Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice
Abstract
:1. Introduction
2. Results
2.1. The Effects of BP and MTS on General Characteristics in Diabetic Mice
2.2. The Effects of BP and MTS on Serum Osteoblast and Osteoclast Markers in Diabetic Mice
2.3. The Effects of BP and MTS on Bone Microarchitecture and Histology in Diabetic Mice
2.4. The Effects of BP and MTS on Bone Metabolism-Related Gene Expression in Diabetic Mice
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Bone Microarchitecture Analysis Using Micro-Computed Tomography (µCT)
4.4. Histological Analysis of Bone Tissue
4.5. Biochemical Analysis
4.6. Real-Time PCR (Polymerase Chain Reaction) Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russo, G.T.; Giandalia, A.; Romeo, E.L.; Nunziata, M.; Muscianisi, M.; Ruffo, M.C.; Catalano, A.; Cucinotta, D. Fracture risk in type 2 diabetes: Current perspectives and gender differences. Int. J. Endocrinol. 2016, 2016, 1615735. [Google Scholar] [CrossRef] [PubMed]
- Poiana, C.; Capatina, C. Fracture risk assessment in patients with diabetes mellitus. J. Clin. Densitom. 2017, 20, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Z.; Han, S.; Zhang, Z. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice. Int. J. Mol. Med. 2016, 38, 1661–1672. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, S.A.; Dehkordi, N.G.; Ghamghami, M.; Amiri, A.H.; Abdolahinia, E.D.; Elahian, F. ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicol. Appl. Pharmacol. 2017, 337, 22–29. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Czapski, J.; Czaczyk, K.; Biegańska-Marecik, R. The effect of pre-treatment and modified atmosphere packaging on contents of phenolic compounds and sensory and microbiological quality of shredded celeriac. J. Sci. Food Agric. 2014, 94, 1140–1148. [Google Scholar] [CrossRef]
- Melough, M.M.; Lee, S.G.; Cho, E.; Kim, K.; Provatas, A.A.; Perkins, C.; Park, M.K.; Qureshi, A.; Chun, O.K. Identification and quantitation of furocoumarins in popularly consumed foods in the US Using QuEChERS extraction coupled with UPLC-MS/MS analysis. J. Agric. Food Chem. 2017, 65, 5049–5055. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Ceska, O.; Warrington, P.J.; Ashwood-Smith, M.J. Increased furocoumarin content of celery during storage. J. Agric. Food Chem. 1985, 33, 1153–1157. [Google Scholar] [CrossRef]
- Surico, G.; Varvaro, L.; Solfrizzo, M. Linear furocoumarin accumulation in celery plants infected with Erwinia carotovora pv. carotovora. J. Agric. Food Chem. 1987, 35, 406–409. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential oil profiles. In Essential Oil Safety, 2nd ed.; Tisserand, R., Young, R., Eds.; Churchill Livingstone: St. Louis, MO, USA, 2014; pp. 187–482. [Google Scholar]
- Ostertag, E.; Becker, T.; Ammon, J.; Bauer-Aymanns, H.; Schrenk, D. Effects of storage conditions on furocoumarin levels in intact, chopped, or homogenized parsnips. J. Agric. Food Chem. 2002, 50, 2565–2570. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Cho, E.; Chun, O.K. Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem. Toxicol. 2018, 113, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Muni, I.A.; Scheneider, F.H.; Olsson, T.A.; King, M. Absorption, distribution, and excretion of 8-methoxypsoralen in HRA/skh mice. Natl. Cancer Inst. Monogr. 1984, 66, 85–90. [Google Scholar]
- Eisenbrand, G. Toxicological assessment of furanocoumarin in foodstuffs. Mol. Nutr. Food Res. 2007, 51, 367–373. [Google Scholar] [CrossRef]
- Bickers, D.R.; Pathak, M.A. Psoralen pharmacology: Studies on metabolism and enzyme induction. Natl. Cancer Inst. Monogr. 1984, 66, 77–84. [Google Scholar]
- Artuc, M.; Stuettgen, G.; Schalla, W.; Schaefer, H.; Gazith, J. Reversible binding of 5- and 8-methoxypsoralen to human serum proteins (albumin) and to epidermis in vitro. Br. J. Dermatol. 1979, 101, 669–677. [Google Scholar] [CrossRef]
- Zheng, M.; Ge, Y.; Li, H.; Yan, M.; Zhou, J.; Zhang, Y. Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. Int. Orthop. 2014, 38, 627–634. [Google Scholar] [CrossRef]
- Fang, K.; Dong, H.; Jiang, S.; Li, F.; Wang, D.; Yang, D.; Gong, J.; Huang, W.; Lu, F. Diosgenin and 5-methoxypsoralen ameliorate insulin resistance through ER-α/PI3K/Akt-signaling pathways in HepG2 cells. Evid. Based Complement. Altern. Med. 2016, 2016, 7493694. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chou, C.T.; Liang, W.Z.; Kuo, C.C.; Hsu, S.S.; Wang, J.L.; Jan, C.R. Effect of methoxsalen on Ca2+ homeostasis and viability in human osteosarcoma cells. Chin. J. Physiol. 2017, 60, 174–182. [Google Scholar] [CrossRef]
- Ham, J.R.; Choi, R.; Yee, S.; Hwang, Y.; Kim, M.; Lee, M. Methoxsalen supplementation attenuates bone loss and inflammatory response in ovariectomized mice. Chem. Biol. Interact. 2017, 278, 135–140. [Google Scholar] [CrossRef]
- Jackuliak, P.; Payer, J. Osteoporosis, fractures, and diabetes. Int. J. Endocrinol. 2014, 2014, 820615. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis prevention, diagnosis and therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- Johansson, H.; Kanis, J.A.; Oden, A.; Johnell, O.; McCloskey, E. BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos. Int. 2009, 20, 1675–1682. [Google Scholar] [CrossRef]
- Nyman, J.S.; Even, J.L.; Jo, C.; Herbert, E.G.; Murry, M.M.; Cockrell, G.E.; Wahl, E.C.; Bunn, R.C.; Lumpkin, C.K., Jr.; Fowlkes, J.L.; et al. Increasing duration of type 1 diabetes pertubs the strength-structure relationship and increase brittleness of bone. Bone 2011, 48, 733–740. [Google Scholar] [CrossRef]
- Thrailkill, K.M.; Lumpkin C.K., Jr.; Bunn, R.C.; Kemp, S.F.; Fowlkes, J.L. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E735–E745. [Google Scholar] [CrossRef]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef]
- Raska, I., Jr.; Rasková, M.; Zikán, V.; Skrha, J. Body composition is associated with bone and glucose metabolism in postmenopausal women with type 2 diabetes mellitus. Physiol. Res. 2017, 66, 99–111. [Google Scholar]
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef]
- Reed, M.J.; Meszaros, K.; Entes, L.J.; Claypool, M.D.; Pinkett, J.G.; Gadbois, T.M.; Reaven, G.M. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metab.-Clin. Exp. 2000, 49, 1390–1394. [Google Scholar] [CrossRef]
- Asrafuzzaman, M.; Cao, Y.; Afroz, R.; Kamato, D.; Gray, S.; Little, P.J. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of type 2 diabetes. Biomed. Pharmacother. 2017, 89, 1242–1251. [Google Scholar] [CrossRef]
- Dalle Carbonare, L.; Giannini, S. Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Investig. 2004, 27, 99–105. [Google Scholar] [CrossRef]
- Rubin, M.R. Bone cells and bone turnover in diabetes mellitus. Curr. Osteoporos. Rep. 2015, 13, 186–191. [Google Scholar] [CrossRef]
- Rosen, C.J.; Chesnut, C.H., III; Mallinak, N.J. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J. Clin. Endocrinol. Metab. 1997, 82, 1904–1910. [Google Scholar]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 2008, 105, 5266–5270. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Irie, N.; Takada, Y.; Watanabe, Y.; Matsuzaki, Y.; Naruse, C.; Asano, M.; Iwakura, Y.; Suda, T.; Matsuo, K. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J. Biol. Chem. 2009, 284, 14637–14644. [Google Scholar] [CrossRef]
- Sanches, C.P.; Vianna, A.G.D.; de Carvalho Barreto, F. The impact of type 2 diabetes on bone metabolism. Diabetol. Metab. Syndr. 2017, 9, 85–91. [Google Scholar] [CrossRef]
- Kiechl, S.; Wittmann, J.; Giaccari, A.; Knoflach, M.; Willeit, P.; Bozec, A.; Moschen, A.R.; Muscogiuri, G.; Sorice, G.P.; Kireva, T. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 2013, 19, 358–363. [Google Scholar] [CrossRef]
- Léotoing, L.; Davicco, M.; Lebecque, P.; Wittrant, Y.; Coxam, V. The flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity. Mol. Nutr. Food Res. 2014, 58, 1239–1248. [Google Scholar] [CrossRef]
- Hsieh, T.; Sheu, S.; Sun, J.; Chen, M. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE2 synthesis. Phytomedicine 2011, 18, 176–185. [Google Scholar] [CrossRef]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef]
- Yao, C.; Guo, X.; Yao, W.; Zhang, C. Cereblon (CRBN) deletion reverses streptozotocin induced diabetic osteoporosis in mice. Biochem. Biophys. Res. Commun. 2018, 496, 967–974. [Google Scholar] [CrossRef]
- Xia, G.; Zhao, Y.; Yu, Z.; Tian, Y.; Wang, Y.; Wang, S.; Wang, J.; Xue, C. Phosphorylated peptides from Antarctic krill (Euphausia superba) prevent estrogen deficiency induced osteoporosis by inhibiting bone resorption in ovariectomized rats. J. Agric. Food Chem. 2015, 63, 9550–9557. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Sundaram, K.; Nishimura, R.; Senn, J.; Youssef, R.F.; London, S.D.; Reddy, S.V. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp. Cell Res. 2007, 313, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.C.; Cahill, M.; Carninci, P.; Kawai, J.; Okazaki, Y.; Hayashizaki, Y.; Hume, D.A.; Cassady, A.I. Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene 2003, 307, 111–123. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Muller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NC | DM | DM+BP | DM+MTS | |
---|---|---|---|---|
Initial body weight (g) | 26.31 ± 0.41 | 26.33 ± 0.48 | 26.22 ± 0.50 | 26.68 ± 0.36 |
Final body weight (g) | 33.10 ± 0.97 b | 24.76 ± 0.48 a | 25.79 ± 0.81 a | 25.74 ± 1.31 a |
Blood glucose (mmol/L) | 9.96 ± 0.29 a | 27.07 ± 0.98 b | 27.22 ± 1.37 b | 28.05 ± 1.11 b |
HbA1C (%) | 4.31 ± 0.08 a | 9.64 ± 0.58 b | 9.22 ± 0.60 b | 9.43 ± 0.29 b |
Serum | ||||
Insulin (pg/mL) | 742.72 ± 87.26 b | 322.78 ± 22.80 a | 536.85 ± 92.75 ab | 384.31 ± 49.03 a |
Adiponectin (μg/mL) | 0.93 ± 0.02 b | 0.69 ± 0.02 a | 0.66 ± 0.03 a | 0.67 ± 0.06 a |
Ca (U/L) | 8.55 ± 0.21 b | 7.57 ± 0.30 a | 7.72 ± 0.25 a | 7.75 ± 0.11 a |
IP (U/L) | 9.01 ± 0.52 c | 5.32 ± 0.45 a | 6.98 ± 0.53 b | 6.06 ± 0.33 ab |
NC | DM | DM+BP | DM + MTS | |
---|---|---|---|---|
Femoral morphometry | ||||
Length (mm) | 15.63 ± 0.11 | 15.37 ± 0.16 | 15.58 ± 0.35 | 15.17 ± 0.21 |
Weight (mg) | 83.89 ± 1.57 b | 73.11 ± 3.48 a | 81.57 ± 3.07 b | 80.35 ± 1.93 ab |
Femoral trabecular bone microstructures | ||||
BV/TV (%) | 32.00 ± 2.59 b | 19.63 ± 2.34 a | 30.14 ± 1.93 b | 26.90 ± 1.70 b |
Tb.N (mm−1) | 2.55 ± 0.13 b | 1.81 ± 0.17 a | 2.51 ± 0.16 b | 2.44 ± 0.09 b |
Tb.Th (μm) | 124.17 ± 3.75 c | 107.10 ± 2.73 a | 120.64 ± 4.40 bc | 109.79 ± 4.50 ab |
Tb.Sp (μm) | 223.76 ± 9.69 | 262.87 ± 15.97 | 237.70 ± 20.27 | 254.00 ± 14.10 |
SMI | 2.02 ± 0.10 a | 2.39 ± 0.08 b | 1.98 ± 0.09 a | 1.99 ± 0.06 a |
Tibial morphometry | ||||
Length (mm) | 18.16 ± 0.13 | 18.07 ± 0.10 | 18.21 ± 0.08 | 18.28 ± 0.34 |
Weight (mg) | 60.04 ± 1.61 | 55.50 ± 1.34 | 60.36 ± 2.82 | 59.47 ± 1.85 |
Tibial trabecular bone microstructures | ||||
BV/TV (%) | 31.26 ± 2.52 bc | 20.82 ± 2.88 a | 34.57 ± 3.17 c | 24.66 ± 3.10 ab |
Tb.N (mm−1) | 2.67 ± 0.13 | 2.12 ± 0.22 | 2.77 ± 0.22 | 2.15 ± 0.17 |
Tb.Th (μm) | 116.12 ± 4.44 b | 96.43 ± 3.90 a | 123.77 ± 3.30 b | 112.52 ± 8.36 b |
Tb.Sp (μm) | 222.28 ± 7.68 | 234.95 ± 13.08 | 218.12 ± 19.93 | 246.71 ± 10.74 |
SMI | 2.19 ± 0.11 ab | 2.41 ± 0.10 b | 1.96 ± 0.14 a | 2.37 ± 0.05 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.R.; Choi, R.-Y.; Lee, H.-I.; Lee, M.-K. Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice. Int. J. Mol. Sci. 2019, 20, 1298. https://doi.org/10.3390/ijms20061298
Ham JR, Choi R-Y, Lee H-I, Lee M-K. Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice. International Journal of Molecular Sciences. 2019; 20(6):1298. https://doi.org/10.3390/ijms20061298
Chicago/Turabian StyleHam, Ju Ri, Ra-Yeong Choi, Hae-In Lee, and Mi-Kyung Lee. 2019. "Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice" International Journal of Molecular Sciences 20, no. 6: 1298. https://doi.org/10.3390/ijms20061298
APA StyleHam, J. R., Choi, R. -Y., Lee, H. -I., & Lee, M. -K. (2019). Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice. International Journal of Molecular Sciences, 20(6), 1298. https://doi.org/10.3390/ijms20061298