate, V.R.; Valdés, C.; Meyer, W.; Magne, F.; Tapia, C.V. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies. Front. Microbiol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Watt, A.A.R.; Bothma, J.P.; Meredith, P. The supramolecular structure of melanin. Soft Matter 2009, 5, 3754–3760. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, M.; Yang, H.; Zhou, H.; Yang, H. Production, physico-chemical characterization and antioxidant activity of natural melanin from submerged cultures of the mushroom Auricularia auricula. Food Biosci. 2018, 26, 49–56. [Google Scholar] [CrossRef]
- Mekala, L.P.; Mohammed, M.; Chinthalapati, S.; Chinthalapati, V.R. Pyomelanin production: Insights into the incomplete aerobic l-phenylalanine catabolism of a photosynthetic bacterium, Rubrivivax benzoatilyticus JA2. Int. J. Biol. Macromol. 2019, 126, 755–764. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.A.; Kamat, N.M.; Nadkarni, V.S. Purification and characterisation of a sulphur rich melanin from edible mushroom Termitomyces albuminosus Heim. Mycology 2018, 9, 296–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naggar, N.E.A.; El-Ewasy, S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci. Rep. 2017, 7, 42129. [Google Scholar] [CrossRef] [PubMed]
- Agodi, A.; Stefani, S.; Corsaro, C.; Campanile, F.R.M.; Gribaldo, S.; Sichel, G. Study of a melanic pigment of Proteus mirabilis. Res. Microbiol. 1996, 147, 167–174. [Google Scholar] [CrossRef]
- Tarangini, K.; Mishra, S. Production, Characterization and analysis of melanin from isolated marine Pseudomonas sp. using vegetable waste. Res. J. Eng. Sci. 2013, 2, 40–46. [Google Scholar]
- Amin, S.; Rastogi, R.P.; Sonani, R.R.; Ray, A.; Sharma, R.; Madamwar, D. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli. Sci. Total. Environ. 2018, 635, 323–332. [Google Scholar] [CrossRef]
- De La Calle, I.; Soto-Gómez, D.; Pérez-Rodríguez, P.; López-Periago, J.E. Particle Size Characterization of Sepia Ink Eumelanin Biopolymers by SEM, DLS, and AF4-MALLS: A Comparative Study. Food Anal. Methods 2019, 12, 1140–1151. [Google Scholar] [CrossRef]
- Riesz, J. The Spectroscopic Properties of Dust. Sci. Am. 2015, 31, 12609–12610. [Google Scholar]
- Nofsinger, J.B.; Eibest, L.M.; Forest, S.E.; Gold, K.A.; Simon, J.D. Probing the Building Blocks of Eumelanins Using Scanning Electron Microscopy. Pigment Cell Res. 2000, 13, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Zeise, L.; Addison, R.B.; Chedekel, M.R. Bio-analytical studies of eumelanins. I. Characterization of melanin the particle. Pigment Cell Res. 1990, 3, 48–53. [Google Scholar] [CrossRef]
- Liu, Y.; Simon, J.D. Metal–ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res. 2005, 18, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.W. Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf. B Biointerfaces 2019, 176, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Han, Q.; Byrne, N.; Sun, L.; Wang, X. Recyclable One-Step Extraction and Characterization of Intact Melanin from Alpaca Fibers. Fibers Polym. 2018, 19, 1640–1646. [Google Scholar] [CrossRef]
- Winey, M.; Meehl, J.B.; O’Toole, E.T.; Giddings, T.H. Conventional transmission electron microscopy. Mol. Biol. Cell 2014, 25, 319–323. [Google Scholar] [CrossRef]
- Bárcena, A.; Petroselli, G.; Velasquez, S.M.; Estevez, J.M.; Erra-Balsells, R.; Balatti, P.A.; Saparrat, M.C.N. Response of the fungus Pseudocercospora griseola f. mesoamericana to Tricyclazole. Mycol. Prog. 2015, 14, 76. [Google Scholar] [CrossRef]
- Sarna, T.; Burke, J.M.; Korytowski, W.; Różanowska, M.; Skumatz, C.M.; Zareba, A.; Zareba, M. Loss of melanin from human RPE with aging: Possible role of melanin photooxidation. Exp. Eye Res. 2003, 76, 89–98. [Google Scholar] [CrossRef]
- Kim, D.J.; Ju, K.Y.; Lee, J.K. The Synthetic Melanin Nanoparticles Having an Excellent Binding Capacity of Heavy Metal Ions. Bull. Korean Chem. Soc. 2012, 33, 3788–3792. [Google Scholar] [CrossRef]
- Kim, E.; Kang, M.; Tschirhart, T.; Malo, M.; Dadachova, E.; Cao, G.; Yin, J.J.; Bentley, W.E.; Wang, Z.; Payne, G.F. Spectroelectrochemical Reverse Engineering DemonstratesThat Melanin’s Redox and Radical Scavenging Activities Are Linked. Biomacromolecules 2017, 18, 4084–4098. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Higuchi, K.; Yamamoto, Y.; Arai, S.; Nakano, T.; Tanaka, N. Sub-nm 3D observation of human hair melanin by high-voltage STEM. Reprod. Syst. Sex. Disord. 2016, 65, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Myhra, S.; Rivière, J.C. Characterization of Nanostructures; CRC Press: Boca Raton, FL, USA, 2012; pp. 289–298. ISBN 9781439854150. [Google Scholar]
- El Kirat, K.; Burton, I.; Dupres, V.; Dufrene, Y.F. Sample preparation procedures for biological atomic force microscopy. J. Microsc. 2005, 218, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Jalili, N.; Laxminarayana, K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 2004, 14, 907–945. [Google Scholar] [CrossRef]
- Clancy, C.M.R.; Simon, J.D. Ultrastructural Organization of Eumelanin from Sepia officinalis Measured by Atomic Force Microscopy. Biochemistry 2001, 40, 13353–13360. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.X.; Sun, X.X. Melanin: Boisynthesis, Functions and Health Effects; Nova Science Publishers: Hauppauge, NY, USA, 2012; ISBN 978-1-62100-991-7. [Google Scholar]
- Büngeler, A.; Hämisch, B.; Strube, O.I. The Supramolecular Buildup of Eumelanin: Structures, Mechanisms, Controllability. Int. J. Mol. Sci. 2017, 18, 1901. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; D’Amico, F.; Morresi, L.; Pinto, N.; Ficcadenti, M.; Natali, R.; Ottaviano, L.; Passacantando, M.; Cuccioloni, M.; Angeletti, M.; et al. Structural, electrical, electronic and optical properties of melanin films. Eur. Phys. J. E 2009, 28, 285–291. [Google Scholar] [CrossRef]
- Lorite, G.S.; Coluci, V.R.; Da Silva, M.I.N.; Dezidério, S.N.; Graeff, C.F.O.; Galvão, D.S.; Cotta, M.A. Synthetic melanin films: Assembling mechanisms, scaling behavior, and structural properties. J. Appl. Phys. 2006, 99, 113511. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Simon, J.D. The Effect of Preparation Procedures on the Morphology of Melanin from the Ink Sac of Sepia officinalis. Pigment Cell Res. 2003, 16, 72–80. [Google Scholar] [CrossRef]
- Pombeiro-Sponchiado, S.R.; Sousa, G.S.; Andrade, J.C.R.; Lisboa, H.F.; Gonçalves, R.C.R. Production of Melanin Pigment by Fungi and Its Biotechnological Applications. In Melanin; IntechOpen: London, UK, 2017. [Google Scholar] [Green Version]
- Gonçalves, R.C.R.; Lisboa, H.C.F.; Pombeiro-Sponchiado, S.R. Characterization of melanin pigment produced by Aspergillus nidulans. World J. Microbiol. Biotechnol. 2012, 28, 1467–1474. [Google Scholar] [CrossRef]
- Ito, S.; Fujita, K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 1985, 144, 527–536. [Google Scholar] [CrossRef]
- Schweitzer, A.D.; Howell, R.C.; Jiang, Z.; Bryan, R.A.; Gerfen, G.; Chen, C.-C.; Mah, D.; Cahill, S.; Casadevall, A.; Dadachova, E. Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors. PLoS ONE 2009, 4, e7229. [Google Scholar] [CrossRef] [PubMed]
- Sava, V.M.; Galkin, B.N.; Hong, M.-Y.; Yang, P.-C.; Huang, G.S. A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Res. Int. 2001, 34, 337–343. [Google Scholar] [CrossRef]
- Frangioni, G.; Santoni, M.; Bianchi, S.; Franchi, M.; Fuzzi, G.; Marcaccini, S.; Varlani, C.; Borgioli, G. Function of the hepatic melanogenesis in the Newt, Triturus carnifex. J. Exp. Zoöl. Part A Comp. Exp. Biol. 2005, 303, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Ito, S.; Wilby, P.R.; Sota, T.; Nakamura, A.; Bowers, C.R.; Vinther, J.; Dutta, S.; Summons, R.; Briggs, D.E.G.; et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. USA 2012, 109, 10218–10223. [Google Scholar] [CrossRef] [Green Version]
- Bridelli, M.G.; Tampellini, D.; Zecca, L. The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Lett. 1999, 457, 18–22. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Chen, W.; Zhang, L.; Zhu, H. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Food Chem. 2016, 196, 486–492. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, G.; Thring, R.W.; Chen, W.; Zhou, H.; Yang, H. Production and Characterization of Melanin by Submerged Culture of Culinary and Medicinal Fungi Auricularia auricula. Appl. Biochem. Biotechnol. 2015, 176, 253–266. [Google Scholar] [CrossRef]
- Zhan, F.; He, Y.; Zu, Y.; Li, T.; Zhao, Z. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World J. Microbiol. Biotechnol. 2011, 27, 2483–2489. [Google Scholar] [CrossRef]
- Ye, Z.; Lu, Y.; Zong, S.; Yang, L.; Shaikh, F.; Li, J.; Ye, M. Structure, molecular modification and anti-tumor activity of melanin from Lachnum singerianum. Process. Biochem. 2019, 76, 203–212. [Google Scholar] [CrossRef]
- Zong, S.; Li, L.; Li, J.; Shaikh, F.; Yang, L.; Ye, M. Structure Characterization and Lead Detoxification Effect of Carboxymethylated Melanin Derived from Lachnum sp. Appl. Biochem. Biotechnol. 2017, 182, 669–686. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Li, S.; Su, N.; Shi, F.; Ye, M. Structural characterization, molecular modification and hepatoprotective effect of melanin from Lachnum YM226 on acute alcohol-induced liver injury in mice. Food Funct. 2016, 7, 3617–3627. [Google Scholar] [CrossRef] [PubMed]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol. 2013, 58, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Xiujun, S.; Biao, W.; Liqing, Z.; Zhihong, L.; Yinghui, D.; Aiguo, Y. Isolation and characterization of melanin pigment from yesso scallop Patinopecten yessoensis. J. Ocean Univ. China (Oceanic Coast. Sea Res.) 2017, 16, 279–284. [Google Scholar]
- Kollias, N.; Baqer, A. Spectroscopic Characteristics of Human Melanin in Vivo. J. Investig. Dermatol. 1985, 85, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Kollias, N.; Baqer, A.H. Absorption Mechanisms of Human Melanin in the Visible, 400–720 nm. J. Investig. Dermatol. 1987, 89, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Qi, J.; Wang, L. Isolation, Fractionation and Characterization of Melanin-like Pigments from Chestnut (Castanea mollissima) Shells. J. Food Sci. 2012, 77, 671–676. [Google Scholar] [CrossRef]
- Zecca, L.; Bellei, C.; Costi, P.; Albertini, A.; Monzani, E.; Casella, L.; Gallorini, M.; Bergamaschi, L.; Moscatelli, A.; Turro, N.J.; et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc. Natl. Acad. Sci. USA 2008, 105, 17567–17572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou-Yang, H.; Stamatas, G.; Kollias, N. Spectral Responses of Melanin to Ultraviolet a Irradiation. J. Investig. Dermatol. 2004, 122, 492–496. [Google Scholar] [CrossRef]
- Ye, M.; Wang, Y.; Guo, G.Y.; He, Y.L.; Lu, Y.; Ye, Y.W.; Yang, Q.H.; Yang, P.Z. Physicochemical characteristics and antioxidant activity of arginine-modified melanin from Lachnum YM-346. Food Chem. 2012, 135, 2490–2497. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Li, J.; Chen, T.; Ye, M. Structure, Molecular Modification, and Anti-radiation Activity of Melanin from Lachnum YM156 on Ultraviolet B-Induced Injury in Mice. Appl. Biochem. Biotechnol. 2018, 188, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Wang, Y.; Chan, H.W.; Wang, L.; Chan, W. Mass Spectrometric and Spectrophotometric Analyses Reveal an Alternative Structure and a New Formation Mechanism for Melanin. Anal. Chem. 2015, 87, 7958–7963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yacout, S.M.; McIlwain, K.L.; Mirza, S.P.; Gaillard, E.R. Characterization of retinal pigment epithelial melanin and degraded synthetic melanin using mass spectrometry and in vitro biochemical diagnostics. Photochem. Photobiol. 2019, 95, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Seraglia, R.; Traldi, P.; Elli, G.; Bertazzo, A.; Costa, C.; Allegri, G. Laser desorption ionization mass spectrometry in the study of natural and synthetic melanins. I—Tyrosine melanins. Biol. Mass Spectrom. 1993, 22, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Bertazzo, A.; Biasiolo, M.; Costa, C.; Allegri, G.; Elli, G.; Seraglia, R.; Traldi, P. Laser desorption ionization mass spectrometry in the study of natural and synthetic melanins II—serotonin melanins. J. Mass Spectrom. 1994, 23, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bertazzo, A.; Costa, C.; Allegri, G.; Seraglia, R.; Traldi, P. Biosynthesis of melanin from dopamine. An investigation of early oligomerization products. Rapid Commun. Mass Spectrom. 1995, 9, 634–640. [Google Scholar] [CrossRef]
- Napolitano, A.; Pezzella, A.; Prota, G.; Seraglia, R.; Traldi, P. A Reassessment of the Structure of 5,6-Dihydroxyindole-2-carboxylic Acid Melanins by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 204–208. [Google Scholar] [CrossRef]
- Napolitano, A.; Pezzella, A.; Prota, G.; Seraglia, R.; Traldi, P. Structural Analysis of Synthetic Melanins from 5,6-Dihydroxyindole by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 468–472. [Google Scholar] [CrossRef]
- Allegri, G.; Bertazzo, A.; Costa, C.; Seraglia, R.; Traldi, P. Investigation on melanin biosynthesis from 5,6-dihydroxy tryptamine by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 419–423. [Google Scholar] [CrossRef]
- Bertazzo, A.; Costa, C.V.L.; Allegri, G.; Favretto, D.; Traldi, P. Application of matrix-assisted laser desorption/ionization mass spectrometry to the detection of melanins formed from Dopa and dopamine. J. Mass Spectrom. 1999, 34, 922–929. [Google Scholar] [CrossRef]
- Bertazzo, A.; Favretto, D.; Costa, C.V.L.; Allegri, G.; Traldi, P. Effects of ultraviolet irradiation on melanogenesis from tyrosine, Dopa and dopamine: A matrix-assisted laser desorption/ionization mass spectrometric study. Rapid Commun. Mass Spectrom. 2000, 14, 1862–1868. [Google Scholar] [CrossRef]
- Kroesche, C.; Peter, M.G. Detection of melanochromes by MALDI-TOF mass spectrometry. Tetrahedron 1996, 52, 3947–3952. [Google Scholar] [CrossRef]
- Serpentini, C.L.; Gauchet, C.; De Montauzon, D.; Comtat, M.; Ginestar, J.; Paillous, N. First electrochemical investigation of the redox properties of DOPA–melanins by means of a carbon paste electrode. Electrochim. Acta 2000, 45, 1663–1668. [Google Scholar] [CrossRef]
- Reale, S.; Crucianelli, M.; Pezzella, A.; D’Ischia, M.; De Angelis, F. Exploring the frontiers of synthetic eumelanin polymers by high-resolution matrix-assisted laser/desorption ionization mass spectrometry. J. Mass Spectrom. 2012, 47, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, M.; Mancebo-Aracil, J.; Guardingo, M.; Martín, R.; D’Errico, G.; Perfetti, M.; Manini, P.; Crescenzi, O.; Busqué, F.; Napolitano, A.; et al. Replacing Nitrogen by Sulfur: From Structurally Disordered Eumelanins to Regioregular Thiomelanin Polymers. Int. J. Mol. Sci. 2017, 18, 2169. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.R.; Roberts, J.C.; Wilkins, D.G.; E Rollins, D. Cocaine, benzoylecgonine, amphetamine, and N-acetylamphetamine binding to melanin subtypes. J. Anal. Toxicol. 2003, 27, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Novellino, L. Isolation and characterization of mammalian eumelanins from hair and irides. Biochim. Biophys. Acta (BBA) Gen. Subj. 2000, 1475, 295–306. [Google Scholar] [CrossRef]
- Micillo, R.; Iacomino, M.; Perfetti, M.; Panzella, L.; Koike, K.; D’Errico, G.; D’Ischia, M.; Napolitano, A. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid. Pigment Cell Melanoma Res. 2018, 31, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.P.; Thompson, C.G.; Bokhart, M.T.; Prince, H.M.A.; Sykes, C.; Muddiman, D.C.; Kashuba, A.D.M. Analysis of antiretrovirals in single hair strands for evaluation of drug adherence with infrared-matrix-assisted laser desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 2016, 88, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Speiser, D.I.; DeMartini, D.G.; Oakley, T.H. The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J. Nat. Hist. 2014, 48, 2899–2911. [Google Scholar] [CrossRef]
- Yang, T.; Man, Z.; Guo, J.; Rao, Z.; Xu, M.; Zhang, X. High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiol. Lett. 2014, 357, 85–91. [Google Scholar]
- Banerjee, A.; Supakar, S.; Banerjee, R. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization. PLoS ONE 2014, 9, 84574. [Google Scholar] [CrossRef] [PubMed]
- Edens, W.A.; Goins, T.Q.; Dooley, D.; Henson, J.M. Purification and Characterization of a Secreted Laccase of Gaeumannomyces graminis var. tritici. Appl. Environ. Microbiol. 1999, 65, 3071–3074. [Google Scholar] [PubMed]
- Medina, R.; Lucentini, C.G.; Franco, M.E.; Petroselli, G.; Rosso, J.A.; Erra-Balsells, R.; Balatti, P.A.; Saparrat, M.C. Identification of an intermediate for 1,8-dihydroxynaphthalene-melanin synthesis in a race-2 isolate of Fulvia fulva (syn. Cladosporium fulvum). Heliyon 2018, 4, e01036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, M.; Berkesi, O.; Darula, Z.; May, N.V.; Palágyi, A. Structural characterization of allomelanin from black oat. Phytochemistry 2016, 130, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Bertazzo, A.; Allegri, G.; Toffano, G.; Curcuruto, O.; Traldi, P. Melanin Biosynthesis from Dopamine. II. A Mass Spectrometric and Collisional Spectroscopic Investigation. Pigment Cell Res. 1992, 5, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Yamada, H.; Isobe, M.; Yamamoto, T.; Takeuchi, M.; Aoki, D.; Matsushita, Y.; Fukushima, K. Compositional changes of human hair melanin resulting from bleach treatment investigated by nanoscale secondary ion mass spectrometry. Ski. Res. Technol. 2014, 20, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Shawkey, M.; Parkinson, D.; Troy, T.P.; Ahmed, M. Elucidation of the chemical composition of avian melanin. RSC Adv. 2014, 4, 40396–40399. [Google Scholar] [CrossRef]
- Dehn, D.L.; Claffey, D.J.; Duncan, M.W.; Ruth, J.A. Nicotine and Cotinine Adducts of a Melanin Intermediate Demonstrated by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Chem. Res. Toxicol. 2001, 14, 275–279. [Google Scholar] [CrossRef]
- Claffey, D.J.; Ruth, J.A. Amphetamine Adducts of Melanin Intermediates Demonstrated by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Chem. Res. Toxicol. 2001, 14, 1339–1344. [Google Scholar] [CrossRef]
- Dworzanski, J.P. Pyrolysis—Gas chromatography of natural and synthetic melanins. J. Anal. Appl. Pyrolysis 1983, 5, 69–79. [Google Scholar] [CrossRef]
- Stȩpień, K.B.; Dworzanski, J.P.; Imielski, S.; Wilczok, T.; Stępień, K.B. Study of chloroquine binding to melanins by pyrolysis-gas chromatography and electron spin resonance spectroscopy. J. Anal. Appl. Pyrolysis 1986, 9, 297–307. [Google Scholar] [CrossRef]
- Stȩpień, K.B.; Dworzański, J.P.; Bilińska, B.; Porȩbska-Budny, M.; Hollek, A.M.; Wilczok, T. Catecholamine melanins. Structural changes induced by copper ions. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. 1989, 997, 49–54. [Google Scholar] [CrossRef]
- Chodurek, E.; Pilawa, B.; Dzierzȩga-Lȩcznar, A.; Kurkiewicz, S.; Świa̧tkowska, L.; Wilczok, T. Effect of Cu2+ and Zn2+ ions on DOPA-melanin structure as analyzed by pyrolysis-gas chromatography-mass spectrometry and EPR spectroscopy. J. Anal. Appl. Pyrolysis 2003, 70, 43–54. [Google Scholar] [CrossRef]
- Dzierżęga-Lęcznar, A.; Chodurek, E.; Stępień, K.; Wilczok, T. Pyrolysis-gas chromatography-mass spectrometry of synthetic neuromelanins. J. Anal. Appl. Pyrolysis 2002, 62, 239–248. [Google Scholar] [CrossRef]
- Dzierżȩga-Lȩcznar, A.; Stępień, K.; Chodurek, E.; Kurkiewicz, S.; Swiatkowska, L.; Wilczok, T. Pyrolysis–gas chromatography/mass spectrometry of peroxynitrite-treated melanins. J. Anal. Appl. Pyrolysis 2003, 70, 457–467. [Google Scholar] [CrossRef]
- Dzierzega-Lecznar, A.; Kurkiewicz, S.; Wilczok, T.; Stepien, K.; Chodurek, E.; Arzberger, T.; Riederer, P.; Gerlach, M. GC/MS analysis of thermally degraded neuromelanin from the human substantia nigra. J. Am. Soc. Mass Spectrom. 2004, 15, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Stępień, K.; Dzierżęga-Lęcznar, A.; Kurkiewicz, S.; Tam, I. Melanin from epidermal human melanocytes: Study by pyrolytic GC/MS. J. Am. Soc. Mass Spectrom. 2009, 20, 464–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzierżęga-Lęcznar, A.; Kurkiewicz, S.; Stępień, K.; Dzierżȩga-Lȩcznar, A. Detection and quantitation of a pheomelanin component in melanin pigments using pyrolysis-gas chromatography/tandem mass spectrometry system with multiple reaction monitoring mode. J. Mass Spectrom. 2012, 47, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Nosanchuk, J.D.; Stark, R.E.; Casadevall, A. Fungal melanin: What do we know about structure? Front. Microbiol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- VasanthaKumar, A.; DeAraujo, A.; Schilling, M.; Mazurek, J.; Mitchell, R. Pyomelanin production in Penicillium chrysogenum is stimulated by l-tyrosine. Microbiology 2015, 161, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Dzierzega-Lecznar, A.; Kurkiewicz, S.; Stępień, K.; Chodurek, E.; Riederer, P.; Gerlach, M. Structural investigations of neuromelanin by pyrolysis-gas chromatography/mass spectrometry. J. Neural Transm. 2006, 113, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Latocha, M.; Chodurek, E.; Kurkiewicz, S.; Świątkowska, L.; Wilczok, T. Pyrolytic GC-MS analysis of melanin from black, gray and yellow strains of Drosophila melanogaster. J. Anal. Appl. Pyrolysis 2000, 56, 89–98. [Google Scholar] [CrossRef]
- Dzierżęga-Lęcznar, A.; Kurkiewicz, S.; Tam, I.; Marek, Ł.; Stępień, K. Pheomelanin content of cultured human melanocytes from lightly and darkly pigmented skin: A pyrolysis-gas chromatography/tandem mass spectrometry study. J. Anal. Appl. Pyrolysis 2017, 124, 349–354. [Google Scholar] [CrossRef]
- Chodurek, E.; Orchel, A.; Orchel, J.; Kurkiewicz, S.; Gawlik, N.; Dzierzewicz, Z.; Stȩpień, K. Evaluation of melanogenesis in A-375 cells in the presence of DMSO and analysis of pyrolytic profile of isolated melanin. Sci. World J. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chodurek, E.; Orchel, A.; Orchel, J.; Kurkiewicz, S.; Gawlik, N.; Dzierżewicz, Z.; Stępień, K. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid. Cell. Mol. Biol. Lett. 2012, 17, 616–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworzański, J.P.; Dȩbowski, M.T.; Wacławek, R. Analysis of melanosomes from cattle eyes by pyrolysis—Gas chromatography. J. Anal. Appl. Pyrolysis 1984, 6, 391–400. [Google Scholar] [CrossRef]
- Zecca, L.; Mecacci, C.; Seraglia, R.; Parati, E. The chemical characterization of melanin contained in substantia nigra of human brain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1992, 1138, 6–10. [Google Scholar] [CrossRef]
- Ito, S.; Jimbow, K. Quantitative Analysis of Eumelanin and Pheomelanin in Hair and Melanomas. J. Investig. Dermatol. 1983, 80, 268–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petzel-Witt, S.; Meier, S.I.; Schubert-Zsilavecz, M.; Toennes, S.W. PTCA (1H-pyrrole-2,3,5-tricarboxylic acid) as a marker for oxidative hair treatment. Drug Test. Anal. 2018, 10, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Nakanishi, Y.; Valenzuela, R.K.; Brilliant, M.H.; Kolbe, L.; Wakamatsu, K. Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: Application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 2011, 24, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Szekely-Klepser, G.; Wade, K.; Woolson, D.; Brown, R.; Fountain, S.; Kindt, E. A validated LC/MS/MS method for the quantification of pyrrole-2,3,5-tricarboxylic acid (PTCA), a eumelanin specific biomarker, in human skin punch biopsies. J. Chromatogr. B 2005, 826, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Manini, P.; Monfrecola, G.; D’Ischia, M.; Napolitano, A. An easy-to-run method for routine analysis of eumelanin and pheomelanin in pigmented tissues. Pigment Cell Res. 2007, 20, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Slawson, M.H.; Wilkins, D.G.; Rollins, D.E. The Incorporation of Drugs into Hair: Relationship of Hair Color and Melanin Concentration to Phencyclidine Incorporation. J. Anal. Toxicol. 1998, 22, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.R.; Roberts, J.C.; Wilkins, D.G.; Rollins, D.E. Relationship of Melanin Degradation Products to Actual Melanin Content: Application to Human Hair. Anal. Biochem. 2001, 290, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Kolb, A.; Lentjes, E.; Smit, N.; Schothorst, A.; Vermeer, B.; Pavel, S. Determination of Pheomelanin by Measurement of Aminohydroxyphenylalanine Isomers with High-Performance Liquid Chromatography. Anal. Biochem. 1997, 252, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Nezirević, D.; Årstrand, K.; Kågedal, B. Hydrophilic interaction liquid chromatographic analysis of aminohydroxyphenylalanines from melanin pigments. J. Chromatogr. A 2007, 1163, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Magarelli, M.; Passamonti, P.; Renieri, C. Purification, characterization and analysis of Sepia melanin from commercial sepia ink (Sepia Officinalis). Rev. CES Med. Vet. Zootec. 2010, 5, 18–28. [Google Scholar]
- Napolitano, A.; Vincensi, M.R.; Di Donato, P.; Prota, G.; Monfrecola, G. Microanalysis of Melanins in Mammalian Hair by Alkaline Hydrogen Peroxide Degradation: Identification of a New Structural Marker of Pheomelanins. J. Investig. Dermatol. 2000, 114, 1141–1147. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, Y.; Chai, B.; Qiu, C.; Chen, X. Identification and Molecular Characterization of the Homogentisate Pathway Responsible for Pyomelanin Production, the Major Melanin Constituents in Aeromonas media WS. PLoS ONE 2015, 10, e0120923. [Google Scholar] [CrossRef]
- Gibson, L.F.; George, A.M. Melanin and novel melanin precursors from Aeromonas media. FEMS Microbiol. Lett. 1998, 169, 261–268. [Google Scholar] [CrossRef]
Melanin Source | Extraction and Purification | Ref. |
---|---|---|
Fungal Melanin | ||
Boletus griseus | • incubation with 1 M NaOH at 60 °C for 40 min • centrifugation followed by pH adjustment to 1.5 with 6 M HCl and heating at 80 °C for 12 h • centrifugation followed by precipitate collection, washing with deionized water • vacuum freeze-drying of the precipitate • hydrolyzation of the crude melanin with 7 M HCl at 100° for 4 h • filtration and washing • repeated solubilization of the precipitate in 1 mM KOH and addition of chloroform: isoamyl alcohol • centrifugation followed by pH adjustment to 2 with 1 M HCl • centrifugation followed by successive washing steps with ethanol and ultrapure water • vacuum freeze-drying of the precipitate | [22] |
Inonotus hispidus | • Similar extraction and purification steps | [23] |
Auricularia auricula | [14] | |
Lachnum YM404 | [11] | |
Pleurotus cystidiosus | [9] | |
P. capitalensis | [8] | |
C. neoformans C. sphaerospermum W. dermatitidis 8656 | • suspension of fungal cells in 1 M sorbitol-0.1 M sodium citrate (pH 5.5) • lysis using Trichoderma harzarium enzymes followed by overnight incubation at 30 °C • centrifugation followed by protoplast collection and denaturation using 4 M guanidine thiocyanate overnight, at room temperature • centrifugation and overnight treatment with Proteinase K, at 37 °C • particle boiling in 6 M HCl for 1 h • wash of the resulting material with phosphate buffer saline and deionized water • dry in air at 65 °C overnight | [17] |
Aspergillus fumigatus | • Similar extraction and purification steps | [18] |
Sepia ink | • washing with distilled water • dilution of sepia ink paste with distilled water (1:5) using a homogenizer • centrifugation followed by repeated washing of the melanin precipitate • drying at 40 °C for 24h to obtain dried melanin nanoparticles | [10] |
Human hair | • repeated hair wash with acetone, dichloromethane, ether, ultrapure water • addition of 0.1 M phosphate buffer and dithiothreitol (DTT); continuously stir the solution for 23 h at 37 °C under argon • repeated overnight incubation with proteinase K and/or papain and DTT, centrifugation followed by pellet wash and re-suspension in phosphate buffer • Triton X-100 treatment followed by 4 h stirring, ultracentrifugation and exhaustive pellet wash with water and methanol • final overnight treatment with proteinase K and DTT; successive washing steps with water and dry over NaOH under argon | [20] |
Neuromelanin | • brain tissue grinding; addition of water and shaking • centrifugation followed by washing with phosphate buffer • incubation with Tris buffer (50 mM, pH 7.4) containing SDS for 3 h at 37 °C • centrifugation followed by pellet incubation with the same solution containing proteinase K for 3 h at 37 °C • centrifugation followed by pigment wash with NaCl 0.9% and water • suspension of pigment in methanol, centrifugation; resuspension of pigment in hexane, centrifugation • pigment dry under nitrogen flow and placed under vacuum for 14 h at room temperature | [24] |
Bacterial melanin | • centrifugation of a 6-day culture followed by acidification of the cell-free supernatant with 1 N HCl • storage at 25 °C in the dark for 1 week • 1 h boiling followed by cooling and centrifugation • pellet wash with 0.1 N HCl and double distilled water • pellet wash with ethanol at 100 °C for 10 min • 24 h storage at room temperature • residue wash with ethanol followed by air dry | [25] |
Melanin Source | Endothermal Peak (°C) | Exothermal Peak (°C) | Decomposition (°C) | Ref. |
---|---|---|---|---|
Synthetic | ||||
DOPA-melanin | 76.85 | 424.85 | - | [27,28] |
DMSO-thin film melanin | 150 | - | 1000 | [29] |
Natural | ||||
Black garlic | 71.5 | 306.7 | 915.3 | [10] |
Sepia ink | 71.5 | 306.7 | 998.3 | [10] |
Banana hard core peel | 59.85 | 399.85 | - | [27,28] |
Bovine eyes | 67.85 | 379.85 | - | [27,28] |
Bacillus subtilis | 280 | 390 | 500 | [30] |
Klebsiella sp. GSK | 220 | 350 | 700 | [31] |
Melanin Source | Granule Morphology and Size | Ref. |
---|---|---|
Synthetic | Spherical particles with 100–150 nm size | [61] |
Sepia officinalis | Small spherical granules with 100–200 nm diameter and average interlayer distance of 0.323 nm–0.35 nm. Identified configurations: polymeric fibrils-like; cross-linked fibrils-like; onion-like planar polymeric chains | [32,41,62] |
Fungal | ||
Auricularia auricula | The internal structure: circular units with a dense cell wall with several concentric layers encapsulated in a heterogeneous mass | [34] |
Cryptococcus neoformans | Melanin spheres that appear as empty particles, named melanin “ghosts” | [34] |
Wangiella dermatitidis (DHN-melanin) | Granular structure on the external cell wall structure | [62] |
Human hair | Largely or partially decomposed | [63] |
Melanin Source | Maximum Absorption Wavelength (nm) | Slope * | Ref. |
---|---|---|---|
Fungal | |||
Auricularia auricula | 215 | −0.0030 | [14,82] |
Boletus griseus | 214 | [22] | |
Chroogomphus rutilus | 212 | [13] | |
Exophiala pisciphila | 216 | −0.0030 | [83] |
Inonotus hispidus | 212 | −0.0031 | [23] |
Lachnum singerianum YM296 | 215 | [84] | |
Lachnum YM205 | 196 | −0.0015 to −0.0030 | [85] |
Lachnum YM226 | 223 | −0.0030 | [86] |
Lachnum YM404 | 210 | −0.0015 to −0.0030 | [11] |
Mycosphaerella fijiensis | 200–250 | [36] | |
Ophiocordyceps sinensis | 220–240 | −0.0019 | [12] |
Phyllosticta capitalensis | 240 | −0.0015 | [8] |
Pleurotus cystidiosus | 280 | [9] | |
Bacterial | |||
Streptomyces glaucescens | 250 | [47] | |
Marine species | |||
Actinoalloteichus sp. MA-32 | 300 | −0.2646 | [87] |
Patinopecten yessoensis | 297 | [88] | |
Human epidermal melanin | broadband absorption spectrum | [89,90] | |
Others | |||
Black garlic | 210–250 | [10] | |
Sepia ink | 210–250 | [10] | |
Industrially polluted metagenomic library equipped Escherichia coli | 290 | [50] | |
Castanea mollissima | 270–280 | –0.0050 | [91] |
Melanin Source | Absorption Peaks/Regions (cm−1) | Ref. |
---|---|---|
Synthetic melanin | 3314; 3107; 1713; 1599; 1217 | [42] |
3406; 2924; 1720; 1620; 1296 | [82] | |
Fungal melanin | ||
Auricularia auricula | 3300–3500; 3399; 2925; 1633; 1075 | [14] |
3422; 2923; 2853; 1627 | [82] | |
Boletus griseus | 3426; 1600; 1384; 1105; 873–618 | [22] |
Chroogomphus rutilus | 3400–3200; 2923; 1614; 1422–1344; 1280; 1241 | [13] |
Cryptococcus neoformans/ C. gattii | 3300–3250; 2950–2900; 1620–1630; 1545–1525; 1400–1350; 1050–1000 | [42] |
Exophiala pisciphila | 3360–3000; 2924; 2855; 1709; 1618; 1239; 721 | [83] |
Inonotus hispidus | 3298; 2934; 1624; 1536; 1402; 800–600 | [23] |
Lachnum singerianum YM296 | 3388; 2927; 2854; 1629; 1517; 1408; 1115; 620 | [84] |
Lachnum YM205 | 3280; 2850; 1630; 1540; 1460; 1400; 1240; 1160; 700–600 | [85] |
Lachnum YM226 | 3130; 1640; 1400; 619; | [86] |
Lachnum YM404 | 3156; 3047; 1568; 1663; 1403; 1103; 900–650; 700–600 | [11] |
Mycosphaerella fijiensis | 3700–3000; 3433; 2953; 2853; 1711; 1628; 1244; 1026 | [36] |
Ophiocordyceps sinensis | 3421; 2929; 1706; 1618 | [12] |
Phyllosticta capitalensis | 3352; 1639 | [8] |
Pleurotus cystidiosus | 3445; 2925; 1637, 1025 | [9] |
Bacterial melanin | ||
Streptomyces glaucescens | 3421; 2947; 1647; 1539; 1423; 1240; 1058; 864 | [47] |
Marine species | ||
Actinoalloteichus sp. MA-32 | 3346; 2943; 2835; 1446; 1112, 1029 | [87] |
Others | ||
Human black hair | 3277; 2967; 1625; 1522; 1043; 877 | [42] |
Black garlic | 3170; 2922; 1704; 1620; 1514; 1363; 1162; 1021; 796; 502 | [10] |
Sepia ink | 3278; 2920; 2851; 1708; 1645; 1518; 1453; 1411; 1208; 1036; 925; 603 | [10] |
Industrially polluted metagenomic library equipped E. Coli | 3424; 2926; 2856; 1640; 1538; 1454; 1232; 750 | [50] |
Catharsius molossus L. | 3400; 2950–2850; 1650–1600; 1453; 1400–1380; 800–600 | [15] |
Melanin Source | δH (ppm) | δC (ppm) | Ref. |
---|---|---|---|
Fungal | |||
Auricularia auricula | 8.29; 7.02; 6.73; 4.7–5.4; 3.5–4.5; 0.5–2.5; | 40–15 | [14] |
Boletus griseus | 8–8.5; 6.5–7.5; 5.5–6.5; 4.2–5.4; 3.2–4.2; 0–2.5 | 175–165 | [22] |
Lachnum singerianum YM296 | 6.2–7.5; 3.3–4.5; 1.5–2.5; 0.8–1.2 | 10–40; 50–70; 110–135; 170–185 | [84] |
Lachnum YM205 | 7.1; 4.2–5.4; 3.1–4.2; 1.7–2.5; 0.2–2 | 10–40; 50–60; 120–138; 138–163; 170–180 | [85] |
Lachnum YM226 | 10.74; 9.15; 8.0–7.6; 7.2; 6.9; 6.6; 4.7–5.4; 4.47; 3.9; 3–0.7; 2.5; | 175; 195 | [86] |
Lachnum YM404 | 3.2–4.2; 1.3–2.5; 0.5–1.2 | 10–45; 55–60; 150–160; 180–185 | [11] |
Bacterial | |||
Streptomyces glaucescens | 7.6; 7.35; 7.00; 6.60; 1.0–3.2 | [47] | |
Others | |||
Industrially polluted metagenomic library equipped E. Coli | 9.2; 7.2–8.0; 6.6–7.1; | 171; 100; 120–140; 20–24 | [50] |
Catharsius molossus L. | 7.3; 6.5; 3.5; 2.0; 0.8–1.0 | 230; 195; 175; 145; 128; 113; 102.5; 55.7; 35.2 | [15] |
Melanin Precursor | Pyrolysis Conditions | Py-GC-MS Results | Ref. |
---|---|---|---|
L-3,4 dihydroxyphenyIalanine (Dopa) | Curie-point 770 °C, 4 s | Main pyrolysis products: pyrrole, indole, catechol, indole and their derivatives Pyrrole derivatives more readily released during pyrolysis of oxidized melanin | [125] |
Main pyrolysis products: pyrrole, phenols, indoles, catechols, styrene and 2,3-dihydrobenzofuran Phenol, catechol and their alkyl derivatives, styrene and 2,3 dihydrobenzofuran—marker panel for unindolized DOPA-derived units Content of unindolized units in the polymer depends strongly on the oxidation time and DOPA concentration used during the melanin synthesis | [126] | ||
Curie-point 230 °C, 8 s | Main pyrolysis products: benzene, pyrrole, phenol, indole, and their alkyl derivatives | [132] | |
Curie-point 770 °C, 8 s | Acidification with hydrochloric acid has no influence on DOPA-melanin pyrolysis products Dopa-metal complex melanin Additional pyrolysis compounds—pyrazines and pyridines and their alkylated derivatives Enhanced contribution of benzene Considerably reduced levels of pyrrole, phenol, benzenenitrile and indole-derivatives Dopa-Cu2+−melanins Increased 1,2-benzenediol content Dopa-Zn2+− melanins Lower 1,2- benzenediol content | [128] | |
3,4 dihydroxyphenethyIamine (Dopamine) | Curie-point 770 °C, 4 s | Main pyrolysis products: pyrrole, indole, catechol, indole and their derivatives Pyrrole derivatives more readily released during pyrolysis of oxidized melanin Lower yields of indoles | [125] |
Free-copper dopamine melanin: high yields of phenol, catechol and their alkyl derivatives Copper-dopamine melanin: high content of indole compounds and small amounts of phenols and catechols | [127] | ||
Curie-point 770 °C, 8 s | Main pyrolysis product: 1,2-benzenediol Large quantities of pyrrole, phenol and their methyl derivatives Lower amount of indole | [129] | |
Main pyrolysis products: 1,2-benzenediol, pyrrole, phenol and their alkyl derivatives Little amounts of benzenes and indoles Peroxynitrite treatment: Reduced level of 1,2-benzenediol Ratio of 1,2-benzenediol to phenol 1:2 (normally 2:1) Enhanced percentages of low molecular weight gases with low retention time | [130] | ||
L-adrenaline | Curie-point 770 °C, 4 s | Free-copper adrenaline melanin Substantial amounts of unindolized precursor-derived units, e.g., catecholamines or their quinones. Copper-adrenaline melanin Mainly composed from indole type monomer units | [127] |
L-tyrosine | Main pyrolysis products: pyrrole, indole, catechol, indole and their derivatives Pyrrole derivatives more readily released during pyrolysis of oxidized melanin Lower yields of indoles and higher amount of alkylindole derivatives | [125] | |
5-S-cysteinyldopamine | Curie-point 770 °C, 8 s | Benzothiazine-, benzothiazole- and thiazoloisoquinoline-derivatives—identified as panel markers | [129] |
Large quantities of benzothiazine-, benzothiazole- and thiazoloisoquinoline-deriva- tives Identification of 1H[1]benzothiopyrano[3,4-d]imidazol4-one as marker Peroxynitrite treatment: Benzothiazine- derivatives content reduced 2-fold Enhanced percentages of low molecular weight gases with low retention time | [130] | ||
Microfurnace 500 °C | Addition of benzothiazole and benzothiazine derivatives 7-methyl-5H-1,4-benzothiazin-5- one and 7-ethyl-2,3-dihydro-5H-1,4-benzothiazin-5-one to the list of pheomelanin type pigment marker panel | [133] | |
5-S cysteinylDOPA | Microfurnace 500 °C | Addition of benzothiazole and benzothiazine derivatives 7-methyl-5H-1,4-benzothiazin-5- one and 7-ethyl-2,3-dihydro-5H-1,4-benzothiazin-5-one to the list of pheomelanin type pigment marker panel | [133] |
Curie-point 230 °C, 8 s | Pyrolysate dominated by sulfur-containing compounds: thiophene, thiazole, and thiazolidine derivatives, hydroxybenzothiazole and 1,4-benzothiazine Pyrrole, indole, and pyridine derivatives also detected Thiazolidine derivative characteristic to 5-S cysteinylDOPA | [132] | |
Copolymers Dopamine:5-S-cysteinyldopamine (CysDA-melanin) | Curie-point 770 °C, 8 s | Main pyrolysis products: Benzothiazine-, benzothiazole-, thiazoloisoquinoline-derivatives, 1H[1]benzothiopyrano[3,4-d]imidazol4-one Little amounts of benzene, toluene, ethylbenzene, styrene, phenol, 4-methylphenol No 1,2-benzenediol, indoles | [129] |
Main pyrolysis products: Benzothiazine-, benzothiazole-, thiazoloisoquinoline-derivatives, 1H[1]benzothiopyrano[3,4-d]imidazol4-one Peroxynitrite treatment: Reduced percentages of all the typical pyrolysis products originated from 5-S- cysda-derived units Enhanced percentages of low molecular weight gases with low retention time | [130] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pralea, I.-E.; Moldovan, R.-C.; Petrache, A.-M.; Ilieș, M.; Hegheș, S.-C.; Ielciu, I.; Nicoară, R.; Moldovan, M.; Ene, M.; Radu, M.; et al. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis. Int. J. Mol. Sci. 2019, 20, 3943. https://doi.org/10.3390/ijms20163943
Pralea I-E, Moldovan R-C, Petrache A-M, Ilieș M, Hegheș S-C, Ielciu I, Nicoară R, Moldovan M, Ene M, Radu M, et al. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis. International Journal of Molecular Sciences. 2019; 20(16):3943. https://doi.org/10.3390/ijms20163943
Chicago/Turabian StylePralea, Ioana-Ecaterina, Radu-Cristian Moldovan, Alina-Maria Petrache, Maria Ilieș, Simona-Codruța Hegheș, Irina Ielciu, Raul Nicoară, Mirela Moldovan, Mihaela Ene, Mihai Radu, and et al. 2019. "From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis" International Journal of Molecular Sciences 20, no. 16: 3943. https://doi.org/10.3390/ijms20163943
APA StylePralea, I.-E., Moldovan, R.-C., Petrache, A.-M., Ilieș, M., Hegheș, S.-C., Ielciu, I., Nicoară, R., Moldovan, M., Ene, M., Radu, M., Uifălean, A., & Iuga, C.-A. (2019). From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis. International Journal of Molecular Sciences, 20(16), 3943. https://doi.org/10.3390/ijms20163943